Evolving concepts in bone infection: redefining “biofilm”, “acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy”

Elysia A. Masters , Ryan P. Trombetta , Karen L. de Mesy Bentley , Brendan F Boyce , Ann Lindley Gill , Steven R. Gill , Kohei Nishitani , Masahiro Ishikawa , Yugo Morita , Hiromu Ito , Sheila N. Bello-Irizarry , Mark Ninomiya , James D. Jr. Brodell , Charles C. Lee , Stephanie P. Hao , Irvin Oh , Chao Xie , Hani A. Awad , John L. Daiss , John R. Owen , Stephen L. Kates , Edward M. Schwarz , Gowrishankar Muthukrishnan

Bone Research ›› 2019, Vol. 7 ›› Issue (1) : 20

PDF
Bone Research ›› 2019, Vol. 7 ›› Issue (1) : 20 DOI: 10.1038/s41413-019-0061-z
Review Article

Evolving concepts in bone infection: redefining “biofilm”, “acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy”

Author information +
History +
PDF

Abstract

Osteomyelitis is a devastating disease caused by microbial infection of bone. While the frequency of infection following elective orthopedic surgery is low, rates of reinfection are disturbingly high. Staphylococcus aureus is responsible for the majority of chronic osteomyelitis cases and is often considered to be incurable due to bacterial persistence deep within bone. Unfortunately, there is no consensus on clinical classifications of osteomyelitis and the ensuing treatment algorithm. Given the high patient morbidity, mortality, and economic burden caused by osteomyelitis, it is important to elucidate mechanisms of bone infection to inform novel strategies for prevention and curative treatment. Recent discoveries in this field have identified three distinct reservoirs of bacterial biofilm including: Staphylococcal abscess communities in the local soft tissue and bone marrow, glycocalyx formation on implant hardware and necrotic tissue, and colonization of the osteocyte-lacuno canalicular network (OLCN) of cortical bone. In contrast, S. aureus intracellular persistence in bone cells has not been substantiated in vivo, which challenges this mode of chronic osteomyelitis. There have also been major advances in our understanding of the immune proteome against S. aureus, from clinical studies of serum antibodies and media enriched for newly synthesized antibodies (MENSA), which may provide new opportunities for osteomyelitis diagnosis, prognosis, and vaccine development. Finally, novel therapies such as antimicrobial implant coatings and antibiotic impregnated 3D-printed scaffolds represent promising strategies for preventing and managing this devastating disease. Here, we review these recent advances and highlight translational opportunities towards a cure.

Cite this article

Download citation ▾
Elysia A. Masters, Ryan P. Trombetta, Karen L. de Mesy Bentley, Brendan F Boyce, Ann Lindley Gill, Steven R. Gill, Kohei Nishitani, Masahiro Ishikawa, Yugo Morita, Hiromu Ito, Sheila N. Bello-Irizarry, Mark Ninomiya, James D. Jr. Brodell, Charles C. Lee, Stephanie P. Hao, Irvin Oh, Chao Xie, Hani A. Awad, John L. Daiss, John R. Owen, Stephen L. Kates, Edward M. Schwarz, Gowrishankar Muthukrishnan. Evolving concepts in bone infection: redefining “biofilm”, “acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy”. Bone Research, 2019, 7(1): 20 DOI:10.1038/s41413-019-0061-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Klenerman L. A history of osteomyelitis from the Journal of Bone and Joint Surgery: 1948 to 2006. J. Bone Jt. Surg. Br. Vol., 2007, 89:667-670

[2]

Peltola H, Pääkkönen M, Kallio P, Kallio MJ, Group O-SAS. Short-versus long-term antimicrobial treatment for acute hematogenous osteomyelitis of childhood: prospective, randomized trial on 131 culture-positive cases. Pediatr. Infect. Dis. J., 2010, 29:1123-1128

[3]

Steiner, C., Andrews, R., Barrett, M., Weiss, A. US Agency for Healthcare Research and Quality; 2012. HCUP projections: mobility/orthopedic procedures 2003 to 2012. Report# 2012-03 (2014).

[4]

Kremers HM et al. Prevalence of total hip and knee replacement in the United States. J. Bone Jt. Surg. Am. Vol., 2015, 97:1386

[5]

Elek SD. Experimental staphylococcal infections in the skin of man. Ann. N. Y. Acad. Sci., 1956, 65:85-90

[6]

Zimmerli W, Waldvogel FA, Vaudaux P, Nydegger UE. Pathogenesis of foreign body infection: description and characteristics of an animal model. J. Infect. Dis., 1982, 146:487-497

[7]

Steckelberg, J. M. & Osmon, D. R. Prosthetic joint infections in Infections Associated with Indwelling Medical Devices. 3rd edn, 173–209 (American Society of Microbiology, 2000).

[8]

Saeed Kordo, McLaren Alex C., Schwarz Edward M., Antoci Valentin, Arnold William V., Chen Antonia F., Clauss Martin, Esteban Jaime, Gant Vanya, Hendershot Edward, Hickok Noreen, Higuera Carlos A., Coraça‐Huber Débora C., Choe Hyonmin, Jennings Jessica A., Joshi Manjari, Li William T., Noble Philip C., Phillips K. Scott, Pottinger Paul S., Restrepo Camilo, Rohde Holger, Schaer Thomas P., Shen Hao, Smeltzer Mark, Stoodley Paul, Webb Jason C. J., Witsø Eivind. 2018 international consensus meeting on musculoskeletal infection: Summary from the biofilm workgroup and consensus on biofilm related musculoskeletal infections. Journal of Orthopaedic Research, 2019, 37 5 1007-1017

[9]

Gahukamble AD et al. Propionibacterium acnes and Staphylococcus lugdunensis cause pyogenic osteomyelitis in an intramedullary nail model in rabbits. J. Clin. Microbiol., 2014, 52:1595-1606

[10]

Stulberg JJ et al. Adherence to Surgical Care Improvement Project measures and the association with postoperative infections. JAMA, 2010, 303:2479-2485

[11]

Kurtz SM et al. Infection burden for hip and knee arthroplasty in the United States. J. Arthroplast., 2008, 23:984-991

[12]

Cram P et al. Total knee arthroplasty volume, utilization, and outcomes among Medicare beneficiaries, 1991–2010. JAMA, 2012, 308:1227-1236

[13]

Schwarz, E. M., et al. The 2018 International Consensus Meeting on Musculoskeletal Infection: research priorities from the General Assembly Questions. J. Orthop. Res. 37, 997–1006 (2019).

[14]

Rosas S et al. Season of the year influences infection rates following total hip arthroplasty. World J. Orthop., 2017, 8:895

[15]

Azzam K, McHale K, Austin M, Purtill JJ, Parvizi J. Outcome of a second two-stage reimplantation for periprosthetic knee infection. Clin. Orthop. Relat. Res., 2009, 467:1706-1714

[16]

Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J. Economic burden of periprosthetic joint infection in the United States. J. Arthroplast., 2012, 27:61-5. e1

[17]

Arciola CR, An Y, Campoccia D, Donati M, Montanaro L. Etiology of implant orthopedic infections: a survey on 1027 clinical isolates. Int. J. Artif. Organs, 2005, 28:1091-1100

[18]

Walter G, Kemmerer M, Kappler C, Hoffmann R. Treatment algorithms for chronic osteomyelitis. Dtsch. Arzteblatt Int., 2012, 109:257-264

[19]

Pulido L, Ghanem E, Joshi A, Purtill JJ, Parvizi J. Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin. Orthop. Relat. Res., 2008, 466:1710-1715

[20]

Darouiche RO. Treatment of infections associated with surgical implants. N. Engl. J. Med., 2004, 350:1422-1429

[21]

Kaplan SL. Recent lessons for the management of bone and joint infections. J. Infect., 2014, 68:S51-S56

[22]

Lowy FD. Staphylococcus aureus infections. N. Engl. J. Med., 1998, 339:520-532

[23]

Kluytmans J, Van Belkum A, Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev., 1997, 10:505-520

[24]

Otto M. Staphylococcus aureus toxins. Curr. Opin. Microbiol., 2014, 17:32-37

[25]

Otto M. Targeted immunotherapy for staphylococcal infections. BioDrugs, 2008, 22:27-36

[26]

Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol., 2004, 2:95-108

[27]

Ricciardi BF et al. Staphylococcus aureus evasion of host immunity in the setting of prosthetic joint infection: biofilm and beyond. Curr. Rev. Musculoskelet. Med., 2018, 11:389-400

[28]

Tuchscherr L et al. Staphylococcus aureus small-colony variants are adapted phenotypes for intracellular persistence. J. Infect. Dis., 2010, 202:1031-1040

[29]

Sendi P et al. Staphylococcus aureus small colony variants in prosthetic joint infection. Clin. Infect. Dis., 2006, 43:961-967

[30]

Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti-Infect. Ther., 2013, 11:297-308

[31]

Hemmady, M. V., Al-Maiyah, M., Shoaib, A. & Morgan-Jones, R. L. Recurrence of chronic osteomyelitis in a regenerated fibula after 65 years. Orthopedics. 30, 403–404 (2007).

[32]

Gallie W. First recurrence of osteomyelitis eighty years after infection. J. Bone Jt. Surg. Br. Vol., 1951, 33:110-111

[33]

Bosse MJ, Gruber HE, Ramp WK. Internalization of bacteria by osteoblasts in a patient with recurrent, long-term osteomyelitis: a case report. JBJS, 2005, 87:1343-1347

[34]

Brodie BC. Pathological researches respecting the diseases of joints. Med Chir. Trans., 1813, 4:210-280

[35]

Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci. Am., 1978, 238:86-95

[36]

Buchholz, H. W., Elson, R. A. & Heinert, K. Antibiotic-loaded acrylic cement: current concepts. Clin. Orthop. Relat. Res. 190, 96–108 (1984).

[37]

Parvizi, J., Gehrke, T., Mont, M. A. & Callaghan, J. J. Introduction: Proceedings of International Consensus on Orthopedic Infections. J. Arthroplasty 34, S1–S2 (2019).

[38]

Bryan AJ et al. Irrigation and debridement with component retention for acute infection after hip arthroplasty: improved results with contemporary management. JBJS, 2017, 99:2011-2018

[39]

Kuiper JW, Willink RT, Moojen DJF, van den Bekerom MP, Colen S. Treatment of acute periprosthetic infections with prosthesis retention: review of current concepts. World J. Orthop., 2014, 5:667

[40]

Kuiper JW et al. Prosthetic joint-associated infections treated with DAIR (debridement, antibiotics, irrigation, and retention): analysis of risk factors and local antibiotic carriers in 91 patients. Acta Orthop., 2013, 84:380-386

[41]

Minassian AM et al. Chronic osteomyelitis of the pubic bones following radiotherapy for urological malignancy. J. Clin. Urol., 2017, 10:213-219

[42]

Crockarell JR, Hanssen AD, Osmon DR, Morrey BF. Treatment of infection with debridement and retention of the components following hip arthroplasty. J. Bone Jt. Surg. Am., 1998, 80:1306-1313

[43]

Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA, 1998, 279:1537-1541

[44]

Osmon DR et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis., 2013, 56:e1-e25

[45]

Sukeik M, Patel S, Haddad FS. Aggressive early debridement for treatment of acutely infected cemented total hip arthroplasty. Clin. Orthop. Relat. Res., 2012, 470:3164-3170

[46]

Holmberg A, Thórhallsdóttir VG, Robertsson O, W-Dahl A, Stefánsdóttir A. 75% success rate after open debridement, exchange of tibial insert, and antibiotics in knee prosthetic joint infections: Report on 145 cases from the Swedish Knee Arthroplasty Register. Acta Orthop., 2015, 86:457-462

[47]

Tsang SJ, Ting J, Simpson A, Gaston P. Outcomes following debridement, antibiotics and implant retention in the management of periprosthetic infections of the hip: a review of cohort studies. Bone Jt. J., 2017, 99:1458-1466

[48]

Kim JG, Bae JH, Lee SY, Cho WT, Lim HC. The parameters affecting the success of irrigation and debridement with component retention in the treatment of acutely infected total knee arthroplasty. Clin. Orthop. Surg., 2015, 7:69-76

[49]

Bedair H et al. The Mark Coventry Award: diagnosis of early postoperative TKA infection using synovial fluid analysis. Clin. Orthop. Relat. Res., 2011, 469:34-40

[50]

Tsukayama TD, Estrada R, Gustilo RB. Infection after total hip arthroplasty. A study of the treatment of one hundred and six infections. J. Bone. Joint. Surg. Am., 1996, 78:512-523

[51]

Toms A, Davidson D, Masri B, Duncan C. The management of peri-prosthetic infection in total joint arthroplasty. J. bone Jt. Surg. Br. Vol., 2006, 88:149-155

[52]

Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. New Engl. J. Med., 2004, 351:1645-1654

[53]

Baker P et al. Patient reported outcome measures after revision of the infected TKR: comparison of single versus two-stage revision. Knee Surg. Sports Traumatol. Arthrosc., 2013, 21:2713-2720

[54]

Vaishya, R., Agarwal, A. K., Rawat, S. K., Singh, H. & Vijay, V. Is single-stage revision safe following infected total knee arthroplasty? A critical review. Cureus 9, e1629 (2017).

[55]

Kronig, I., Vaudaux, P., Suvà, D., Lew, D. & Uçkay, I. Acute and chronic osteomyelitis. In Clinical Infectious Disease. 2nd edn, 448–453 (2015).

[56]

Hanssen AD. Prophylactic use of antibiotic bone cement: an emerging standard—in opposition. J. Arthroplast., 2004, 19:73-77

[57]

Guelcher SA et al. Dual-purpose bone grafts improve healing and reduce infection. J. Orthop. Trauma, 2011, 25:477-482

[58]

Barth RE, Vogely HC, Hoepelman AI, Peters EJ. ‘To bead or not to bead?’ Treatment of osteomyelitis and prosthetic joint-associated infections with gentamicin bead chains. Int. J. Antimicrob. Agents, 2011, 38:371-375

[59]

Cochran AR, Ong KL, Lau E, Mont MA, Malkani AL. Risk of reinfection after treatment of infected total knee arthroplasty. J. Arthroplast., 2016, 31:156-161

[60]

Nishitani, K., Bello-Irizarry, S. N., de Mesy Bentley, K., Daiss, J. L. & Schwarz, E. M. The role of the immune system and bone cells in acute and chronic osteomyelitis. Osteoimmunology 2nd edn, 283–295 (2016).

[61]

Moran GJ, Amii RN, Abrahamian FM, Talan DA. Methicillin-resistant Staphylococcus aureus in community-acquired skin infections. Emerg. Infect. Dis., 2005, 11:928

[62]

Kobayashi SD, Malachowa N, DeLeo FR. Pathogenesis of Staphylococcus aureus abscesses. Am. J. Pathol., 2015, 185:1518-1527

[63]

Cheng AG, DeDent AC, Schneewind O, Missiakas D. A play in four acts: Staphylococcus aureus abscess formation. Trends Microbiol., 2011, 19:225-232

[64]

Cheng AG et al. Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. FASEB J., 2009, 23:3393-3404

[65]

Yipp BG et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med., 2012, 18:1386-1393

[66]

Cheung GY, Otto M. The potential use of toxin antibodies as a strategy for controlling acute Staphylococcus aureus infections. Expert Opin. Ther. Targets, 2012, 16:601-612

[67]

Kim HK, Thammavongsa V, Schneewind O, Missiakas D. Recurrent infections and immune evasion strategies of Staphylococcus aureus. Curr. Opin. Microbiol., 2012, 15:92-99

[68]

Zecconi A, Scali F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol. Lett., 2013, 150:12-22

[69]

Rooijakkers SH et al. Early expression of SCIN and CHIPS drives instant immune evasion by Staphylococcus aureus. Cell. Microbiol., 2006, 8:1282-1293

[70]

Thurlow LR et al. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J. Immunol., 2011, 186:6585-6596

[71]

Cheng AG et al. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog., 2010, 6

[72]

Farnsworth CW et al. Adaptive upregulation of Clumping Factor A (ClfA) by S. aureus in the obese, type 2 diabetic host mediates increased virulence. Infect. Immun., 2017, IAI:01005-01016

[73]

Nakazawa D et al. The responses of macrophages in interaction with neutrophils that undergo NETosis. J. Autoimmun., 2016, 67:19-28

[74]

Patti JM, Allen BL, McGavin MJ, Höök M. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu. Rev. Microbiol., 1994, 48:585-617

[75]

Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol., 2014, 12:49

[76]

Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell, 2010, 140:805-820

[77]

Costerton JW, Stewart PS, Greenberg E. Bacterial biofilms: a common cause of persistent infections. Science, 1999, 284:1318-1322

[78]

Flemming H-C, Wingender J. The biofilm matrix. Nat. Rev. Microbiol., 2010, 8:623-633

[79]

Boles BR, Horswill AR. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog., 2008, 4

[80]

Periasamy S et al. How Staphylococcus aureus biofilms develop their characteristic structure. Proc. Natl Acad. Sci. USA, 2012, 109:1281-1286

[81]

George EA, Muir TW. Molecular mechanisms of agr quorum sensing in virulent staphylococci. Chembiochem, 2007, 8:847-855

[82]

Recsei P et al. Regulation of exoprotein gene expression in Staphylococcus aureus by agr. Mol. Gen. Genet., 1986, 202:58-61

[83]

Salam AM, Quave CL. Targeting virulence in Staphylococcus aureus by chemical inhibition of the accessory gene regulator system in vivo. MSphere, 2018, 3:e00500-e00517

[84]

Nishitani K et al. Quantifying the natural history of biofilm formation in vivo during the establishment of chronic implant‐associated Staphylococcus aureus osteomyelitis in mice to identify critical pathogen and host factors. J. Orthop. Res., 2015, 33:1311-1319

[85]

Gillaspy AF et al. Role of the accessory gene regulator (agr) in pathogenesis of Staphylococcal osteomyelitis. Infect. Immun., 1995, 63:3373-3380

[86]

Savage VJ, Chopra I, O'Neill AJ. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob. Agents Chemother., 2013, 57:1968-1970

[87]

Mah T-FC, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol., 2001, 9:34-39

[88]

Redlich K, Smolen JS. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat. Rev. Drug Discov., 2012, 11:234

[89]

Putnam NE et al. MyD88 and IL-1R signaling drive antibacterial immunity and osteoclast-driven bone loss during Staphylococcus aureus osteomyelitis. PLoS Pathog., 2019, 15

[90]

Junka A et al. Bad to the Bone: on in vitro and ex vivo microbial biofilm ability to directly destroy colonized bone surfaces without participation of host immunity or osteoclastogenesis. PLoS ONE, 2017, 12

[91]

Junka AF et al. Microbial biofilms are able to destroy hydroxyapatite in the absence of host immunity in vitro. J. Oral. Maxillofac. Surg., 2015, 73:451-464

[92]

Urish KL, DeMuth PW, Craft DW, Haider H, Davis CM III. Pulse lavage is inadequate at removal of biofilm from the surface of total knee arthroplasty materials. J. Arthroplast., 2014, 29:1128-1132

[93]

de Mesy Bentley, K. L., et al. Evidence of Staphylococcus aureus deformation, proliferation, and migration in canaliculi of live cortical bone in murine models of osteomyelitis. J. Bone Miner. Res. 32, 985–990 (2017).

[94]

de Mesy Bentley KL, MacDonald A, Schwarz EM, Oh I. Chronic osteomyelitis with Staphylococcus aureus deformation in submicron canaliculi of osteocytes: a case report. Jbjs Case Connect., 2018, 8

[95]

Masters, E. A. et al. An in vitro platform for elucidating the molecular genetics of S. aureus invasion of the osteocyte lacuno-canalicular network during chronic osteomyelitis. Nanomed. Nanotechnol. Biol. Med. e102039 (2019).

[96]

Trombetta RP, Dunman PM, Schwarz EM, Kates SL, Awad HA. A high-throughput screening approach to repurpose FDA-approved drugs for bactericidal applications against Staphylococcus aureus small-colony variants. mSphere, 2018, 3:e00422-18

[97]

Libraty DH, Patkar C, Torres B. Staphylococcus aureus reactivation osteomyelitis after 75 years. New Engl. J. Med., 2012, 366:481-482

[98]

Lowy FD. Is Staphylococcus aureus an intracellular pathogen? Trends Microbiol., 2000, 8:341-343

[99]

Garzoni C, Kelley WL. Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol., 2009, 17:59-65

[100]

Garzoni C, Kelley WL. Return of the Trojan horse: intracellular phenotype switching and immune evasion by Staphylococcus aureus. EMBO Mol. Med., 2011, 3:115-117

[101]

Hébert A, Sayasith K, Sénéchal S, Dubreuil P, Lagacé J. Demonstration of intracellular Staphylococcus aureus in bovine mastitis alveolar cells and macrophages isolated from naturally infected cow milk. FEMS Microbiol. Lett., 2000, 193:57-62

[102]

Clement S et al. Evidence of an intracellular reservoir in the nasal mucosa of patients with recurrent Staphylococcus aureus rhinosinusitis. J. Infect. Dis., 2005, 192:1023-1028

[103]

Edwards AM, Potts JR, Josefsson E, Massey RC. Staphylococcus aureus host cell invasion and virulence in sepsis is facilitated by the multiple repeats within FnBPA. PLoS Pathog., 2010, 6

[104]

Uribe-Querol E, Rosales C. Control of phagocytosis by microbial pathogens. Front. Immunol., 2017, 8:1368

[105]

Fraunholz M, Sinha B. Intracellular Staphylococcus aureus: live-in and let die. Front. Cell. Infect. Microbiol., 2012, 2:43

[106]

Ellington JK et al. Intracellular Staphylococcus aureus. A mechanism for the indolence of osteomyelitis. J. Bone Jt. Surg. Br., 2003, 85:918-921

[107]

Ellington JK et al. Intracellular Staphylococcus aureus and antibiotic resistance: implications for treatment of Staphylococcal osteomyelitis. J. Orthop. Res., 2006, 24:87-93

[108]

Ellington JK, Elhofy A, Bost KL, Hudson MC. Involvement of mitogen-activated protein kinase pathways in Staphylococcus aureus invasion of normal osteoblasts. Infect. Immun., 2001, 69:5235-5242

[109]

Reott MA Jr., Ritchie-Miller SL, Anguita J, Hudson MC. TRAIL expression is induced in both osteoblasts containing intracellular Staphylococcus aureus and uninfected osteoblasts in infected cultures. FEMS Microbiol. Lett., 2008, 278:185-192

[110]

Ning Rd, Zhang Xl, Li Qt, Guo Xk. The effect of Staphylococcus aureus on apoptosis of cultured human osteoblasts. Orthop. Surg., 2011, 3:199-204

[111]

Mohamed W et al. Intracellular proliferation of S. aureus in osteoblasts and effects of rifampicin and gentamicin on S. aureus intracellular proliferation and survival. Eur. Cell Mater., 2014, 28:258-268

[112]

Valour, F. et al. Antimicrobial activity against intra-osteoblastic Staphylococcus aureus. Antimicrob. Agents Chemother. 59, 2029–2036 (2015).

[113]

Valour F et al. Delta-toxin production deficiency in Staphylococcus aureus: a diagnostic marker of bone and joint infection chronicity linked with osteoblast invasion and biofilm formation. Clin. Microbiol. Infect., 2015, 21:568. e1-e11

[114]

Hamza T et al. Intra-cellular Staphylococcus aureus alone causes infection in vivo. Eur. Cells Mater., 2013, 25:341

[115]

Yang D et al. Novel insights into Staphylococcus aureus deep bone infections: the involvement of osteocytes. mBio, 2018, 9:e00415-e00418

[116]

Reilly S, Hudson M, Kellam J, Ramp W. In vivo internalization of Staphylococcus aureus by embryonic chick osteoblasts. Bone, 2000, 26:63-70

[117]

Varrone JJ et al. Passive immunization with anti-glucosaminidase monoclonal antibodies protects mice from implant-associated osteomyelitis by mediating opsonophagocytosis of Staphylococcus aureus megaclusters. J. Orthop. Res., 2014, 32:1389-1396

[118]

Thwaites GE, Gant V. Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus? Nat. Rev. Microbiol., 2011, 9:215

[119]

Muraille E, Leo O, Moser M. TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front. Immunol., 2014, 5:603

[120]

Shorr AF et al. Healthcare-associated bloodstream infection: a distinct entity? Insights from a large US database. Crit. Care Med., 2006, 34:2588-2595

[121]

Hamza T, Li B. Differential responses of osteoblasts and macrophages upon Staphylococcus aureus infection. BMC Microbiol., 2014, 14

[122]

Webb L et al. Osteomyelitis and intraosteoblastic Staphylococcus aureus. J. Surg. Orthop. Adv., 2007, 16:73-78

[123]

Cassat JE et al. Integrated molecular imaging reveals tissue heterogeneity driving host-pathogen interactions. Sci. Transl. Med., 2018, 10

[124]

Reizner W et al. A systematic review of animal models for Staphylococcus aureus osteomyelitis. Eur. Cells Mater., 2014, 27:196

[125]

Lazzarini L, Mader JT, Calhoun JH. Osteomyelitis in long bones. JBJS, 2004, 86:2305-2318

[126]

Pineda, C., Espinosa, R. & Pena, A. Radiographic imaging in osteomyelitis: the role of plain radiography, computed tomography, ultrasonography, magnetic resonance imaging, and scintigraphy. Semin. Plastic Surg. 23, 080–089 (2009).

[127]

Hotchen AJ, McNally MA, Sendi P. The classification of long bone osteomyelitis: a systemic review of the literature. J. Bone Jt. Infect., 2017, 2:167

[128]

Baltensperger M et al. Is primary chronic osteomyelitis a uniform disease? Proposal of a classification based on a retrospective analysis of patients treated in the past 30 years. J. Cranio-Maxillofac. Surg., 2004, 32:43-50

[129]

Dym H, Zeidan J. Microbiology of acute and chronic osteomyelitis and antibiotic treatment. Dent. Clin., 2017, 61:271-282

[130]

Kavanagh N et al. Staphylococcal osteomyelitis: disease progression, treatment challenges, and future directions. Clin. Microbiol. Rev., 2018, 31:e00084-17

[131]

Lonner JH, Desai P, Dicesare PE, Steiner G, Zuckerman JD. The reliability of analysis of intraoperative frozen sections for identifying active infection during revision hip or knee arthroplasty. JBJS, 1996, 78:1553-1558

[132]

Feldman DS, Lonner JH, Desai PM, Zuckerman JD. The role of intraoperative frozen sections in revision total joint arthroplasty. JBJS, 1995, 77:1807-1813

[133]

Athanasou N, Pandey R, De Steiger R, Crook D, Smith PM. Diagnosis of infection by frozen section during revision arthroplasty. J. Bone Jt. Surg. Br. Vol., 1995, 77:28-33

[134]

Cierny Iii G, Mader JT, Penninck JJ. The classic: a clinical staging system for adult osteomyelitis. Clin. Orthop. Relat. Res. (1976–2007)., 2003, 414:7-24

[135]

Waldvogel FA, Medoff G, Swartz MN. Osteomyelitis: a review of clinical features, therapeutic considerations and unusual aspects. New Engl. J. Med., 1970, 282:260-266

[136]

Holtfreter S et al. Human immune proteome in experimental colonization with Staphylococcus aureus. Clin. Vaccin. Immunol., 2009, 16:1607-1614

[137]

Holtfreter S, Kolata J, Broker BM. Towards the immune proteome of Staphylococcus aureus—the anti-S. aureus antibody response. Int. J. Med. Microbiol., 2010, 300:176-192

[138]

Verkaik NJ et al. Heterogeneity of the humoral immune response following Staphylococcus aureus bacteremia. Eur. J. Clin. Microbiol. Infect. Dis., 2010, 29:509-518

[139]

Verkaik NJ et al. Induction of antibodies by Staphylococcus aureus nasal colonization in young children. Clin. Microbiol Infect., 2010, 16:1312-1317

[140]

van Belkum A et al. Co-evolutionary aspects of human colonisation and infection by Staphylococcus aureus. Infect. Genet Evol., 2009, 9:32-47

[141]

van den Berg S et al. A multiplex assay for the quantification of antibody responses in Staphylococcus aureus infections in mice. J. Immunol. Methods, 2011, 365:142-148

[142]

Dryla A et al. Comparison of antibody repertoires against Staphylococcus aureus in healthy individuals and in acutely infected patients. Clin. Diagn. Lab Immunol., 2005, 12:387-398

[143]

Gedbjerg N et al. Anti-glucosaminidase IgG in sera as a biomarker of host immunity against Staphylococcus aureus in orthopaedic surgery patients. J. Bone Jt. Surg. Am., 2013, 95

[144]

Nishitani K et al. A diagnostic serum antibody test for patients with Staphylococcus aureus osteomyelitis. Clin. Orthop. Relat. Res., 2015, 473:2735-2749

[145]

Carter MJ, Mitchell RM, Meyer Sauteur PM, Kelly DF, Truck J. The antibody-secreting cell response to infection: kinetics and clinical applications. Front Immunol., 2017, 8:630

[146]

Lee FE, Falsey AR, Halliley JL, Sanz I, Walsh EE. Circulating antibody-secreting cells during acute respiratory syncytial virus infection in adults. J. Infect. Dis., 2010, 202:1659-1666

[147]

Lee FE et al. Circulating human antibody-secreting cells during vaccinations and respiratory viral infections are characterized by high specificity and lack of bystander effect. J. Immunol., 2011, 186:5514-5521

[148]

Oh I et al. Tracking anti-Staphylococcus aureus antibodies produced in vivo and ex vivo during foot salvage therapy for diabetic foot infections reveals prognostic insights and evidence of diversified humoral immunity. Infect. Immun., 2018, 86:e00629-18

[149]

MacDonald, A., Brodell, J. Jr., Daiss, J., Schwarz, E. & Oh, I. Evidence of differential microbiomes in healing versus non-healing diabetic foot ulcers prior to and following foot salvage therapy. J. Orthop. Res. 37, 1596–1603 (2019).

[150]

Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev., 2017, 41:430-449

[151]

Fowler VG Jr., Proctor RA. Where does a Staphylococcus aureus vaccine stand? Clin. Microbiol. Infect., 2014, 20 Suppl. 5 66-75

[152]

Proctor RA. Challenges for a universal Staphylococcus aureus vaccine. Clin. Infect. Dis., 2012, 54:1179-1186

[153]

Bagnoli F, Bertholet S, Grandi G. Inferring reasons for the failure of Staphylococcus aureus vaccines in clinical trials. Front. Cell. Infect. Microbiol., 2012, 2:16

[154]

Fowler VG et al. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA, 2013, 309:1368-1378

[155]

Giersing BK, Dastgheyb SS, Modjarrad K, Moorthy V. Status of vaccine research and development of vaccines for Staphylococcus aureus. Vaccine, 2016, 34:2962-2966

[156]

Salgado-Pabón W, Schlievert PM. Models matter: the search for an effective Staphylococcus aureus vaccine. Nat. Rev. Microbiol., 2014, 12:585

[157]

Warren HS et al. Mice are not men. Proc. Natl. Acad. Sci. USA, 2015, 112:E345-E345

[158]

Hall AE et al. Characterization of a protective monoclonal antibody recognizing Staphylococcus aureus MSCRAMM protein clumping factor A. Infect. Immun., 2003, 71:6864-6870

[159]

Weisman LE et al. Phase 1/2 double-blind, placebo-controlled, dose escalation, safety, and pharmacokinetic study of pagibaximab (BSYX-A110), an antistaphylococcal monoclonal antibody for the prevention of staphylococcal bloodstream infections, in very-low-birth-weight neonates. Antimicrob. Agents Chemother., 2009, 53:2879-2886

[160]

Weisman LE et al. A randomized study of a monoclonal antibody (pagibaximab) to prevent staphylococcal sepsis. Pediatrics, 2011, 128:271-279

[161]

Oganesyan V et al. Mechanisms of neutralization of a human anti-alpha-toxin antibody. J. Biol. Chem., 2014, 289:29874-29880

[162]

Hua L et al. MEDI4893* promotes survival and extends the antibiotic treatment window in a Staphylococcus aureus immunocompromised pneumonia model. Antimicrob. Agents Chemother., 2015, 59:4526-4532

[163]

Yu, X. Q. et al. Safety, tolerability, and pharmacokinetics of MEDI4893, an investigational, extended-half-life, anti-Staphylococcus aureus alpha-toxin human monoclonal antibody, in healthy adults. Antimicrob. Agents Chemother. 61, e01020-16 (2017).

[164]

Francois B et al. Safety and tolerability of a single administration of AR-301, a human monoclonal antibody, in ICU patients with severe pneumonia caused by Staphylococcus aureus: first-in-human trial. Intensive Care Med., 2018, 44:1787-1796

[165]

Foster TJ. Immune evasion by staphylococci. Nat. Rev. Microbiol., 2005, 3:948-958

[166]

Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nat. Rev. Microbiol., 2015, 13:529-543

[167]

Rouha H et al. Five birds, one stone: neutralization of alpha-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody. MAbs, 2015, 7:243-254

[168]

Thammavongsa V, Rauch S, Kim HK, Missiakas DM, Schneewind O. Protein A-neutralizing monoclonal antibody protects neonatal mice against Staphylococcus aureus. Vaccine, 2015, 33:523-526

[169]

Varshney AK et al. A natural human monoclonal antibody targeting Staphylococcus Protein A protects against Staphylococcus aureus bacteremia. PLoS ONE, 2018, 13

[170]

van den Berg S et al. A human monoclonal antibody targeting the conserved staphylococcal antigen IsaA protects mice against Staphylococcus aureus bacteremia. Int. J. Med. Microbiol., 2015, 305:55-64

[171]

Karauzum H et al. Synthetic human monoclonal antibodies toward staphylococcal enterotoxin B (SEB) protective against toxic shock syndrome. J. Biol. Chem., 2012, 287:25203-25215

[172]

Dutta K et al. Mechanisms mediating enhanced neutralization efficacy of staphylococcal enterotoxin B by combinations of monoclonal antibodies. J. Biol. Chem., 2015, 290:6715-6730

[173]

Varrone JJ, Li D, Daiss JL, Schwarz EM. Anti-glucosaminidase monoclonal antibodies as a passive immunization for methicillin-resistant Staphylococcus aureus (MRSA) orthopaedic infections. Bonekey Osteovision, 2011, 8:187-194

[174]

Christensen, G. D. & Simpson, W. A. Gram-positive bacteria: Pathogenesis of staphylococcal musculoskeletal infections. (eds J. L, Esterhai, A. G, Gristina & R, Poss) In Musculoskeletal Infection. 57–78 (AAOS: Park Ridge, 1992).

[175]

An YH et al. Rapid quantification of staphylococci adhered to titanium surfaces using image analyzed epifluorescence microscopy. J. Microbiol. Methods, 1995, 24:29-40

[176]

Zetola N, Francis JS, Nuermberger EL, Bishai WR. Community-acquired meticillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect. Dis., 2005, 5:275-286

[177]

Alexander EH, Hudson MC. Factors influencing the internalization of Staphylococcus aureus and impacts on the course of infections in humans. Appl. Microbiol. Biotechnol., 2001, 56:361-366

[178]

Lew DP, Waldvogel FA. Osteomyelitis. Lancet, 2004, 364:369-379

[179]

Nair LS, Laurencin CT. Nanofibers and nanoparticles for orthopaedic surgery applications. J. Bone Jt. Surg. Am., 2008, 90 Suppl. 1 128-131

[180]

Phillips PL et al. Antimicrobial dressing efficacy against mature Pseudomonas aeruginosa biofilm on porcine skin explants. Int. Wound J., 2015, 12:469-483

[181]

Brennan SA et al. Silver nanoparticles and their orthopaedic applications. Bone Jt. J., 2015, 97-b:582-589

[182]

Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol., 2010, 28:580-588

[183]

Yamanaka M, Hara K, Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol., 2005, 71:7589-7593

[184]

Thurman RB, Gerba CP, Bitton G. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit. Rev. Environ. Control, 1989, 18:295-315

[185]

Park HJ et al. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res., 2009, 43:1027-1032

[186]

Gurunathan S, Han JW, Kwon D-N, Kim J-H. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res. Lett., 2014, 9

[187]

Alt V et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 2004, 25:4383-4391

[188]

Prokopovich P, Leech R, Carmalt CJ, Parkin IP, Perni S. A novel bone cement impregnated with silver-tiopronin nanoparticles: its antimicrobial, cytotoxic, and mechanical properties. Int. J. Nanomed., 2013, 8:2227-2237

[189]

Sheehan E, McKenna J, Mulhall KJ, Marks P, McCormack D. Adhesion of Staphylococcus to orthopaedic metals, an in vivo study. J. Orthop. Res., 2004, 22:39-43

[190]

Liu X, Mou Y, Wu S, Man HC. Synthesis of silver-incorporated hydroxyapatite nanocomposites for antimicrobial implant coatings. Appl. Surf. Sci., 2013, 273:748-757

[191]

Sudmann E et al. Systemic and local silver accumulation after total hip replacement using silver-impregnated bone cement. Med Prog. Technol., 1994, 20:179-184

[192]

Vik H, Andersen KJ, Julshamn K, Todnem K. Neuropathy caused by silver absorption from arthroplasty cement. Lancet, 1985, 1:872

[193]

Akiyama T et al. Silver oxide-containing hydroxyapatite coating has in vivo antibacterial activity in the rat tibia. J. Orthop. Res., 2013, 31:1195-1200

[194]

Chen W et al. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials, 2006, 27:5512-5517

[195]

Chen W et al. Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process. J. Biomed. Mater. Res. Part A., 2007, 82A:899-906

[196]

Fielding, G. & Bose, S. SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomater. 9, 9137–9148 (2013).

[197]

Wafa H et al. Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients: case-control study. Bone Jt. J., 2015, 97-b:252-257

[198]

Hardes J et al. Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J. Surg. Oncol., 2010, 101:389-395

[199]

Mirsattari SM, Hammond RR, Sharpe MD, Leung FY, Young GB. Myoclonic status epilepticus following repeated oral ingestion of colloidal silver. Neurology, 2004, 62:1408-1410

[200]

Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci., 2005, 88:412-419

[201]

Kim S et al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. In Vitro, 2009, 23:1076-1084

[202]

Liu W et al. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology, 2010, 4:319-330

[203]

Schmidmaier G, Kerstan M, Schwabe P, Sudkamp N, Raschke M. Clinical experiences in the use of a gentamicin-coated titanium nail in tibia fractures. Injury, 2017, 48:2235-2241

[204]

Gulcu A et al. Fosfomycin addition to poly(d,l-lactide) coating does not affect prophylaxis efficacy in rat implant-related infection model, but that of gentamicin does. PLoS ONE, 2016, 11:e0165544

[205]

Back DA et al. Testing of antibiotic releasing implant coatings to fight bacteria in combat-associated osteomyelitis—an in-vitro study. Int. Orthop., 2016, 40:1039-1047

[206]

Vester H, Wildemann B, Schmidmaier G, Stockle U, Lucke M. Gentamycin delivered from a PDLLA coating of metallic implants: In vivo and in vitro characterisation for local prophylaxis of implant-related osteomyelitis. Injury, 2010, 41:1053-1059

[207]

Lucke M et al. Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Bone, 2003, 32:521-531

[208]

Raschke M, Vordemvenne T, Fuchs T. Limb salvage or amputation? The use of a gentamicin coated nail in a severe, grade IIIc tibia fracture. Eur. J. Trauma Emerg. Surg., 2010, 36:605-608

[209]

Metsemakers WJ et al. A doxycycline-loaded polymer-lipid encapsulation matrix coating for the prevention of implant-related osteomyelitis due to doxycycline-resistant methicillin-resistant Staphylococcus aureus. J. Control. Release, 2015, 209:47-56

[210]

Price JS, Tencer AF, Arm DM, Bohach GA. Controlled release of antibiotics from coated orthopedic implants. J. Biomed. Mater. Res., 1996, 30:281-286

[211]

Min J et al. Designer dual therapy nanolayered implant coatings eradicate biofilms and accelerate bone tissue repair. ACS Nano, 2016, 10:4441-4450

[212]

Li D et al. The immobilization of antibiotic-loaded polymeric coatings on osteoarticular Ti implants for the prevention of bone infections. Biomater. Sci., 2017, 5:2337-2346

[213]

Liu D, He C, Liu Z, Xu W. Gentamicin coating of nanotubular anodized titanium implant reduces implant-related osteomyelitis and enhances bone biocompatibility in rabbits. Int. J. Nanomed., 2017, 12:5461-5471

[214]

Diefenbeck M et al. Gentamicin coating of plasma chemical oxidized titanium alloy prevents implant-related osteomyelitis in rats. Biomaterials, 2016, 101:156-164

[215]

Stewart S et al. Vancomycin-modified implant surface inhibits biofilm formation and supports bone-healing in an infected osteotomy model in sheep: a proof-of-concept study. J. Bone Jt. Surg. Am. Vol., 2012, 94:1406-1415

[216]

Folsch C et al. Systemic antibiotic therapy does not significantly improve outcome in a rat model of implant-associated osteomyelitis induced by Methicillin susceptible Staphylococcus aureus. Arch. Orthop. Trauma Surg., 2016, 136:585-592

[217]

Folsch C et al. Coating with a novel gentamicinpalmitate formulation prevents implant-associated osteomyelitis induced by methicillin-susceptible Staphylococcus aureus in a rat model. Int Orthop., 2015, 39:981-988

[218]

Moskowitz JS et al. The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model. Biomaterials, 2010, 31:6019-6030

[219]

Jennings JA et al. Antibiotic-loaded phosphatidylcholine inhibits staphylococcal bone infection. World J. Orthop., 2016, 7:467-474

[220]

Alaee F et al. General assembly, prevention, operating room—surgical technique: Proceedings of International Consensus on Orthopedic Infections. J. Arthroplast., 2019, 34:S139-S146

[221]

Herczegh P et al. Osteoadsorptive bisphosphonate derivatives of fluoroquinolone antibacterials. J. Med. Chem., 2002, 45:2338-2341

[222]

Houghton TJ et al. Linking bisphosphonates to the free amino groups in fluoroquinolones: preparation of osteotropic prodrugs for the prevention of osteomyelitis. J. Med. Chem., 2008, 51:6955-6969

[223]

Sedghizadeh PP et al. Design, synthesis, and antimicrobial evaluation of a novel bone-targeting bisphosphonate-ciprofloxacin conjugate for the treatment of osteomyelitis biofilms. J. Med. Chem., 2017, 60:2326-2343

[224]

Tanaka KS et al. Synthesis and in vitro evaluation of bisphosphonated glycopeptide prodrugs for the treatment of osteomyelitis. Bioorg. Med. Chem. Lett., 2010, 20:1355-1359

[225]

Zhang S, Gangal G, Uludağ H. ‘Magic bullets’ for bone diseases: progress in rational design of bone-seeking medicinal agents. Chem. Soc. Rev., 2007, 36:507-531

[226]

Li Y et al. Directed vaccination against pneumococcal disease. Proc. Natl. Acad. Sci. USA, 2016, 113:6898-6903

[227]

Black RE, Cousens S, Johnson HL et al. Global, regional, and national causes of child mortality in 2008: a systematic analysis. Lancet, 2010, 375:1969-1987

[228]

Masters, E., Harris, M. & Jennings, J. Cis-2-decenoic acid interacts with bacterial cell membranes to potentiate additive and synergistic responses against biofilm. J. Bacteriol. Mycol. 3, 1031–1038 (2016).

[229]

Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudre C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater., 2019, 83:37-54

[230]

Moriarty TF et al. Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev., 2016, 1:89-99

[231]

Gogia JS, Meehan JP, Di Cesare PE, Jamali AA. Local antibiotic therapy in osteomyelitis. Semin. Plast. Surg., 2009, 23:100-107

[232]

Walenkamp GH, Kleijn LL, de Leeuw M. Osteomyelitis treated with gentamicin-PMMA beads: 100 patients followed for 1–12 years. Acta Orthop. Scand., 1998, 69:518-522

[233]

Hake ME et al. Local antibiotic therapy strategies in orthopaedic trauma: practical tips and tricks and review of the literature. Injury, 2015, 46:1447-1456

[234]

Tsang ST et al. Exchange nailing for nonunion of diaphyseal fractures of the tibia: our results and an analysis of the risk factors for failure. Bone Jt. J., 2016, 98-b:534-541

[235]

Seebach E et al. Mesenchymal stromal cell implantation for stimulation of long bone healing aggravates Staphylococcus aureus induced osteomyelitis. Acta Biomater., 2015, 21:165-177

[236]

Mohapatra N, Jain S. Antibiotic laden bone cement in chronic osteomyelitis. J. Orthop. Traumatol. Rehabil., 2017, 9:74-77

[237]

Berkes M et al. Maintenance of hardware after early postoperative infection following fracture internal fixation. JBJS, 2010, 92:823-828

[238]

Tschudin-Sutter S et al. Validation of a treatment algorithm for orthopaedic implant-related infections with device-retention-results from a prospective observational cohort study. Clin. Microbiol. Infect., 2016, 22:457.e1-e9

[239]

Metsemakers WJ et al. Infection after fracture fixation: current surgical and microbiological concepts. Injury, 2018, 49:511-522

[240]

Bistolfi A et al. Antibiotic-loaded cement in orthopedic surgery: a review. ISRN Orthop., 2011, 2011:290851

[241]

Rathbone CR, Cross JD, Brown KV, Murray CK, Wenke JC. Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J. Orthop. Res., 2011, 29:1070-1074

[242]

Shiels SM, Tennent DJ, Akers KS, Wenke JC. Determining potential of PMMA as a depot for rifampin to treat recalcitrant orthopaedic infections. Injury, 2017, 48:2095-2100

[243]

Picknell B, Mizen L, Sutherland R. Antibacterial activity of antibiotics in acrylic bone cement. J. Bone Jt. Surg. Br., 1977, 59:302-307

[244]

Hoff SF, Fitzgerald RH Jr., Kelly PJ. The depot administration of penicillin G and gentamicin in acrylic bone cement. J. Bone Jt. Surg. Am., 1981, 63:798-804

[245]

Chohfi M et al. Pharmacokinetics, uses, and limitations of vancomycin-loaded bone cement. Int. Orthop., 1998, 22:171-177

[246]

Penner MJ, Duncan CP, Masri BA. The in vitro elution characteristics of antibiotic-loaded CMW and Palacos-R bone cements. J. Arthroplast., 1999, 14:209-214

[247]

van de Belt H et al. Gentamicin release from polymethylmethacrylate bone cements and Staphylococcus aureus biofilm formation. Acta Orthop. Scand., 2000, 71:625-629

[248]

Torholm, C., Lidgren, L., Lindberg, L. & Kahlmeter, G. Total hip joint arthroplasty with gentamicin-impregnated cement. A clinical study of gentamicin excretion kinetics. Clin. Orthop. Relat. Res. 181, 99–106 (1983).

[249]

Bunetel L, Segui A, Cormier M, Percheron E, Langlais F. Release of gentamicin from acrylic bone cement. Clin. Pharmacokinet., 1989, 17:291-297

[250]

Moojen DJ et al. In vitro release of antibiotics from commercial PMMA beads and articulating hip spacers. J. Arthroplast., 2008, 23:1152-1156

[251]

Anagnostakos K, Wilmes P, Schmitt E, Kelm J. Elution of gentamicin and vancomycin from polymethylmethacrylate beads and hip spacers in vivo. Acta Orthop., 2009, 80:193-197

[252]

Jiranek WA, Hanssen AD, Greenwald AS. Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. J. Bone Jt. Surg. Am., 2006, 88:2487-2500

[253]

Lewis G. Properties of antibiotic-loaded acrylic bone cements for use in cemented arthroplasties: a state-of-the-art review. J. Biomed. Mater. Res. Part B, 2009, 89:558-574

[254]

Ma D et al. Viable bacteria persist on antibiotic spacers following two-stage revision for periprosthetic joint infection. J. Orthop. Res., 2017, 36:452-458

[255]

Ferguson JY et al. The use of a biodegradable antibiotic-loaded calcium sulphate carrier containing tobramycin for the treatment of chronic osteomyelitis: a series of 195 cases. Bone Jt. J., 2014, 96-b:829-836

[256]

Borkhuu B et al. Antibiotic-loaded allograft decreases the rate of acute deep wound infection after spinal fusion in cerebral palsy. Spine, 2008, 33:2300-2304

[257]

Romano CL et al. A comparative study of the use of bioactive glass S53P4 and antibiotic-loaded calcium-based bone substitutes in the treatment of chronic osteomyelitis: a retrospective comparative study. Bone Jt. J., 2014, 96-b:845-850

[258]

Itokazu M, Aoki T, Nonomura H, Nishimoto Y, Itoh Y. Antibiotic-loaded porous hydroxyapatite blocks for the treatment of osteomyelitis and postoperative infection. A preliminary report. Bulletin, 1998, 57:125-129

[259]

Letsch R, Rosenthal E, Joka T. [Local antibiotic administration in osteomyelitis treatment—a comparative study with two different carrier substances]. Aktuel-. Traumatol., 1993, 23:324-329

[260]

Rupprecht S et al. Antibiotic-containing collagen for the treatment of bone defects. J. Biomed. Mater. Res. Part B, 2007, 83:314-319

[261]

Bibbo C, Patel DV. The effect of demineralized bone matrix-calcium sulfate with vancomycin on calcaneal fracture healing and infection rates: a prospective study. Foot Ankle Int., 2006, 27:487-493

[262]

Inzana JA, Schwarz EM, Kates SL, Awad HA. Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials, 2016, 81:58-71

[263]

Inzana JA, Schwarz EM, Kates SL, Awad HA. A novel murine model of established Staphylococcal bone infection in the presence of a fracture fixation plate to study therapies utilizing antibiotic-laden spacers after revision surgery. Bone, 2015, 72:128-136

[264]

Yokogawa Noriaki, Ishikawa Masahiro, Nishitani Kohei, Beck Christopher A., Tsuchiya Hiroyuki, Mesfin Addisu, Kates Stephen L., Daiss John L., Xie Chao, Schwarz Edward M.. Immunotherapy synergizes with debridement and antibiotic therapy in a murine 1-stage exchange model of MRSA implant-associated osteomyelitis. Journal of Orthopaedic Research®, 2018, 36 6 1590-1598

[265]

Trombetta, R. P., de Mesy Bentley, K. L., Schwarz, E. M., Kates, S. L., & Awad, H. A. A murine femoral ostectomy model with hardware exchange to assess antibiotic-impregnated spacers for implant-associated osteomyelitis. Eur. Cell Mater. 37, 431–443 (2019).

[266]

Trombetta RP et al. Calcium phosphate spacers for the local delivery of sitafloxacin and rifampin to treat orthopedic infections: efficacy and proof of concept in a mouse model of single-stage revision of device-associated osteomyelitis. Pharmaceutics, 2019, 11:94

[267]

Li D et al. Quantitative mouse model of implant‐associated osteomyelitis and the kinetics of microbial growth, osteolysis, and humoral immunity. J. Orthop. Res., 2008, 26:96-105

Funding

U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)(P50 AR072000)

AO Foundation (AO)(Clinical Priority Program)

Amedica Inc

Bristol-Myers Squibb (Bristol-Myers Squibb Company)

Astellas Pharma (Astellas)

Asahi Kasei Pharma Corporation

Bristol-Myers, Astellas and Asahi-Kasei

Goldstein Award from the Department of Orthopaedics, University of Rochester, Rochester, NY

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/