Ankylosing spondylitis: etiology, pathogenesis, and treatments

Wei Zhu , Xuxia He , Kaiyuan Cheng , Linjie Zhang , Di Chen , Xiao Wang , Guixing Qiu , Xu Cao , Xisheng Weng

Bone Research ›› 2019, Vol. 7 ›› Issue (1) : 22

PDF
Bone Research ›› 2019, Vol. 7 ›› Issue (1) : 22 DOI: 10.1038/s41413-019-0057-8
Review Article

Ankylosing spondylitis: etiology, pathogenesis, and treatments

Author information +
History +
PDF

Abstract

Ankylosing spondylitis (AS), a common type of spondyloarthropathy, is a chronic inflammatory autoimmune disease that mainly affects spine joints, causing severe, chronic pain; additionally, in more advanced cases, it can cause spine fusion. Significant progress in its pathophysiology and treatment has been achieved in the last decade. Immune cells and innate cytokines have been suggested to be crucial in the pathogenesis of AS, especially human leukocyte antigen (HLA)‑B27 and the interleukin‑23/17 axis. However, the pathogenesis of AS remains unclear. The current study reviewed the etiology and pathogenesis of AS, including genome-wide association studies and cytokine pathways. This study also summarized the current pharmaceutical and surgical treatment with a discussion of future potential therapies.

Cite this article

Download citation ▾
Wei Zhu, Xuxia He, Kaiyuan Cheng, Linjie Zhang, Di Chen, Xiao Wang, Guixing Qiu, Xu Cao, Xisheng Weng. Ankylosing spondylitis: etiology, pathogenesis, and treatments. Bone Research, 2019, 7(1): 22 DOI:10.1038/s41413-019-0057-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang C-R et al. Rare occurrence of inflammatory bowel disease in a cohort of Han Chinese ankylosing spondylitis patients- a single institute study. Sci. Rep., 2017, 7:13165-13165

[2]

Lindström U, Olofsson T, Wedrén S, Qirjazo I, Askling J. Impact of extra-articular spondyloarthritis manifestations and comorbidities on drug retention of a first TNF-inhibitor in ankylosing spondylitis: a population-based nationwide study. RMD open, 2018, 4:e000762-e000762

[3]

Moltó A, Nikiphorou E. Comorbidities in spondyloarthritis. Front. Med., 2018, 5:62-62

[4]

Reveille JD, Weisman MH. The epidemiology of back pain, axial spondyloarthritis and HLA-B27 in the United States. Am. J. Med. Sci., 2013, 345:431-436

[5]

Reveille JD, Hirsch R, Dillon CF, Carroll MD, Weisman MH. The prevalence of HLA-B27 in the US: data from the US National Health and Nutrition Examination Survey, 2009. Arthritis Rheum., 2012, 64:1407-1411

[6]

de Winter JJ, van Mens LJ, van der Heijde D, Landewe R, Baeten DL. Prevalence of peripheral and extra-articular disease in ankylosing spondylitis versus non-radiographic axial spondyloarthritis: a meta-analysis. Arthritis Res. Ther., 2016, 18:196

[7]

Brown MA, Laval SH, Brophy S, Calin A. Recurrence risk modelling of the genetic susceptibility to ankylosing spondylitis. Ann. Rheum. Dis., 2000, 59:883-886

[8]

van Tubergen A, Weber U. Diagnosis and classification in spondyloarthritis: identifying a chameleon. Nat. Rev. Rheumatol., 2012, 8:253-261

[9]

Taurog JD, Chhabra A, Colbert RA. Ankylosing spondylitis and axial spondyloarthritis. N. Engl. J. Med., 2016, 375:1303

[10]

de Blecourt J, Polman A, de Blecourt-Meindersma T. Hereditary factors in rheumatoid arthritis and ankylosing spondylitis. Ann. Rheum. Dis., 1961, 20:215-220

[11]

Brown MA et al. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum., 1997, 40:1823-1828

[12]

Reveille JD. The genetic basis of ankylosing spondylitis. Curr. Opin. Rheumatol., 2006, 18:332-341

[13]

Brewerton DA et al. Ankylosing spondylitis and HL-A 27. Lancet, 1973, 1:904-907

[14]

Reveille JD. An update on the contribution of the MHC to AS susceptibility. Clin. Rheuma., 2014, 33:749-757

[15]

Reveille JD. The genetic basis of spondyloarthritis. Ann. Rheum. Dis., 2011, 70:i44-i50

[16]

Brown MA. Genetics of ankylosing spondylitis. Curr. Opin. Rheumatol., 2010, 22:126-132

[17]

Taurog JD. The mystery of HLA-B27: if it isn't one thing, it's another. Arthritis Rheum., 2007, 56:2478-2481

[18]

Feldtkeller E, Khan MA, van der Heijde D, van der Linden S, Braun J. Age at disease onset and diagnosis delay in HLA-B27 negative vs. positive patients with ankylosing spondylitis. Rheumatol. Int., 2003, 23:61-66

[19]

Khan MA. Polymorphism of HLA-B27: 105 subtypes currently known. Curr. Rheumatol. Rep., 2013, 15:362

[20]

Uchanska-Ziegler B, Ziegler A, Schmieder P. Structural and dynamic features of HLA-B27 subtypes. Curr. Opin. Rheumatol., 2013, 25:411-418

[21]

Sorrentino R, Bockmann RA, Fiorillo MT. HLA-B27 and antigen presentation: at the crossroads between immune defense and autoimmunity. Mol. Immunol., 2014, 57:22-27

[22]

Wucherpfennig KW. Presentation of a self-peptide in two distinct conformations by a disease-associated HLA-B27 subtype. J. Exp. Med., 2004, 199:151-154

[23]

D'Amato M et al. Relevance of residue 116 of HLA-B27 in determining susceptibility to ankylosing spondylitis. Eur. J. Immunol., 1995, 25:3199-3201

[24]

Koh WH, Boey ML. Ankylosing spondylitis in Singapore: a study of 150 patients and a local update. Ann. Acad. Med. Singap., 1998, 27:3-6

[25]

Tran TM et al. Additional human beta2-microglobulin curbs HLA-B27 misfolding and promotes arthritis and spondylitis without colitis in male HLA-B27-transgenic rats. Arthritis Rheum., 2006, 54:1317-1327

[26]

Weinreich SS, HoebeHewryk B, vanderHorst AR, Boog CJP, Ivanyi P. The role of MHC class I heterodimer expression in mouse ankylosing enthesopathy. Immunogenetics, 1997, 46:35-40

[27]

Breban M, Said-Nahal R, Hugot JP, Miceli-Richard C. Familial and genetic aspects of spondyloarthropathy. Rheum. Dis. Clin. North Am., 2003, 29:575-594

[28]

Wei JC, Tsai WC, Lin HS, Tsai CY, Chou CT. HLA-B60 and B61 are strongly associated with ankylosing spondylitis in HLA-B27-negative Taiwan Chinese patients. Rheumatology, 2004, 43:839-842

[29]

Wei JC et al. Interaction between HLA-B60 and HLA-B27 as a better predictor of ankylosing spondylitis in a Taiwanese population. PLoS ONE, 2015, 10

[30]

Khan MA, Kushner I, Braun WE. A subgroup of ankylosing spondylitis associated with HLA-B7 in American blacks. Arthritis Rheum., 1978, 21:528-530

[31]

Khan MA, Kushner I, Braun WE. B27-negative HLA-BW16 in ankylosing spondylitis. Lancet, 1978, 1:1370-1371

[32]

Wagener P, Zeidler H, Eckert G, Deicher H. Increased frequency of HLA-Bw62 and Bw35 CREG antigens in HLA-B27 negative ankylosing spondylitis. Z. Rheumatol., 1984, 43:253-257

[33]

Yamaguchi A et al. Association of HLA-B39 with HLA-B27-negative ankylosing spondylitis and pauciarticular juvenile rheumatoid arthritis in Japanese patients. Evidence for a role of the peptide-anchoring B pocket. Arthritis Rheum., 1995, 38:1672-1677

[34]

Consortium WTCC et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet., 2007, 39:1329-1337

[35]

Australo-Anglo-American Spondyloarthritis Consortium (TASC) et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat. Genet. 42, 123–127 (2010).

[36]

Liu Jing, Pu Weilin, Li Yuan, Ma Yanyun, Zhu Qi, Wan Wei, Yang Chengde, Wang Xiaofeng, Chen Xingdong, Zhou Xiaodong, Reveille John D, Jin Li, Zou Hejian, Wang Jiucun. Genetic association of non-MHC region with ankylosing spondylitis in a Chinese population. Annals of the Rheumatic Diseases, 2018, 78 6 852-853

[37]

Davidson SI et al. Association of ERAP1, but Not IL23R, With Ankylosing Spondylitis in a Han Chinese Population. Arthritis Rheum.-Us, 2009, 60:3263-3268

[38]

Chen C, Zhang X. ERAP1 variants are associated with ankylosing spondylitis in East Asian population: a new Chinese case-control study and meta-analysis of published series. Int. J. Immunogenet., 2015, 42:168-173

[39]

Lee YH, Song GG. Associations between ERAP1 polymorphisms and susceptibility to ankylosing spondylitis: a meta-analysis. Clin. Rheumatol., 2016, 35:2009-2015

[40]

Rudwaleit M et al. Low T cell production of TNFalpha and IFNgamma in ankylosing spondylitis: its relation to HLA-B27 and influence of the TNF-308 gene polymorphism. Ann. Rheum. Dis., 2001, 60:36-42

[41]

Sieper J, Braun J, Kingsley GH. Report on the fourth international workshop on reactive arthritis. Arthritis Rheum., 2000, 43:720-734

[42]

Taurog JD et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med., 1994, 180:2359-2364

[43]

Rath HC et al. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J. Clin. Invest, 1996, 98:945-953

[44]

Costello ME et al. Brief report: intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheuma., 2015, 67:686-691

[45]

Gomez-Simmonds A, Uhlemann AC. Clinical implications of genomic adaptation and evolution of carbapenem-resistant Klebsiella pneumoniae. J. Infect. Dis., 2017, 215:S18-S27

[46]

Zhang L et al. The association of HLA-B27 and Klebsiella pneumoniae in ankylosing spondylitis: a systematic review. Micro. Pathog., 2018, 117:49-54

[47]

Sieper J, Braun J. Pathogenesis of spondylarthropathies. Arthritis Rheum., 1995, 38:1547-1554

[48]

Schlosstein L, Terasaki PI, Bluestone R, Pearson CM. High association of an HL-A antigen, W27, with ankylosing spondylitis. N. Engl. J. Med., 1973, 288:704-706

[49]

Tapiaserrano R et al. Testicular function in active ankylosing-spondylitis-therapeutic response to human chorionic-gonadotropin. J. Rheuma., 1991, 18:841-848

[50]

Jimenezbalderas FJ, Tapiaserrano R, Maderocervera JI, Murrieta S, Mintz G. Ovarian-function studies in active ankylosing-spondylitis in women-clinical-response to estrogen therapy. J. Rheuma., 1990, 17:497-502

[51]

Gooren LJ, Giltay EJ, van Schaardenburg D, Dijkmans BA. Gonadal and adrenal sex steroids in ankylosing spondylitis. Rheum. Dis. Clin. North Am., 2000, 26:969-987

[52]

Aydin T, Karacan I, Demir SE, Sahin Z. Bone loss in males with ankylosing spondylitis: its relation to sex hormone levels. Clin. Endocrinol., 2005, 63:467-469

[53]

Kebapcilar L et al. Impaired hypothalamo-pituitary-adrenal axis in patients with ankylosing spondylitis. J. Endocrinol. Invest, 2010, 33:42-47

[54]

Cai G et al. Vitamin D in ankylosing spondylitis: review and meta-analysis. Clin. Chim. Acta, 2015, 438:316-322

[55]

Pokhai GG, Bandagi S, Abrudescu A. Vitamin D levels in ankylosing spondylitis: does deficiency correspond to disease activity? Rev. Bras. Reum., 2014, 54:330-334

[56]

Almanea S, Miller WH, Siebert S, Derakhshan MH. Serum vitamin D in ankylosing spondylitis and axial spondylitis: a systematic review and meta-analysis. Rheumatology, 2018, 57:key075.401

[57]

Madden DR. The three-dimensional structure of peptide-MHC complexes. Annu. Rev. Immunol., 1995, 13:587-622

[58]

Toh H et al. Changes at the floor of the peptide-binding groove induce a strong preference for Proline at position 3 of the bound peptide: Molecular dynamics simulations of HLA-A*0217. Biopolymers, 2000, 54:318-327

[59]

Nguyen TT et al. Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1. Nat. Struct. Mol. Biol., 2011, 18:604-613

[60]

Yewdell JW. DRiPs solidify: progress in understanding endogenous MHC class I antigen processing. Trends Immunol., 2011, 32:548-558

[61]

Alvarez-Navarro C, de Castro JAL. ERAP1 structure, function and pathogenetic role in ankylosing spondylitis and other MHC-associated diseases. Mol. Immunol., 2014, 57:12-21

[62]

Schittenhelm RB, Tc LKS, Wilmann PG, Dudek NL, Purcell AW. Revisiting the arthritogenic peptide theory: Quantitative not qualitative changes in the peptide repertoire of HLA-B27 allotypes. Arthritis Rheuma., 2015, 67:702-713

[63]

Chatzikyriakidou A, Voulgari PV, Drosos AA. What is the role of HLA-B27 in spondyloarthropathies? Autoimmun. Rev., 2011, 10:464-468

[64]

Faham M et al. Discovery of T cell receptor beta motifs specific to HLA-B27-positive ankylosing spondylitis by deep repertoire sequence analysis. Arthritis Rheuma., 2017, 69:774-784

[65]

de Castro JAL. The HLA-B27 peptidome: building on the cornerstone. Arthritis Rheum., 2010, 62:316-319

[66]

Wolfgang K et al. Identification of novel human aggrecan T cell epitopes in HLA-B27 transgenic mice associated with spondyloarthropathy. J. Immunol., 2004, 173:4859-4866

[67]

Lin A, Guo X, Inman RD, Sivak JM. Ocular inflammation in HLA-B27 transgenic mice reveals a potential role for MHC class I in corneal immune privilege. Mol. Vis., 2015, 21:131-137

[68]

Antoniou AN, Lenart I, Guiliano DB. Pathogenicity of misfolded and dimeric HLA-B27 molecules. Int. J. Rheumatol., 2011, 2011:486856

[69]

Rashid T, Ebringer A. Ankylosing spondylitis is linked to Klebsiella–the evidence. Clin. Rheuma., 2007, 26:858-864

[70]

Manuel R et al. Molecular mimicry of an HLA-B27-derived ligand of arthritis-linked subtypes with chlamydial proteins. J. Biol. Chem., 2002, 277:37573-37581

[71]

Ryu KH et al. Tonsil-derived mesenchymal stromal cells: evaluation of biologic, immunologic and genetic factors for successful banking. Cytotherapy, 2012, 14:1193-1202

[72]

Ciccia F, Rizzo A, Triolo G. Subclinical gut inflammation in ankylosing spondylitis. Curr. Opin. Rheumatol., 2016, 28:89-96

[73]

Colbert RA, DeLay ML, Layh-Schmitt G, Sowders DP. HLA-B27 misfolding and spondyloarthropathies. Adv. Exp. Med Biol., 2009, 649:217-234

[74]

Colbert RA, Tran TM, Layh-Schmitt G. HLA-B27 misfolding and ankylosing spondylitis. Mol. Immunol., 2014, 57:44-51

[75]

Chen B et al. Role of HLA-B27 in the pathogenesis of ankylosing spondylitis (review). Mol. Med. Rep., 2017, 15:1943-1951

[76]

Antoniou AN, Ford S, Taurog JD, Butcher GW, Powis SJ. Formation of HLA-B27 homodimers and their relationship to assembly kinetics. J. Biol. Chem., 2004, 279:8895-8902

[77]

Turner MJ et al. HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J. Immunol., 2005, 175:2438-2448

[78]

Zeng L, Lindstrom MJ, Smith JA. Ankylosing spondylitis macrophage production of higher levels of interleukin-23 in response to lipopolysaccharide without induction of a significant unfolded protein response. Arthritis Rheum., 2011, 63:3807-3817

[79]

Kenna TJ et al. Disease-associated polymorphisms in ERAP1 do not alter endoplasmic reticulum stress in patients with ankylosing spondylitis. Genes Immun., 2015, 16:35-42

[80]

Colbert, R. A., Delay, M. L., Layh-Schmitt, G. & Sowders, D. P. HLA-B27 misfolding and spondyloarthropathies. Prion. 3, 15–26 (2009).

[81]

Chen B, Li D, Xu W. Association of ankylosing spondylitis with HLA-B27 and ERAP1: pathogenic role of antigenic peptide. Med Hypotheses, 2013, 80:36-38

[82]

Ranganathan V, Gracey E, Brown MA, Inman RD, Haroon N. Pathogenesis of ankylosing spondylitis—recent advances and future directions. Nat. Rev. Rheumatol., 2017, 13:359-367

[83]

Allen RL, Raine T, Haude A, Trowsdale J, Wilson MJ. Cutting edge: leukocyte receptor complex-encoded immunomodulatory receptors show differing specificity for alternative HLA-B27 structures. J. Immunol., 2001, 167:5543-5547

[84]

Tam LS, Gu J, Yu D. Pathogenesis of ankylosing spondylitis. Nat. Rev. Rheumatol., 2010, 6:399-405

[85]

Bowness P et al. Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J. Immunol., 2011, 186:2672-2680

[86]

Chan AT, Kollnberger SD, Wedderburn LR, Bowness P. Expansion and enhanced survival of natural killer cells expressing the killer immunoglobulin-like receptor KIR3DL2 in spondylarthritis. Arthritis Rheum., 2005, 52:3586-3595

[87]

Giles J et al. HLA-B27 homodimers and free H chains are stronger ligands for leukocyte Ig-like receptor B2 than classical HLA class I. J. Immunol., 2012, 188:6184-6193

[88]

Wong-Baeza I et al. KIR3DL2 binds to HLA-B27 dimers and free H chains more strongly than other HLA class I and promotes the expansion of T cells in ankylosing spondylitis. J. Immunol., 2013, 190:3216-3224

[89]

Lynch S et al. Novel MHC class I structures on exosomes. J. Immunol., 2009, 183:1884-1891

[90]

International Genetics of Ankylosing Spondylitis Consortium. et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat. Genet. 45, 730–738 (2013).

[91]

Brown MA, Kenna T, Wordsworth BP. Genetics of ankylosing spondylitis–insights into pathogenesis. Nat. Rev. Rheumatol., 2016, 12:81-91

[92]

Ellinghaus D et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat. Genet., 2016, 48:510-518

[93]

Wellcome Trust Case Control Consortium. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2007).

[94]

Graham DSC et al. Association of IRF5 in UK SLE families identifies a variant involved in polyadenylation. Hum. Mol. Genet, 2007, 16:579-591

[95]

Kanaseki T, Blanchard N, Hammer GE, Gonzalez F, Shastri N. ERAAP synergizes with MHC class I molecules to make the final cut in the antigenic peptide precursors in the endoplasmic reticulum. Immunity, 2006, 25:795-806

[96]

Cui X et al. Identification of ARTS-1 as a novel TNFR1-binding protein that promotes TNFR1 ectodomain shedding. J. Clin. Invest, 2002, 110:515-526

[97]

Robinson PC et al. ERAP2 is associated with ankylosing spondylitis in HLA-B27-positive and HLA-B27-negative patients. Ann. Rheum. Dis., 2015, 74:1627-1629

[98]

Tsui FW et al. Association of an ERAP1 ERAP2 haplotype with familial ankylosing spondylitis. Ann. Rheum. Dis., 2010, 69:733-736

[99]

Evans DM et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet., 2011, 43:761-767

[100]

Vitulano C, Tedeschi V, Paladini F, Sorrentino R, Fiorillo MT. The interplay between HLA-B27 and ERAP1/ERAP2 aminopeptidases: from anti-viral protection to spondyloarthritis. Clin. Exp. Immunol., 2017, 190:281-290

[101]

Wang CM et al. ERAP1 genetic variations associated with HLA-B27 interaction and disease severity of syndesmophytes formation in Taiwanese ankylosing spondylitis. Arthritis Res. Ther., 2012, 14:R125

[102]

Kochan G et al. Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming. Proc. Natl Acad. Sci. USA, 2011, 108:7745-7750

[103]

Campbell EC, Fettke F, Bhat S, Morley KD, Powis SJ. Expression of MHC class I dimers and ERAP1 in an ankylosing spondylitis patient cohort. Immunology, 2011, 133:379-385

[104]

Andres AM et al. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. Plos Genet, 2010, 6

[105]

van den Berg WB, McInnes IB. Th17 cells and IL-17 a–focus on immunopathogenesis and immunotherapeutics. Semin Arthritis Rheu, 2013, 43:158-170

[106]

Mahmoudi M, Aslani S, Nicknam MH, Karami J, Jamshidi AR. New insights toward the pathogenesis of ankylosing spondylitis; genetic variations and epigenetic modifications. Mod. Rheuma., 2017, 27:198-209

[107]

Paine A, Ritchlin CT. Targeting the interleukin-23/17 axis in axial spondyloarthritis. Curr. Opin. Rheumatol., 2016, 28:359-367

[108]

Mei Y et al. Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis. Clin. Rheuma., 2011, 30:269-273

[109]

Appel H et al. Analysis of IL-17(+) cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. Arthritis Res. Ther., 2011, 13:R95

[110]

Babaie F et al. The role of gut microbiota and IL-23/IL-17 pathway in ankylosing spondylitis immunopathogenesis: new insights and updates. Immunol. Lett., 2018, 196:52-62

[111]

Di Meglio P et al. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans. PLoS ONE, 2011, 6

[112]

Danoy P et al. Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn's disease. Plos Genet, 2010, 6

[113]

Reveille JD et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat. Genet., 2010, 42:123-U147

[114]

Lau MC et al. Genetic association of ankylosing spondylitis with TBX21 influences T-bet and pro-inflammatory cytokine expression in humans and SKG mice as a model of spondyloarthritis. Ann. Rheum. Dis., 2017, 76:261-269

[115]

Woolf E et al. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc. Natl Acad. Sci. USA, 2003, 100:7731-7736

[116]

Apel M et al. Variants in RUNX3 contribute to susceptibility to psoriatic arthritis, exhibiting further common ground with ankylosing spondylitis. Arthritis Rheum., 2013, 65:1224-1231

[117]

Wang W et al. RUNX3 gene polymorphisms are associated with clinical features of systemic lupus erythematosus in Chinese Han population. J. Dermatol Sci., 2015, 80:69-71

[118]

Lian Z et al. Analysis of PPARGC1B, RUNX3 and TBKBP1 polymorphisms in Chinese Han patients with ankylosing spondylitis: a case-control study. PLoS ONE, 2013, 8

[119]

Cho SM, Jung SH, Chung YJ. A variant in RUNX3 is associated with the risk of ankylosing spondylitis in Koreans. Genom. Inform., 2017, 15:65-68

[120]

Vecellio M et al. The genetic association of RUNX3 with ankylosing spondylitis can be explained by allele-specific effects on IRF4 recruitment that alter gene expression. Ann. Rheum. Dis., 2016, 75:1534-1540

[121]

Yagi R et al. The transcription factor GATA3 actively represses RUNX3 protein-regulated production of interferon-gamma. Immunity, 2010, 32:507-517

[122]

Franke A et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet., 2010, 42:1118-1125

[123]

Rezaiemanesh A et al. Immune cells involved in the pathogenesis of ankylosing spondylitis. Biomed. Pharmacother., 2018, 100:198-204

[124]

O'Keeffe M, Mok WH, Radford KJ. Human dendritic cell subsets and function in health and disease. Cell. Mol. Life Sci., 2015, 72:4309-4325

[125]

Guilliams M et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol., 2014, 14:571-578

[126]

Zang M, Chen K, Qu C, Brinckjensen NS. Monocyte-derived dendritic cells: targets as potent antigen-presenting cells for the design of vaccines against infectious diseases. Int. J. Infect. Dis., 2014, 19:1-5

[127]

McKenna K, Beignon AS, Bhardwaj N. Plasmacytoid dendritic cells: linking innate and adaptive immunity. J. Virol., 2005, 79:17-27

[128]

Wright PB et al. Ankylosing spondylitis patients display altered dendritic cell and T cell populations that implicate pathogenic roles for the IL-23 cytokine axis and intestinal inflammation. Rheumatology, 2016, 55:120-132

[129]

Zambrano-Zaragoza JF, Agraz-Cibrian JM, González-Reyes C, Durán-Avelar MJ, Vibanco-Pérez N. Ankylosing spondylitis: from cells to genes. Int. J. Inflam., 2013, 2013:501653

[130]

Talpin A et al. Monocyte-derived dendritic cells from HLA-B27+ axial spondyloarthritis (SpA) patients display altered functional capacity and deregulated gene expression. Arthritis Res. Ther., 2014, 16:417

[131]

Paul B et al. Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J. Immunol., 2011, 186:2672-2680

[132]

Lei Z et al. Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis. Plos ONE, 2012, 7

[133]

Leonardo LC et al. In vivo peripheral blood proinflammatory T cells in patients with ankylosing spondylitis. J. Rheumatol., 2012, 39:830-835

[134]

Coffre M et al. T.5. Th1 versus Th17 Cells in Ankylosing Spondylitis. Clin. Immunol., 2009, 131:S47-S47

[135]

Kruithof E et al. Synovial histopathology of psoriatic arthritis, both oligo-and polyarticular, resembles spondyloarthropathy more than it does rheumatoid arthritis. Arthritis Res. Ther., 2005, 7:R569

[136]

Braun J et al. Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum., 2010, 38:499-505

[137]

Mulherin D, Fitzgerald O, Bresnihan B. Synovial tissue macrophage populations and articular damage in rheumatoid arthritis. Arthritis Rheum., 2010, 39:115-124

[138]

Barry B et al. Synovial tissue sublining CD68 expression is a biomarker of therapeutic response in rheumatoid arthritis clinical trials: consistency across centers. J. Rheuma., 2009, 36:1800-1802

[139]

Rezaiemanesh A et al. Ankylosing spondylitis M-CSF-derived macrophages are undergoing unfolded protein response (UPR) and express higher levels of interleukin-23. Mod. Rheuma., 2017, 27:862-867

[140]

Jethwa H, Bowness P. The interleukin (IL)-23/IL-17 axis in ankylosing spondylitis: new advances and potentials for treatment. Clin. Exp. Immunol., 2016, 183:30-36

[141]

Kashiwagi N, Nakano M, Saniabadi AR, Adachi M, Yoshikawa T. Anti-inflammatory effect of granulocyte and monocyte adsorption apheresis in a rabbit model of immune arthritis. Inflammation, 2002, 26:199-205

[142]

Azuz-Lieberman N et al. The involvement of NK cells in ankylosing spondylitis. Int. Immunol., 2005, 17:837-845

[143]

Wang J et al. Circulating levels of Th1 and Th2 chemokines in patients with ankylosing spondylitis. Cytokine, 2016, 81:10-14

[144]

Yang PT et al. Increased CCR4 expression on circulating CD4+ T cells in ankylosing spondylitis, rheumatoid arthritis and systemic lupus erythematosus. Clin. Exp. Immunol., 2010, 138:342-347

[145]

Wang C, Liao Q, Hu Y, Zhong D. T lymphocyte subset imbalances in patients contribute to ankylosing spondylitis. Exp. Ther. Med., 2015, 9:250-256

[146]

Konya C, Paz Z, Apostolidis SA, Tsokos GC. Update on the role of interleukin 17 in rheumatologic autoimmune diseases. Cytokine, 2015, 75:207-215

[147]

Torchinsky MB, Blander JM. T helper 17 cells: discovery, function, and physiological trigger. Cell. Mol. Life Sci., 2010, 67:1407-1421

[148]

Xueyi L et al. Levels of circulating Th17 cells and regulatory T cells in ankylosing spondylitis patients with an inadequate response to anti-TNF-alpha therapy. J. Clin. Immunol., 2013, 33:151-161

[149]

Sherlock JP, Buckley CD, Cua DJ. The critical role of interleukin-23 in spondyloarthropathy. Mol. Immunol., 2014, 57:38-43

[150]

Zhang L et al. Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis. Plos ONE, 2012, 7

[151]

El-Zayadi AA et al. Interleukin-22 drives the proliferation, migration and osteogenic differentiation of mesenchymal stem cells: a novel cytokine that could contribute to new bone formation in spondyloarthropathies. Rheumatology, 2017, 56:488-493

[152]

Zhao SS, Hu JW, Wang J, Lou XJ, Zhou LL. Inverse correlation between CD4+ CD25high CD127low/- regulatory T-cells and serum immunoglobulin A in patients with new-onset ankylosing spondylitis. J. Int. Med. Res., 2011, 39:1968-1974

[153]

Liao HT, Lin YF, Tsai CY, Chou CT. Regulatory T cells in ankylosing spondylitis and the response after adalimumab treatment. Jt. Bone Spine, 2015, 82:423-427

[154]

Zhang L, Jarvis LB, Baek HJ, Gaston JS. Regulatory IL4+CD8+ T cells in patients with ankylosing spondylitis and healthy controls. Ann. Rheum. Dis., 2009, 68:1345-1351

[155]

Gao XM, Wordsworth P, McMichael A. Collagen-specific cytotoxic T lymphocyte responses in patients with ankylosing spondylitis and reactive arthritis. Eur. J. Immunol., 2010, 24:1665-1670

[156]

Ugrinovic S, Mertz A, Wu P, Braun J, Sieper J. A single nonamer from the Yersinia 60-kDa heat shock protein is the target of HLA-B27-restricted CTL response in Yersinia-induced reactive arthritis. J. Immunol., 1997, 159:5715-5723

[157]

Fiorillo MT, Maragno M, Butler R, Dupuis ML, Sorrentino R. CD8+ T-cell autoreactivity to an HLA-B27–restricted self-epitope correlates with ankylosing spondylitis. J. Clin. Invest, 2000, 106:47-53

[158]

Yang L et al. JAK2 inhibitor combined with DC-activated AFP-specific T-cells enhances antitumor function in a Fas/FasL signal-independent pathway. Onco Targets Ther., 2016, 9:4425-4433

[159]

Akane K, Kojima S, Mak T, Shiku H, Suzuki H. CD8+CD122+CD49dlow regulatory T cells maintain T-cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity. Proc. Natl Acad. Sci. USA, 2016, 113:2460-2465

[160]

Eghtedari AA, Davis P, Bacon PA. Immunological reactivity in ankylosing spondylitis. Circulating immunoblasts, autoantibodies, and immunoglobulins. Ann. Rheum. Dis., 1976, 35:155-157

[161]

Lin Q et al. Value of the peripheral blood B-cells subsets in patients with ankylosing spondylitis. Chin. Med. J., 2009, 122:1784-1789

[162]

Quaden DH, de Winter LM, Somers V. Detection of novel diagnostic antibodies in ankylosing spondylitis: an overview. Autoimmun. Rev., 2016, 15:820-832

[163]

van der Heijde D et al. Tofacitinib in patients with ankylosing spondylitis: a phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann. Rheum. Dis., 2017, 76:1340-1347

[164]

van der Heijde D et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active ankylosing spondylitis (TORTUGA): results from a randomised, placebo-controlled, phase 2 trial. Lancet (Lond., Engl.), 2018, 392:2378-2387

[165]

Wendling D et al. 2018 update of French Society for Rheumatology (SFR) recommendations about the everyday management of patients with spondyloarthritis. Jt. Bone Spine, 2018, 85:275-284

[166]

Torre-Alonso JC et al. Identification and management of comorbidity in psoriatic arthritis: evidence- and expert-based recommendations from a multidisciplinary panel from Spain. Rheumatol. Int., 2017, 37:1239-1248

[167]

Bodur H et al. Turkish league against rheumatism consensus report: recommendations for management of axial spondyloarthritis. Arch. Rheumatol., 2018, 33:1-16

[168]

Rohekar S et al. 2014 Update of the Canadian rheumatology association/spondyloarthritis research consortium of Canada treatment recommendations for the management of spondyloarthritis. Part II: specific management recommendations. J. Rheuma., 2015, 42:665-681

[169]

Rohekar S et al. 2014 update of the Canadian rheumatology association/spondyloarthritis research consortium of Canada treatment recommendations for the management of spondyloarthritis. Part I: principles of the management of spondyloarthritis in Canada. J. Rheuma., 2015, 42:654-664

[170]

National Institute for Health and Care Excellence. Spondyloarthritis in Over 16s: Diagnosis and Management. (National Institute for Health and Care Excellence, UK, 2017).

[171]

Ward MM et al. American college of rheumatology/spondylitis association of america/spondyloarthritis research and treatment network 2015 recommendations for the treatment of ankylosing spondylitis and nonradiographic axial spondyloarthritis. Arthritis Rheuma., 2016, 68:282-298

[172]

van der Heijde D et al. 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann. Rheum. Dis., 2017, 76:978-991

[173]

Dagfinrud H, Kvien TK, Hagen KB. The cochrane review of physiotherapy interventions for ankylosing spondylitis. J. Rheuma., 2005, 32:1899-1906

[174]

Dulger, S. et al. How does smoking cessation affect disease activity, function loss, and quality of life in smokers with ankylosing spondylitis? J. Clin. Rheumatol. https://doi.org/10.1097/RHU.0000000000000851 (2018).

[175]

Smolen JS et al. Treating axial spondyloarthritis and peripheral spondyloarthritis, especially psoriatic arthritis, to target: 2017 update of recommendations by an international task force. Ann. Rheum. Dis., 2018, 77:3-17

[176]

Sieper J et al. Effect of continuous versus on-demand treatment of ankylosing spondylitis with diclofenac over 2 years on radiographic progression of the spine: results from a randomised multicentre trial (ENRADAS). Ann. Rheum. Dis., 2016, 75:1438-1443

[177]

Kroon F, Landewe R, Dougados M, van der Heijde D. Continuous NSAID use reverts the effects of inflammation on radiographic progression in patients with ankylosing spondylitis. Ann. Rheum. Dis., 2012, 71:1623-1629

[178]

Wanders A et al. Nonsteroidal antiinflammatory drugs reduce radiographic progression in patients with ankylosing spondylitis: a randomized clinical trial. Arthritis Rheum., 2005, 52:1756-1765

[179]

Sieper J et al. Efficacy and safety of infliximab plus naproxen versus naproxen alone in patients with early, active axial spondyloarthritis: results from the double-blind, placebo-controlled INFAST study, Part 1. Ann. Rheum. Dis., 2014, 73:101-107

[180]

Gao X et al. Clinical and economic burden of extra-articular manifestations in ankylosing spondylitis patients treated with anti-tumor necrosis factor agents. J. Med. Econ., 2012, 15:1054-1063

[181]

Cobo-Ibanez T, Ordonez MDC, Munoz-Fernandez S, Madero-Prado R, Martin-Mola E. Do TNF-blockers reduce or induce uveitis? Rheumatology, 2008, 47:731-732

[182]

Deodhar A, Yu D. Switching tumor necrosis factor inhibitors in the treatment of axial spondyloarthritis. Semin. Arthritis Rheu., 2017, 47:343-350

[183]

Hebeisen M et al. Response to tumor necrosis factor inhibition in male and female patients with ankylosing spondylitis: data from a swiss cohort. J. Rheumatol., 2018, 45:506-512

[184]

Lie E et al. Effectiveness of switching between TNF inhibitors in ankylosing spondylitis: data from the NOR-DMARD register. Ann. Rheum. Dis., 2011, 70:157-163

[185]

Cantini F, Niccoli L, Cassara E, Kaloudi O, Nannini C. Duration of remission after halving of the etanercept dose in patients with ankylosing spondylitis: a randomized, prospective, long-term, follow-up study. Biologics, 2013, 7:1-6

[186]

Haibel H et al. Efficacy of oral prednisolone in active ankylosing spondylitis: results of a double-blind, randomised, placebo-controlled short-term trial. Ann. Rheum. Dis., 2014, 73:243-246

[187]

Song IH et al. Different response to rituximab in tumor necrosis factor blocker-naive patients with active ankylosing spondylitis and in patients in whom tumor necrosis factor blockers have failed: a twenty-four-week clinical trial. Arthritis Rheum., 2010, 62:1290-1297

[188]

McInnes IB et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet, 2013, 382:780-789

[189]

Kavanaugh A et al. Effect of ustekinumab on physical function and health-related quality of life in patients with psoriatic arthritis: a randomized, placebo-controlled, phase II trial. Curr. Med. Res. Opin., 2010, 26:2385-2392

[190]

Denis P, Hermann KGA, Johanna C, Joachim L, Joachim S. Ustekinumab for the treatment of patients with active ankylosing spondylitis: results of a 28-week, prospective, open-label, proof-of-concept study (TOPAS). Ann. Rheum. Dis., 2014, 73:817-823

[191]

Deodhar A et al. Three multicenter, randomized, double-blind, placebo-controlled studies evaluating the efficacy and safety of ustekinumab in axial spondyloarthritis. Arthritis Rheuma., 2019, 71:258-270

[192]

Baeten D et al. Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann. Rheum. Dis., 2018, 77:1295-1302

[193]

Siebert S, Millar NL, Mcinnes IB. Why did IL-23p19 inhibition fail in AS: a tale of tissues, trials or translation? Ann. Rheum. Dis., 2019, 78:1015-1018

[194]

Tok MNV et al. The initiation, but not the persistence, of experimental spondyloarthritis is dependent on interleukin-23 signaling. Front. Immunol., 2018, 9:1550

[195]

Baeten D et al. Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis. N. Engl. J. Med., 2015, 373:2534-2548

[196]

Braun J et al. Effect of secukinumab on clinical and radiographic outcomes in ankylosing spondylitis: 2-year results from the randomised phase III MEASURE 1 study. Ann. Rheum. Dis., 2017, 76:1070-1077

[197]

Baraliakos, X. et al. Long-term effects of interleukin-17A inhibition with secukinumab in active ankylosing spondylitis: 3-year efficacy and safety results from an extension of the Phase 3 MEASURE 1 trial. Clin. Exp. Rheum. 36, 50–55 (2017).

[198]

Wei James C.-C., Baeten Dominique, Sieper Joachim, Deodhar Atul, Bhosekar Vaishali, Martin Ruvie, Porter Brian. Efficacy and safety of secukinumab in Asian patients with active ankylosing spondylitis: 52-week pooled results from two phase 3 studies. International Journal of Rheumatic Diseases, 2017, 20 5 589-596

[199]

Baraliakos X et al. Safety and efficacy of readministration of infliximab after longterm continuous therapy and withdrawal in patients with ankylosing spondylitis. J. Rheuma., 2007, 34:510-515

[200]

Ravindran V, Scott DL, Choy EH. A systematic review and meta-analysis of efficacy and toxicity of disease modifying anti-rheumatic drugs and biological agents for psoriatic arthritis. Ann. Rheum. Dis., 2008, 67:855-859

[201]

Kubiak EN, Moskovich R, Errico TJ, Di Cesare PE. Orthopaedic management of ankylosing spondylitis. J. Am. Acad. Orthop. Surg., 2005, 13:267-278

[202]

van Royen BJ, de Gast A. Lumbar osteotomy for correction of thoracolumbar kyphotic deformity in ankylosing spondylitis. A structured review of three methods of treatment. Ann. Rheum. Dis., 1999, 58:399-406

[203]

Allouch H, Shousha M, Böhm H. Operationen bei ankylosierender spondylitis (morbus bechterew). Z. Rheumatol., 2018, 76:848-859

[204]

Qian BP, Mao SH, Jiang J, Wang B, Qiu Y. Mechanisms, predisposing factors, and prognosis of intraoperative vertebral subluxation during pedicle subtraction osteotomy in surgical correction of thoracolumbar kyphosis secondary to ankylosing spondylitis. Spine, 2016, 42:E983-E990

[205]

He A et al. One-stage surgical treatment of cervical spine fracture-dislocation in patients with ankylosing spondylitis via the combined anterior-posterior approach. Medicine, 2017, 96

[206]

Ji M et al. Change in abdominal morphology after surgical correction of thoracolumbar kyphosis secondary to ankylosing spondylitis: a computed tomographic study. Spine, 2015, 40:1244-1249

[207]

Lin B, Zhang B, Li Z, Li Q. Corrective surgery for deformity of the upper cervical spine due to ankylosing spondylitis. Indian J. Orthop., 2014, 48:211-215

[208]

Kiaer T, Gehrchen M. Transpedicular closed wedge osteotomy in ankylosing spondylitis: results of surgical treatment and prospective outcome analysis. Eur. Spine J., 2010, 19:57-64

[209]

Etame AB, Than KD, Wang AC, La MF, Park P. Surgical management of symptomatic cervical or cervicothoracic kyphosis due to ankylosing spondylitis. Spine, 2008, 33:559-564

[210]

Koller H, Mayer M, Hempfing A, Koller J. Osteotomies in ankylosing spondylitis: where, how many, and how much? Eur. Spine J., 2018, 27:70-100

[211]

Smith-Petersen M, Larson C, Aufranc O. Osteotomy of the spine for correction of flexion deformity in rheumatoid arthritis. Clin. Orthop. Relat. Res., 1969, 27:6-9

[212]

La Chapelle EH. Osteotomy of the lumbar spine for correction of kyphosis in a case of ankylosing spondylarthritis. J. Bone Jt. Surg. Am., 1946, 28:851-858

[213]

Goel MK. Vertebral osteotomy for correction of fixed flexion deformity of the spine. J. Bone Jt. Surg. Am., 1968, 50:287-294

[214]

Klems H, Friedebold G. Rupture of the abdominal aorta following a corrective spinal operation for ankylopoeitic spondylitis. Z. Orthop. Ihre Grenzgeb., 1971, 108:554-563

[215]

Weatherley C, Jaffray D, Terry A. Vascular complications associated with osteotomy in ankylosing spondylitis: a report of two cases. Spine, 1988, 13:43-46

[216]

Wilson MJ, Turkell JH. Multiple spinal wedge osteotomy its use in a case of Marie-Strumpell spondylitis. Am. J. Surg., 1949, 77:777-782

[217]

Chen PQ. Correction of kyphotic deformity in ankylosing spondylitis using multiple spinal osteotomy and Zielke's VDS instruments. Taiwan Yi Xue Hui Za Zhi, 1988, 87:692-699

[218]

Hehne HJ, Becker HJ, Zielke K. Spondylodiscitis in kyphotic deformity of ankylosing spondylitis and its healing affected by dorsal correction osteotomies. Report of 33 patients. Z. Orthop. Ihre Grenzgeb., 1990, 128:494-502

[219]

Simmons EH. The surgical correction of flexion deformity of the cervical spine in ankylosing spondylitis. Clin Orthop Relat Res., 1972, 86:132-143

[220]

Püschel J, Zielke K. Corrective surgery for kyphosis in bekhterev's disease—indication, technique, results (author's transl). Z. Orthop. Ihre Grenzgeb., 1982, 120:338-342

[221]

van Royen BJ, de Kleuver M, Slot GH. Polysegmental lumbar posterior wedge osteotomies for correction of kyphosis in ankylosing spondylitis. Eur. Spine J., 1998, 7:104-110

[222]

Hehne HJ, Zielke K, Bohm H. Polysegmental lumbar osteotomies and transpedicled fixation for correction of long-curved kyphotic deformities in ankylosing spondylitis. Rep. 177 cases. Clin. Orthop. Relat. Res., 1990, 258:49-55

[223]

Halm H, Metz-Stavenhagen P, Schmitt A, Zielke K. Surgical treatment of kyphotic spinal deformities in ankylosing spondylitis using the Harrington compression system: long-term results based on the MOPO scales in the framework of a retrospective questionnaire. Z. Orthop. Ihre Grenzgeb., 1995, 133:141-147

[224]

Scudese VA, Calabro JJ. Vertebral wedge osteotomy. Correction of rheumatoid (ankylosing) spondylitis. JAMA, 1963, 186:627-631

[225]

Ziwjan JL. The treatment of flexion deformities of the spine in Bechterew disease. Beitr. Orthop. Traumatol., 1982, 29:195-199

[226]

Thomasen E. Vertebral osteotomy for correction of kyphosis in ankylosing spondylitis. Clin. Orthop. Relat. Res., 1985, 194:142-152

[227]

Thiranont N, Netrawichien P. Transpedicular decancellation closed wedge vertebral osteotomy for treatment of fixed flexion deformity of spine in ankylosing spondylitis. Spine, 1993, 18:2517-2522

[228]

Kawahara N et al. Closing-opening wedge osteotomy to correct angular kyphotic deformity by a single posterior approach. Spine, 2007, 26:391-402

[229]

Bourghli A et al. Modified closing-opening wedge osteotomy for the treatment of sagittal malalignment in thoracolumbar fractures malunion. Spine J., 2015, 15:2574-2582

[230]

Finkelstein JA, Chapman JR, Mirza S. Occult vertebral fractures in ankylosing spondylitis. Spinal Cord., 1999, 37:444-447

[231]

Whang PG et al. The management of spinal injuries in patients with ankylosing spondylitis or diffuse idiopathic skeletal hyperostosis: a comparison of treatment methods and clinical outcomes. J. Spinal Disord. Tech., 2009, 22:77-85

[232]

Hunter T, Forster B, Dvorak M. Ankylosed spines are prone to fracture. Can. Fam. Physician, 1995, 41:1213-1216

[233]

Daveyranasinghe N, Deodhar A. Osteoporosis and vertebral fractures in ankylosing spondylitis. Curr. Opin. Rheumatol., 2013, 25:509-516

[234]

Hitchon PW, From AM, Brenton MD, Glaser JA, Torner JC. Fractures of the thoracolumbar spine complicating ankylosing spondylitis. J. Neurosurg., 2002, 97:218-222

[235]

Mitra D, Elvins DM, Speden DJ, Collins AJ. The prevalence of vertebral fractures in mild ankylosing spondylitis and their relationship to bone mineral density. Rheumatology, 2000, 39:85-89

[236]

Backhaus M et al. Spine fractures in patients with ankylosing spondylitis: an analysis of 129 fractures after surgical treatment. Orthopade, 2011, 40:917-920 922–914

[237]

Bernd L, Blasius K, Lukoschek M. Spinal fractures in ankylosing spondylitis. Z. Orthop. Ihre Grenzgeb., 1992, 130:59-63

[238]

Schiefer TK et al. In-hospital neurologic deterioration following fractures of the ankylosed spine: a single-institution experience. World Neurosurg., 2015, 83:775-783

[239]

Ma J, Wang C, Zhou X, Zhou S, Jia L. Surgical therapy of cervical spine fracture in patients with ankylosing spondylitis. Medicine, 2015, 94

[240]

An SB et al. Surgical outcomes after traumatic vertebral fractures in patients with ankylosing spondylitis. J. Korean Neurosurg. Soc., 2014, 56:108-113

[241]

Apple DF, Anson C. Spinal cord injury occurring in patients with ankylosing spondylitis: a multicenter study. Orthopedics, 1995, 18:1005-1011

[242]

Ea HK, Liote F, Lot G, Bardin T. Cauda equina syndrome in ankylosing spondylitis: successful treatment with lumboperitoneal shunting. Spine, 2010, 35:E1423-E1429

[243]

Ahn NU et al. Cauda equina syndrome in ankylosing spondylitis (the CES-AS syndrome): meta-analysis of outcomes after medical and surgical treatments. J. Spinal Disord., 2001, 14:427-433

[244]

Vander CB et al. Hip involvement in ankylosing spondylitis: epidemiology and risk factors associated with hip replacement surgery. Rheumatology, 2010, 49:73-81

[245]

Bloom L et al. Have the yearly trends of total hip arthroplasty in ankylosing spondylitis patients decreased? Surg. Technol. Int., 2017, 31:327-332

[246]

Xu J, Zeng M, Xie J, Wen T, Hu Y. Cementless total hip arthroplasty in patients with ankylosing spondylitis: a retrospective observational study. Medicine, 2017, 96

[247]

He C et al. The effect of total hip replacement on employment in patients with ankylosing spondylitis. Clin. Rheuma., 2016, 35:2975-2981

[248]

Feng DX et al. Bilaterally primary cementless total hip arthroplasty for severe hip ankylosis with ankylosing spondylitis. Orthop. Surg., 2016, 8:352-359

[249]

Ye C et al. Cementless bilateral synchronous total hip arthroplasty in ankylosing spondylitis with hip ankylosis. Int. Orthop., 2014, 38:2473-2476

[250]

Xu BG et al. Medium-term follow-up outcomes of total hip arthroplasty for patients with ankylosing spondylitis. Zhongguo Gu Shang, 2013, 26:1052-1056

[251]

Joshi AB, Markovic L, Hardinge K, Murphy JC. Total hip arthroplasty in ankylosing spondylitis: an analysis of 181 hips. J. Arthroplast., 2002, 17:427-433

[252]

Bisla RS, Ranawat CS, Inglis AE. Total hip replacement in patients with ankylosing spondylitis with involvement of the hip. J. Bone Jt. Surg. Am., 1976, 58:233-238

[253]

Tang WM, Chiu KY. Primary total hip arthroplasty in patients with ankylosing spondylitis. J. Arthroplast., 2000, 15:52-58

[254]

Bangjian H, Peijian T, Ju L. Bilateral synchronous total hip arthroplasty for ankylosed hips. Int. Orthop., 2012, 36:697-701

[255]

Zheng GQ, Zhang YG, Chen JY, Wang Y. Decision making regarding spinal osteotomy and total hip replacement for ankylosing spondylitis: experience with 28 patients. Bone Jt. J., 2014, 96-B:360-365

[256]

Kim KT et al. Surgical treatment of "chin-on-pubis" deformity in a patient with ankylosing spondylitis: a case report of consecutive cervical, thoracic, and lumbar corrective osteotomies. Spine, 2012, 37:E1017-E1021

[257]

Yang P, Wang C, Wang K. Effect of morphological changes in proximal femur on prosthesis selection of total hip arthroplasty in patients with ankylosing spondylitis. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2006, 20:448-450

[258]

Bhan S, Eachempati KK, Malhotra R. Primary cementless total hip arthroplasty for bony ankylosis in patients with ankylosing spondylitis. J. Arthroplast., 2008, 23:859-866

[259]

Lee SH, Lee GW, Seol YJ, Park KS, Yoon TR. Comparison of outcomes of total hip arthroplasty between patients with ankylosing spondylitis and avascular necrosis of the femoral head. Clin. Orthop. Surg., 2017, 9:263-269

[260]

Wang W, Huang G, Huang T, Wu R. Bilaterally primary cementless total hip arthroplasty in patients with ankylosing spondylitis. BMC Musculoskelet. Disord., 2014, 15

[261]

Schmalzried TP, Amstutz HC, Dorey FJ. Nerve palsy associated with total hip replacement. Risk factors and prognosis. J. Bone Jt. Surg. Am., 1991, 73:1074-1080

[262]

Brinker MR, Rosenberg AG, Kull L, Cox DD. Primary noncemented total hip arthroplasty in patients with ankylosing spondylitis. Clinical and radiographic results at an average follow-up period of 6 years. J. Arthroplast., 1996, 11:802-812

[263]

Weng HK et al. Total hip arthroplasty for patients who have ankylosing spondylitis: is postoperative irradiation required for prophylaxis of heterotopic ossification? J. Arthroplast., 2015, 30:1752-1756

[264]

Boonen A. Socioeconomic consequences of ankylosing spondylitis. Clin. Exp. Rheumatol., 2002, 20:S23-S26

Funding

Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)(7184325)

AI Summary AI Mindmap
PDF

194

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/