Autophagy in bone homeostasis and the onset of osteoporosis

Xing Yin , Chenchen Zhou , Jingtao Li , Renkai Liu , Bing Shi , Quan Yuan , Shujuan Zou

Bone Research ›› 2019, Vol. 7 ›› Issue (1) : 28

PDF
Bone Research ›› 2019, Vol. 7 ›› Issue (1) : 28 DOI: 10.1038/s41413-019-0058-7
Review Article

Autophagy in bone homeostasis and the onset of osteoporosis

Author information +
History +
PDF

Abstract

Autophagy is an evolutionarily conserved intracellular process, in which domestic cellular components are selectively digested for the recycling of nutrients and energy. This process is indispensable for cell homeostasis maintenance and stress responses. Both genetic and functional studies have demonstrated that multiple proteins involved in autophagic activities are critical to the survival, differentiation, and functioning of bone cells, including osteoblasts, osteocytes, and osteoclasts. Dysregulation at the level of autophagic activity consequently disturbs the balance between bone formation and bone resorption and mediates the onset and progression of multiple bone diseases, including osteoporosis. This review aims to introduce the topic of autophagy, summarize the understanding of its relevance in bone physiology, and discuss its role in the onset of osteoporosis and therapeutic potential.

Cite this article

Download citation ▾
Xing Yin, Chenchen Zhou, Jingtao Li, Renkai Liu, Bing Shi, Quan Yuan, Shujuan Zou. Autophagy in bone homeostasis and the onset of osteoporosis. Bone Research, 2019, 7(1): 28 DOI:10.1038/s41413-019-0058-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lamming DW, Bar-Peled L. Lysosome: the metabolic signaling hub. Traffic, 2019, 20:27-38

[2]

Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol., 2007, 8:931-937

[3]

Sarparanta J, Garcia-Macia M, Singh R. Autophagy and mitochondria in obesity and type 2 diabetes. Curr. Diabetes Rev., 2017, 13:352-369

[4]

Kimmelman AC, White E. Autophagy and tumor metabolism. Cell Metab., 2017, 25:1037-1043

[5]

Zhou Z, Austin GL, Young LEA, Johnson LA, Sun R. Mitochondrial metabolism in major neurological diseases. Cells, 2018, 7:E229

[6]

Revuelta M, Matheu A. Autophagy in stem cell aging. Aging Cell, 2017, 16:912-915

[7]

Pierrefite-Carle V, Santucci-Darmanin S, Breuil V, Camuzard O, Carle GF. Autophagy in bone: self-eating to stay in balance. Ageing Res Rev., 2015, 24 Pt B 206-217

[8]

Smith M, Wilkinson S. ER homeostasis and autophagy. Essays Biochem., 2017, 61:625-635

[9]

Palmiter RD. Physiology: bone-derived hormone suppresses appetite. Nature, 2017, 543:320-322

[10]

Husain A, Jeffries MA. Epigenetics and bone remodeling. Curr. Osteoporos. Rep., 2017, 15:450-458

[11]

Lee WC, Guntur AR, Long F, Rosen CJ. Energy metabolism of the osteoblast: implications for osteoporosis. Endocr. Rev., 2017, 38:255-266

[12]

Uda Y, Azab E, Sun N, Shi C, Pajevic PD. Osteocyte mechanobiology. Curr. Osteoporos. Rep., 2017, 15:318-325

[13]

Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH. Bone remodelling at a glance. J. Cell Sci., 2011, 124 Pt 7 991-998

[14]

Yaga U, Panta P. Osteopetrosis. N. Engl. J. Med., 2017, 376

[15]

Ensrud KE, Crandall CJ. Osteoporosis. Ann Intern Med., 2017 ITC17-ITC32

[16]

Boyce BF et al. Regulation of bone remodeling and emerging breakthrough drugs for osteoporosis and osteolytic bone metastases. Kidney Int. Suppl., 2003, 85:S2-S5

[17]

Yu B, Wang CY. Osteoporosis: the result of an ‘aged’ bone microenvironment. Trends Mol. Med., 2016, 22:641-644

[18]

Nollet M et al. Autophagy in osteoblasts is involved in mineralization and bone homeostasis. Autophagy, 2014, 10:1965-1977

[19]

Zhu L et al. Parathyroid hormone (PTH) induces autophagy to protect osteocyte cell survival from dexamethasone damage. Med Sci. Monit., 2017, 23:4034-4040

[20]

Zheng L et al. Role of autophagy in tumor necrosis factor-alpha-induced apoptosis of osteoblast cells. J. Invest. Med., 2017, 65:1014-1020

[21]

Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell… and more. Endocr. Rev., 2013, 34:658-690

[22]

Shapiro IM, Layfield R, Lotz M, Settembre C, Whitehouse C. Boning up on autophagy: the role of autophagy in skeletal biology. Autophagy, 2014, 10:7-19

[23]

Greenhill C. Bone: autophagy regulates bone growth in mice. Nat. Rev. Endocrinol., 2016 4

[24]

Zhang L et al. Pathway-based genome-wide association analysis identified the importance of regulation-of-autophagy pathway for ultradistal radius BMD. J. Bone Miner. Res.: Off. J. Am. Soc. Bone Miner. Res., 2010, 25:1572-1580

[25]

Ma Yang, Qi Meng, An Ying, Zhang Liqiang, Yang Rui, Doro Daniel H, Liu Wenjia, Jin Yan. Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell, 2017, 17 1 e12709

[26]

Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. cell, 2004, 6:463-477

[27]

Kroemer G. Autophagy: a druggable process that is deregulated in aging and human disease. J. Clin. Investig., 2015, 125:1-4

[28]

Zhang H, Baehrecke EH. Eaten alive: novel insights into autophagy from multicellular model systems. Trends Cell Biol., 2015, 25:376-387

[29]

Guan JL et al. Autophagy in stem cells. Autophagy, 2013, 9:830-849

[30]

Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res., 2014, 24:92-104

[31]

Massey A, Kiffin R, Cuervo AM. Pathophysiology of chaperone-mediated autophagy. Int. J. Biochem. cell Biol., 2004, 36:2420-2434

[32]

Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell, 2010, 140:313-326

[33]

Li WW, Li J, Bao JK. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci.: CMLS., 2012, 69:1125-1136

[34]

Mijaljica D, Prescott M, Devenish RJ. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy, 2011, 7:673-682

[35]

Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res., 2014, 24:24-41

[36]

Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell, 2019, 176:11-42

[37]

Cinque L et al. FGF signalling regulates bone growth through autophagy. Nature, 2015, 528:272-275

[38]

Wong E, Cuervo AM. Integration of clearance mechanisms: the proteasome and autophagy. Cold Spring Harb. Perspect. Biol., 2010, 2:a006734

[39]

Chen J, Long F. mTOR signaling in skeletal development and disease. Bone Res., 2018, 6:1

[40]

Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451:1069-1075

[41]

Simonsen A, Tooze SA. Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J. Cell Biol., 2009, 186:773-782

[42]

Lamb CA, Yoshimori T, Tooze SA. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol., 2013, 14:759-774

[43]

Ravikumar B et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev., 2010, 90:1383-1435

[44]

Mehrpour M, Esclatine A, Beau I, Codogno P. Overview of macroautophagy regulation in mammalian cells. Cell Res., 2010, 20:748-762

[45]

Ichimura Y et al. Structural basis for sorting mechanism of p62 in selective autophagy. J. Biol. Chem., 2008, 283:22847-22857

[46]

Filimonenko M et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol. cell., 2010, 38:265-279

[47]

Rabinowitz JD, White E. Autophagy and metabolism. Science, 2010, 330:1344-1348

[48]

Fu LL, Cheng Y, Liu B. Beclin-1: autophagic regulator and therapeutic target in cancer. Int. J. Biochem. Cell Biol., 2013, 45:921-924

[49]

Klionsky DJ et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8:445-544

[50]

Geng J, Klionsky DJ. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep., 2008, 9:859-864

[51]

Loos B, Engelbrecht AM, Lockshin RA, Klionsky DJ, Zakeri Z. The variability of autophagy and cell death susceptibility: unanswered questions. Autophagy, 2013, 9:1270-1285

[52]

Cadwell K, Debnath J. Beyond self-eating: the control of nonautophagic functions and signaling pathways by autophagy-related proteins. J. Cell Biol., 2018, 217:813-822

[53]

Heckmann BL, Boada-Romero E, Cunha LD, Magne J, Green DR. LC3-associated phagocytosis and inflammation. J. Mol. Biol., 2017, 429:3561-3576

[54]

Scrivo A, Bourdenx M, Pampliega O, Cuervo AM. Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurol., 2018, 17:802-815

[55]

Isakson P, Holland P, Simonsen A. The role of ALFY in selective autophagy. Cell Death Differ., 2013, 20:12-20

[56]

Kumar AV et al. Give me a SINE: how selective inhibitors of nuclear export modulate autophagy and aging. Mol. Cell. Oncol., 2018, 5

[57]

Xu Z, Yang L, Xu S, Zhang Z, Cao Y. The receptor proteins: pivotal roles in selective autophagy. Acta Biochim. et. Biophys. Sin., 2015, 47:571-580

[58]

Till A, Lakhani R, Burnett SF, Subramani S. Pexophagy: the selective degradation of peroxisomes. Int. J. Cell Biol., 2012, 2012:512721

[59]

Weidberg H, Shvets E, Elazar Z. Biogenesis and cargo selectivity of autophagosomes. Annu. Rev. Biochem., 2011, 80:125-156

[60]

Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J., 2012, 441:523-540

[61]

Lippai M, Low P. The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy. BioMed. Res. Int., 2014, 2014:832704

[62]

Weil R, Laplantine E, Curic S, Genin P. Role of optineurin in the mitochondrial dysfunction: potential implications in neurodegenerative diseases and cancer. Front. Immunol., 2018, 9:1243

[63]

Kirkin V et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell., 2009, 33:505-516

[64]

Paulus GL, Xavier RJ. Autophagy and checkpoints for intracellular pathogen defense. Curr. Opin. Gastroenterol., 2015, 31:14-23

[65]

Sharma V, Verma S, Seranova E, Sarkar S, Kumar D. Selective autophagy and xenophagy in infection and disease. Front Cell Dev. Biol., 2018, 6:147

[66]

Luo M, Zhuang X. Review: selective degradation of peroxisome by autophagy in plants: mechanisms, functions, and perspectives. Plant Sci.: Int. J. Exp. Plant Biol., 2018, 274:485-491

[67]

Yokota S, Dariush Fahimi H. Degradation of excess peroxisomes in mammalian liver cells by autophagy and other mechanisms. Histochem. Cell Biol., 2009, 131:455-458

[68]

Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol., 2011, 12:9-14

[69]

Tal R, Winter G, Ecker N, Klionsky DJ, Abeliovich H. Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J. Biol. Chem., 2007, 282:5617-5624

[70]

Schweers RL et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl Acad. Sci. USA., 2007, 104:19500-19505

[71]

Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys., 2007, 462:245-253

[72]

Kundu M et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood, 2008, 112:1493-1502

[73]

Mortensen M et al. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc. Natl Acad. Sci. USA, 2010, 107:832-837

[74]

Zhang J et al. Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation. Blood, 2009, 114:157-164

[75]

Xilouri M, Stefanis L. Autophagic pathways in Parkinson disease and related disorders. Expert Rev. Mol. Med., 2011, 13

[76]

Kang, R., Xie, Y., Zeh, H. J., Klionsky, D. J. & Tang, D. Mitochondrial quality control mediated by PINK1 and PRKN: links to iron metabolism and tumor immunity. Autophagy 15, 172–173 (2018).

[77]

Lee JY et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J., 2010, 29:969-980

[78]

Haspel J et al. Characterization of macroautophagic flux in vivo using a leupeptin-based assay. Autophagy, 2011, 7:629-642

[79]

Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat. Cell Biol., 2010, 12:823-830

[80]

Mortimore GE, Poso AR. Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu. Rev. Nutr., 1987, 7:539-564

[81]

Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ., 2005, 12 Suppl 2 1542-1552

[82]

He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet., 2009, 43:67-93

[83]

Stephan JS, Yeh YY, Ramachandran V, Deminoff SJ, Herman PK. The Tor and cAMP-dependent protein kinase signaling pathways coordinately control autophagy in Saccharomyces cerevisiae. Autophagy, 2010, 6:294-295

[84]

Budovskaya YV, Stephan JS, Reggiori F, Klionsky DJ, Herman PK. The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae. J. Biol. Chem., 2004, 279:20663-20671

[85]

Cherra SJ 3rd et al. Regulation of the autophagy protein LC3 by phosphorylation. J. Cell Biol., 2010, 190:533-539

[86]

Sancak Y et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science, 2008, 320:1496-1501

[87]

Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol., 2008, 10:935-945

[88]

Stephan JS, Yeh YY, Ramachandran V, Deminoff SJ, Herman PK. TheTor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy. Proc. Natl Acad. Sci. USA., 2009, 106:17049-17054

[89]

Pedruzzi I et al. TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0. Mol. Cell., 2003, 12:1607-1613

[90]

Martin DE, Soulard A, Hall MN. TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell, 2004, 119:969-979

[91]

Blancquaert S et al. cAMP-dependent activation of mammalian target of rapamycin (mTOR) in thyroid cells. Implication in mitogenesis and activation of CDK4. Mol. Endocrinol., 2010, 24:1453-1468

[92]

Mavrakis M, Lippincott-Schwartz J, Stratakis CA, Bossis I. Depletion of type IA regulatory subunit (RIalpha) of protein kinase A (PKA) in mammalian cells and tissues activates mTOR and causes autophagic deficiency. Hum. Mol. Genet., 2006, 15:2962-2971

[93]

Djouder N et al. PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis. EMBO J., 2010, 29:469-481

[94]

Meley D et al. AMP-activated protein kinase and the regulation of autophagic proteolysis. J. Biol. Chem., 2006, 281:34870-34879

[95]

Alers S, Loffler AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol., 2012, 32:2-11

[96]

Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol., 2007, 8:774-785

[97]

Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell, 2003, 115:577-590

[98]

Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol., 2010, 22:124-131

[99]

Hailey DW et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 2010, 141:656-667

[100]

Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 2011, 13:132-141

[101]

Lee JW, Park S, Takahashi Y, Wang HG. The association of AMPK with ULK1 regulates autophagy. PloS ONE, 2010, 5

[102]

Shang L et al. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc. Natl Acad. Sci. USA., 2011, 108:4788-4793

[103]

Egan DF et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science, 2011, 331:456-461

[104]

Lum JJ et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell, 2005, 120:237-248

[105]

Arsham AM, Howell JJ, Simon MC. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J. Biol. Chem., 2003, 278:29655-29660

[106]

Hoyer-Hansen M et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol. cell., 2007, 25:193-205

[107]

Ding WX et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J. Biol. Chem., 2007, 282:4702-4710

[108]

Dreux M, Gastaminza P, Wieland SF, Chisari FV. The autophagy machinery is required to initiate hepatitis C virus replication. Proc. Natl Acad. Sci. USA., 2009, 106:14046-14051

[109]

Starr T et al. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe, 2012, 11:33-45

[110]

Wirawan E, Vanden Berghe T, Lippens S, Agostinis P, Vandenabeele P. Autophagy: for better or for worse. Cell Res., 2012, 22:43-61

[111]

de Paula FJ, Rosen CJ. Bone remodeling and energy metabolism: new perspectives. Bone Res., 2013, 1:72-84

[112]

Wu M, Chen G, Li YP. TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res., 2016, 4:16009

[113]

Lai X et al. The dependences of osteocyte network on bone compartment, age, and disease. Bone Res., 2015, 3:15009

[114]

Feng X, Teitelbaum SL. Osteoclasts: new Insights. Bone Res., 2013, 1:11-26

[115]

Xu X et al. Transforming growth factor-beta in stem cells and tissue homeostasis. Bone Res., 2018, 6:2

[116]

Qiu T et al. IGF-I induced phosphorylation of PTH receptor enhances osteoblast to osteocyte transition. Bone Res., 2018, 6:5

[117]

Chen L et al. Insulin-like growth factor 2 (IGF-2) potentiates BMP-9-induced osteogenic differentiation and bone formation. J. Bone Miner. Res.: Off. J. Am. Soc. Bone Miner. Res., 2010, 25:2447-2459

[118]

Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci., 2012, 8:272-288

[119]

Pan F et al. The regulation-of-autophagy pathway may influence Chinese stature variation: evidence from elder adults. J. Hum. Genet., 2010, 55:441-447

[120]

Yang YH et al. Oxidative damage to osteoblasts can be alleviated by early autophagy through the endoplasmic reticulum stress pathway–implications for the treatment of osteoporosis. Free Radic. Biol. Med., 2014, 77:10-20

[121]

Narita M et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science, 2011, 332:966-970

[122]

Gao C et al. Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat. Cell Biol., 2010, 12:781-790

[123]

Colleran A et al. Autophagosomal IkappaB alpha degradation plays a role in the long term control of tumor necrosis factor-alpha-induced nuclear factor-kappaB (NF-kappaB) activity. J. Biol. Chem., 2011, 286:22886-22893

[124]

Kuma A, Komatsu M, Mizushima N. Autophagy-monitoring and autophagy-deficient mice. Autophagy, 2017, 13:1619-1628

[125]

Sbrana FV et al. The role of autophagy in the maintenance of stemness and differentiation of mesenchymal stem cells. Stem Cell Rev., 2016, 12:621-633

[126]

Nuschke A et al. Human mesenchymal stem cells/multipotent stromal cells consume accumulated autophagosomes early in differentiation. Stem Cell Res Ther., 2014, 5:140

[127]

Pantovic A et al. Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells. Bone, 2013, 52:524-531

[128]

Li DY et al. Autophagy attenuates the oxidative stress-induced apoptosis of Mc3T3-E1 osteoblasts. Eur. Rev. Med. Pharmacol. Sci., 2017, 21:5548-5556

[129]

Yang YH et al. Estradiol inhibits osteoblast apoptosis via promotion of autophagy through the ER-ERK-mTOR pathway. Apoptosis: Int. J. Program. Cell Death., 2013, 18:1363-1375

[130]

Lv XH et al. Autophagy plays a protective role in cell death of osteoblasts exposure to lead chloride. Toxicol. Lett., 2015, 239:131-140

[131]

Zahm AM, Bohensky J, Adams CS, Shapiro IM, Srinivas V. Bone cell autophagy is regulated by environmental factors. Cells, Tissues, Organs, 2011, 194:274-278

[132]

DeSelm CJ et al. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev. Cell., 2011, 21:966-974

[133]

Liu F et al. Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J. Bone Miner. Res.: Off. J. Am. Soc. Bone Miner. Res., 2013, 28:2414-2430

[134]

Li H et al. Defective autophagy in osteoblasts induces endoplasmic reticulum stress and causes remarkable bone loss. Autophagy, 2018, 14:1726-1741

[135]

Piemontese M et al. Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage. Sci. Rep., 2016, 6

[136]

Xi G, Rosen CJ, Clemmons DR. IGF-I and IGFBP-2 stimulate AMPK activation and autophagy, which are required for osteoblast differentiation. Endocrinology, 2016, 157:268-281

[137]

Ozeki N et al. Bone morphogenetic protein-induced cell differentiation involves Atg7 and Wnt16 sequentially in human stem cell-derived osteoblastic cells. Exp. Cell Res., 2016, 347:24-41

[138]

Berendsen AD, Olsen BR. Bone development. Bone, 2015, 80:14-18

[139]

Vuppalapati KK et al. Targeted deletion of autophagy genes Atg5 or Atg7 in the chondrocytes promotes caspase-dependent cell death and leads to mild growth retardation. J. Bone Miner. Res.: Off. J. Am. Soc. Bone Miner. Res., 2015, 30:2249-2261

[140]

Yanagita M. BMP antagonists: their roles in development and involvement in pathophysiology. Cytokine Growth Factor Rev., 2005, 16:309-317

[141]

Whitehouse CA et al. Neighbor of Brca1 gene (Nbr1) functions as a negative regulator of postnatal osteoblastic bone formation and p38 MAPK activity. Proc. Natl Acad. Sci. USA., 2010, 107:12913-12918

[142]

Waters S, Marchbank K, Solomon E, Whitehouse CA. Autophagic receptors Nbr1 and p62 coregulate skeletal remodeling. Autophagy, 2010, 6:981-983

[143]

Demontis F, Perrimon N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell, 2010, 143:813-825

[144]

Almeida M. Unraveling the role of FoxOs in bone–insights from mouse models. Bone, 2011, 49:319-327

[145]

Carames B et al. Glucosamine activates autophagy in vitro and in vivo. Arthritis Rheum., 2013, 65:1843-1852

[146]

Yang X, Karsenty G. ATF4, the osteoblast accumulation of which is determined post-translationally, can induce osteoblast-specific gene expression in non-osteoblastic cells. J. Biol. Chem., 2004, 279:47109-47114

[147]

Elefteriou F et al. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab., 2006, 4:441-451

[148]

Manolagas SC, Parfitt AM. What old means to bone. Trends Endocrinol. Metab.: Tem., 2010, 21:369-374

[149]

Dallas SL, Bonewald LF. Dynamics of the transition from osteoblast to osteocyte. Ann. New Y. Acad. Sci., 2010, 1192:437-443

[150]

Hocking LJ, Whitehouse C, Helfrich MH. Autophagy: a new player in skeletal maintenance? J. Bone Miner. Res.: Off. J. Am. Soc. Bone Miner. Res., 2012, 27:1439-1447

[151]

Onal M et al. Suppression of autophagy in osteocytes mimics skeletal aging. J. Biol. Chem., 2013, 288:17432-17440

[152]

Jia J et al. Glucocorticoid dose determines osteocyte cell fate. FASEB J.: Off. Publ. Fed. Am. Soc. Exp. Biol., 2011, 25:3366-3376

[153]

Pampliega O et al. Functional interaction between autophagy and ciliogenesis. Nature, 2013, 502:194-200

[154]

Zhou Z, Shi G, Zheng X, Jiang S, Jiang L. Autophagy activation facilitates mechanical stimulation-promoted osteoblast differentiation and ameliorates hindlimb unloading-induced bone loss. Biochem Biophys. Res. Commun., 2018, 498:667-673

[155]

Inaba N, Kuroshima S, Uto Y, Sasaki M, Sawase T. Cyclic mechanical stretch contributes to network development of osteocyte-like cells with morphological change and autophagy promotion but without preferential cell alignment in rat. Biochem Biophys. Rep., 2017, 11:191-197

[156]

Jaber FA et al. Autophagy plays an essential role in bone homeostasis. J. Cell Physiol., 2019, 234:12105-12115

[157]

Cao X. RANKL-RANK signaling regulates osteoblast differentiation and bone formation. Bone Res., 2018, 6:35

[158]

Shin NY et al. Dynamin and endocytosis are required for the fusion of osteoclasts and myoblasts. J. Cell Biol., 2014, 207:73-89

[159]

Cao Y, Jansen IDC, Sprangers S, de Vries TJ, Everts V. TNF-alpha has both stimulatory and inhibitory effects on mouse monocyte-derived osteoclastogenesis. J. Cell Physiol., 2017, 232:3273-3285

[160]

Bird MC, Garside D, Jones HB. Multinucleated giant cells in primary cultures derived from canine bone marrow–evidence for formation of putative osteoclasts. Cell Tissue Res., 1992, 268:17-30

[161]

Wang K, Niu J, Kim H, Kolattukudy PE. Osteoclast precursor differentiation by MCPIP via oxidative stress, endoplasmic reticulum stress, and autophagy. J. Mol. Cell Biol., 2011, 3:360-368

[162]

Zhao Y et al. Autophagy regulates hypoxia-induced osteoclastogenesis through the HIF-1alpha/BNIP3 signaling pathway. J. Cell Physiol., 2012, 227:639-648

[163]

Shi J et al. Glucocorticoids: dose-related effects on osteoclast formation and function via reactive oxygen species and autophagy. Bone, 2015, 79:222-232

[164]

Park CW et al. BNIP3 is degraded by ULK1-dependent autophagy via MTORC1 and AMPK. Autophagy, 2013, 9:345-360

[165]

Park Chang Wook, Hong Sun Mi, Kim Eung-Sam, Kwon Jung Hee, Kim Kyong-Tai, Nam Hong Gil, Choi Kwan Yong. BNIP3 is degraded by ULK1-dependent autophagy via MTORC1 and AMPK. Autophagy, 2013, 9 3 345-360

[166]

Collins FL et al. CCL3 and MMP-9 are induced by TL1A during death receptor 3 (TNFRSF25)-dependent osteoclast function and systemic bone loss. Bone, 2017, 97:94-104

[167]

Sundquist KT, Marks SC Jr. Bafilomycin A1 inhibits bone resorption and tooth eruption in vivo. J. Bone Miner. Res.: Off. J. Am. Soc. Bone Miner. Res., 1994, 9:1575-1582

[168]

Chung YH et al. Microtubule-associated protein light chain 3 regulates Cdc42-dependent actin ring formation in osteoclast. Int. J. Biochem. Cell Biol., 2012, 44:989-997

[169]

Lin NY et al. Autophagy regulates TNFalpha-mediated joint destruction in experimental arthritis. Ann. Rheum. Dis., 2013, 72:761-768

[170]

Ralston SH. Clinical practice. Paget’s disease of bone. New Engl. J. Med., 2013, 368:644-650

[171]

Daroszewska A et al. A point mutation in the ubiquitin-associated domain of SQSMT1 is sufficient to cause a Paget’s disease-like disorder in mice. Hum. Mol. Genet., 2011, 20:2734-2744

[172]

Kim KH, Lee MS. Autophagy–a key player in cellular and body metabolism. Nat. Rev. Endocrinol., 2014, 10:322-337

[173]

Tella SH, Gallagher JC. Prevention and treatment of postmenopausal osteoporosis. J. Steroid Biochem. Mol. Biol., 2014, 142:155-170

[174]

Lerner UH. Bone remodeling in post-menopausal osteoporosis. J. Dent. Res., 2006, 85:584-595

[175]

Das S, Crockett JC. Osteoporosis - a current view of pharmacological prevention and treatment. Drug Des., Dev. Ther., 2013, 7:435-448

[176]

Kanis JA, Johnell O. Requirements for DXA for the management of osteoporosis in Europe. Osteoporos. Int.: a J. Establ. result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA., 2005, 16:229-238

[177]

Sambrook P, Cooper C. Osteoporosis. Lancet, 2006, 367:2010-2018

[178]

Klein-Nulend J, van Oers RF, Bakker AD, Bacabac RG. Bone cell mechanosensitivity, estrogen deficiency, and osteoporosis. J. Biomech., 2015, 48:855-865

[179]

Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simoes MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed. Res. Int., 2015, 2015:421746

[180]

Mosley JR. Osteoporosis and bone functional adaptation: mechanobiological regulation of bone architecture in growing and adult bone, a review. J. Rehabil. Res. Dev., 2000, 37:189-199

[181]

Daci E, van Cromphaut S, Bouillon R. Mechanisms influencing bone metabolism in chronic illness. Horm. Res., 2002, 58 Suppl 1 44-51

[182]

Shankar YU, Misra SR, Vineet DA, Baskaran P. Paget disease of bone: a classic case report. Contemp. Clin. Dent., 2013, 4:227-230

[183]

Shao B et al. Estrogen preserves Fas ligand levels by inhibiting microRNA-181a in bone marrow-derived mesenchymal stem cells to maintain bone remodeling balance. FASEB J.: Off. Publ. Fed. Am. Soc. Exp. Biol., 2015, 29:3935-3944

[184]

Qiu S et al. Overactive autophagy is a pathological mechanism underlying premature suture ossification in nonsyndromic craniosynostosis. Sci. Rep., 2018, 8

[185]

Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet, 2011, 377:1276-1287

[186]

Hubbard VM, Valdor R, Macian F, Cuervo AM. Selective autophagy in the maintenance of cellular homeostasis in aging organisms. Biogerontology, 2012, 13:21-35

[187]

Cuervo AM et al. Autophagy and aging: the importance of maintaining “clean” cells. Autophagy, 2005, 1:131-140

[188]

Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell, 2011, 146:682-695

[189]

Flynn MG, Markofski MM, Carrillo AE. Elevated inflammatory status and increased risk of chronic disease in chronological aging: inflamm-aging or inflamm-inactivity? Aging Dis., 2019, 10:147-156

[190]

Chang J et al. Inhibition of osteoblastic bone formation by nuclear factor-kappaB. Nat. Med., 2009, 15:682-689

[191]

Park BK et al. NF-kappaB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat. Med., 2007, 13:62-69

[192]

Lin NY, Stefanica A, Distler JH. Autophagy: a key pathway of TNF-induced inflammatory bone loss. Autophagy, 2013, 9:1253-1255

[193]

Jounai N et al. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl Acad. Sci. USA., 2007, 104:14050-14055

[194]

Konno H, Konno K, Barber GN. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell, 2013, 155:688-698

[195]

Konno H et al. Pro-inflammation associated with a gain-of-function mutation (R284S) in the innate immune sensor STING. Cell Rep., 2018, 23:1112-1123

[196]

Liang Q et al. Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host Microbe, 2014, 15:228-238

[197]

Saitoh T et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl Acad. Sci. USA., 2009, 106:20842-20846

[198]

Deretic V, Levine B. Autophagy balances inflammation in innate immunity. Autophagy, 2018, 14:243-251

[199]

Tang N, Zhao H, Zhang H, Dong Y. Effect of autophagy gene DRAM on proliferation, cell cycle, apoptosis, and autophagy of osteoblast in osteoporosis rats. J. Cell Physiol., 2019, 234:5023-5032

[200]

Chen K, Yang YH, Jiang SD, Jiang LS. Decreased activity of osteocyte autophagy with aging may contribute to the bone loss in senile population. Histochem Cell Biol., 2014, 142:285-295

[201]

Luo D, Ren H, Li T, Lian K, Lin D. Rapamycin reduces severity of senile osteoporosis by activating osteocyte autophagy. Osteoporos. Int., 2016, 27:1093-1101

[202]

Selman C et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science, 2009, 326:140-144

[203]

Yang Y, Zheng X, Li B, Jiang S, Jiang L. Increased activity of osteocyte autophagy in ovariectomized rats and its correlation with oxidative stress status and bone loss. Biochem. Biophys. Res. Commun., 2014, 451:86-92

[204]

Lin NY et al. Inactivation of autophagy ameliorates glucocorticoid-induced and ovariectomy-induced bone loss. Ann. Rheum. Dis., 2016, 75:1203-1210

[205]

Yao W et al. Sclerostin-antibody treatment of glucocorticoid-induced osteoporosis maintained bone mass and strength. Osteoporos. Int., 2016, 27:283-294

[206]

Khan TS, Fraser LA. Type 1 diabetes and osteoporosis: from molecular pathways to bone phenotype. J. Osteoporos., 2015, 2015:174186

[207]

Lim H et al. A novel autophagy enhancer as a therapeutic agent against metabolic syndrome and diabetes. Nat. Commun., 2018, 9

[208]

Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell. Stem Cell., 2014, 15:154-168

[209]

Zhang Y, Sowers JR, Ren J. Targeting autophagy in obesity: from pathophysiology to management. Nat. Rev. Endocrinol., 2018, 14:356-376

[210]

Wang Tiantian, He Hongchen, Liu Shaxin, Jia Chengsen, Fan Ziyan, Zhong Can, Yu Jiadan, Liu Honghong, He Chengqi. Autophagy: A Promising Target for Age-related Osteoporosis. Current Drug Targets, 2019, 20 3 354-365

[211]

Shoji-Kawata S et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature, 2013, 494:201-206

[212]

Harrison C. Patent watch: extra exclusivity for new medical uses. Nat. Rev. Drug Discov., 2012, 11:666

[213]

Spilman P et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PloS ONE, 2010, 5

[214]

Yin ZY et al. Rapamycin facilitates fracture healing through inducing cell autophagy and suppressing cell apoptosis in bone tissues. Eur. Rev. Med. Pharmacol. Sci., 2017, 21:4989-4998

[215]

Shen G et al. Autophagy as a target for glucocorticoid-induced osteoporosis therapy. Cell Mol. Life Sci., 2018, 75:2683-2693

[216]

Wang L, Heckmann BL, Yang X, Long H. Osteoblast autophagy in glucocorticoid-induced osteoporosis. J. Cell Physiol., 2019, 234:3207-3215

[217]

Han Y et al. Autophagy relieves the function inhibition and apoptosispromoting effects on osteoblast induced by glucocorticoid. Int J. Mol. Med., 2018, 41:800-808

[218]

Fang Evandro F.. Mitophagy and NAD+ inhibit Alzheimer disease. Autophagy, 2019, 15 6 1112-1114

[219]

Vannini N et al. The NAD-booster nicotinamide riboside potently stimulates hematopoiesis through increased mitochondrial clearance. Cell. Stem Cell, 2019, 24:405-418 e407

[220]

Jakovljevic J et al. Modulation of autophagy as new approach in mesenchymal stem cell-based therapy. Biomed. Pharmacother., 2018, 104:404-410

[221]

Wang XY, Jiao LY, He JL, Fu ZA, Guo RJ. Parathyroid hormone 134 inhibits senescence in rat nucleus pulposus cells by activating autophagy via the mTOR pathway. Mol. Med. Rep., 2018, 18:2681-2688

[222]

Maupin KA, Droscha CJ, Williams BO. A comprehensive overview of skeletal phenotypes associated with alterations in Wnt/beta-catenin signaling in humans and mice. Bone Res., 2013, 1:27-71

[223]

Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-beta/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res., 2015, 3:15005

[224]

Kim HY, Mohan S. Role and Mechanisms of Actions of Thyroid Hormone on the Skeletal Development. Bone Res., 2013, 1:146-161

[225]

Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell, 2008, 132:27-42

[226]

Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell, 2009, 137:1001-1004

[227]

Gao J et al. Glucocorticoid impairs cell-cell communication by autophagy-mediated degradation of connexin 43 in osteocytes. Oncotarget, 2016, 7:26966-26978

[228]

Zhang X et al. Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Autophagy, 2011, 7:412-425

[229]

Camuzard O et al. Sex-specific autophagy modulation in osteoblastic lineage: a critical function to counteract bone loss in female. Oncotarget, 2016, 7:66416-66428

Funding

Department of Science and Technology of Sichuan Province (Sichuan Provincial Department of Science and Technology)(2018JY0139)

National Natural Science Foundation of China (National Science Foundation of China)(81722014)

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/