Extra-skeletal manifestations in mice affected by Clcn7-dependent autosomal dominant osteopetrosis type 2 clinical and therapeutic implications

Antonio Maurizi , Mattia Capulli , Annabel Curle , Rajvi Patel , Argia Ucci , Juliana Alves Côrtes , Harriet Oxford , Shireen R. Lamandé , John F. Bateman , Nadia Rucci , Anna Teti

Bone Research ›› 2019, Vol. 7 ›› Issue (1) : 17

PDF
Bone Research ›› 2019, Vol. 7 ›› Issue (1) : 17 DOI: 10.1038/s41413-019-0055-x
Article

Extra-skeletal manifestations in mice affected by Clcn7-dependent autosomal dominant osteopetrosis type 2 clinical and therapeutic implications

Author information +
History +
PDF

Abstract

Autosomal dominant osteopetrosis type 2 (ADO2) is a high-density brittle bone disease characterized by bone pain, multiple fractures and skeletal-related events, including nerve compression syndrome and hematological failure. We demonstrated that in mice carrying the heterozygous Clcn7 G213R mutation, whose human mutant homolog CLCN7 G215R affects patients, the clinical impacts of ADO2 extend beyond the skeleton, affecting several other organs. The hallmark of the extra-skeletal alterations is a consistent perivascular fibrosis, associated with high numbers of macrophages and lymphoid infiltrates. Fragmented clinical information in a small cohort of patients confirms extra-skeletal alterations consistent with a systemic disease, in line with the observation that the CLCN7 gene is expressed in many organs. ADO2 mice also show anxiety and depression and their brains exhibit not only perivascular fibrosis but also β-amyloid accumulation and astrogliosis, suggesting the involvement of the nervous system in the pathogenesis of the ADO2 extra-skeletal alterations. Extra-skeletal organs share a similar cellular pathology, confirmed also in vitro in bone marrow mononuclear cells and osteoclasts, characterized by an impairment of the exit pathway of the Clcn7 protein product, ClC7, through the Golgi, with consequent reduced ClC7 expression in late endosomes and lysosomes, associated with high vesicular pH and accumulation of autophagosome markers. Finally, an experimental siRNA therapy, previously proven to counteract the bone phenotype, also improves the extra-skeletal alterations. These results could have important clinical implications, supporting the notion that a systematic evaluation of ADO2 patients for extra-skeletal symptoms could help improve their diagnosis, clinical management, and therapeutic options.

Cite this article

Download citation ▾
Antonio Maurizi, Mattia Capulli, Annabel Curle, Rajvi Patel, Argia Ucci, Juliana Alves Côrtes, Harriet Oxford, Shireen R. Lamandé, John F. Bateman, Nadia Rucci, Anna Teti. Extra-skeletal manifestations in mice affected by Clcn7-dependent autosomal dominant osteopetrosis type 2 clinical and therapeutic implications. Bone Research, 2019, 7(1): 17 DOI:10.1038/s41413-019-0055-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Teti A, Econs MJ. Osteopetroses, emphasizing potential approaches to treatment. Bone, 2017, 102:50-59

[2]

Albers-Schönberg H. Röntgenbilder einer seltenen Knock-enerkrankung. Munch. Med. Wochenscher, 1904, 5:365-368

[3]

Hill BG, Charlton WS. Albers-Schonberg disease. Med. J. Aust., 1965, 2:365-367

[4]

Waguespack SG, Hui SL, DiMeglio LA, Econs MJ. Autosomal dominant osteopetrosis: clinical severity and natural history of 94 subjects with a chloride channel 7 gene mutation. J. Clin. Endocrinol. Metab., 2007, 92:771-778

[5]

Bollerslev J, Henriksen K, Nielsen MF, Brixen K, Van Hul W. Autosomal dominant osteopetrosis revisited: lessons from recent studies. Eur. J. Endocrinol., 2013, 169:R39-R57

[6]

Brandt S, Jentsch TJ. ClC-6 and ClC-7 are two novel broadly expressed members of the CLC chloride channel family. FEBS Lett., 1995, 377:15-20

[7]

Cleiren E et al. Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum. Mol. Genet., 2001, 10:2861-2867

[8]

Graves AR, Curran PK, Smith CL, Mindell JA. The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature, 2008, 453:788-792

[9]

Cappariello A, Maurizi A, Veeriah V, Teti A. The Great Beauty of the osteoclast. Arch. Biochem. Biophys., 2014, 558:70-78

[10]

Rucci N, Teti A. The ‘love-hate’ relationship between osteoclasts and bone matrix. Matrix Biol., 2016, 52–54:176-190

[11]

Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat. Rev. Endocrinol., 2013, 9:522-536

[12]

Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone, 2008, 42:19-29

[13]

Bénichou OD, Laredo JD, De Vernejoul MC. Type II autosomal dominant osteopetrosis (Albers-Schonberg disease): clinical and radiological manifestations in 42 patients. Bone, 2000, 26:87-93

[14]

Del Fattore A et al. Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment. J. Med. Genet., 2006, 43:315-325

[15]

Hiroyama Y, Miike T, Sugino S, Taku K. Creatine kinase brain isoenzyme in infantile osteopetrosis. Pediatr. Neurol., 1987, 3:54-57

[16]

Alam I et al. Generation of the first autosomal dominant osteopetrosis type II (ADO2) disease models. Bone, 2014, 59:66-75

[17]

Capulli M et al. Therapy to treat CLCN7-dependent autosomal dominant osteopetrosis type 2. Mol. Ther. Nucleic Acids, 2015, 4

[18]

Alam I et al. Interferon gamma, but not calcitriol improves the osteopetrotic phenotypes in ADO2 mice. J. Bone Miner. Res., 2015, 30:2005-2013

[19]

Maurizi A et al. RNA interference therapy for autosomal dominant osteopetrosis type 2. Towards Preclin. Dev. Bone, 2018, 110:343-354

[20]

Kida, Y., Uchida, S., Miyazaki, H., Sasaki, S. & Marumo, F. Localization of mouse CLC-6 and CLC-7 mRNA and their functional complementation of yeast CLC gene mutant. Histochem. Cell Biol. https://doi.org/10.1007/s004180000245 (2001).

[21]

Wartosch Lena, Fuhrmann Jens C., Schweizer Michaela, Stauber Tobias, Jentsch Thomas J.. Lysosomal degradation of endocytosed proteins depends on the chloride transport protein ClC-7. The FASEB Journal, 2009, 23 12 4056-4068

[22]

Kornak U et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell, 2001, 104:205-215

[23]

Caetano-Lopes J., Lessard S.G., Hann S., Espinoza K., Kang K.S., Lim K.E., Horan D.J., Noonan H.R., Hu D., Baron R., Robling A.G., Warman M.L.. Clcn7F318L/+ as a new mouse model of Albers-Schönberg disease. Bone, 2017, 105:253-261

[24]

Lanz E, Gregor M, Slavík J, Kotyk A. Use of FITC as a fluorescent probe for intracellular pH measurement. J. Fluor., 1997, 7:317-319

[25]

Martínez-Gómez C, Benedicto J, Campillo JA, Moore M. Application and evaluation of the neutral red retention (NRR) assay for lysosomal stability in mussel populations along the Iberian Mediterranean coast. J. Environ. Monit., 2008, 10:490-499

[26]

Henriksen K., Bollerslev J., Everts V., Karsdal M. A.. Osteoclast Activity and Subtypes as a Function of Physiology and Pathology—Implications for Future Treatments of Osteoporosis. Endocrine Reviews, 2011, 32 1 31-63

[27]

Kasper D et al. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J., 2005, 24:1079-1091

[28]

David DJ et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron, 2009, 62:479-493

[29]

Arrant AE, Schramm-Sapyta NL, Kuhn CM. Use of the light/dark test for anxiety in adult and adolescent male rats. Behav. Brain Res., 2013, 256:119-127

[30]

Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav. Brain Res., 1988, 31:47-59

[31]

Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat. Protoc., 2006, 1:848-858

[32]

Biancalana M, Koide S. Molecular mechanism of thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta, 2010, 1804:1405-1412

[33]

Xue C, Lin TY, Chang D, Guo Z. Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. R. Soc. Open Sci., 2017, 4:160696

[34]

Rodriguez-Pena AB, Santos E, Arevalo M, Lopez-Novoa JM. Activation of small GTPase Ras and renal fibrosis. J. Nephrol., 2005, 18:341-349

[35]

Lakatos Heather F., Thatcher Thomas H., Kottmann R. Matthew, Garcia Tatiana M., Phipps Richard P., Sime Patricia J.. The Role of PPARs in Lung Fibrosis. PPAR Research, 2007, 2007:1-10

[36]

Insel Paul A, Murray Fiona, Yokoyama Utako, Romano Silvia, Yun Hongruo, Brown Loren, Snead Aaron, Lu David, Aroonsakool Nakon. cAMP and Epac in the regulation of tissue fibrosis. British Journal of Pharmacology, 2012, 166 2 447-456

[37]

Hsu, H.-S. et al. Involvement of ER stress, PI3K/AKT activation, and lung fibroblast proliferation in bleomycin-induced pulmonary fibrosis. Sci. Rep. https://doi.org/10.1038/s41598-017-14612-5 (2017).

[38]

Ruiz-Ortega M, Rodriguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J. TGF-beta signaling in vascular fibrosis. Cardiovasc. Res., 2007, 74:196-206

[39]

Kiyono K et al. Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res., 2009, 69:8844-8852

[40]

Ghavami S et al. Autophagy is a regulator of TGF-β(1)-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis., 2015, 6

[41]

Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis. Growth Factors, 2011, 29:196-202

[42]

Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 2016, 44:450-462

[43]

Branton MH, Kopp JB. TGF-beta and fibrosis. Microbes Infect., 1999, 1:1349-1365

[44]

Odaka C, Mizuochi T. Role of macrophage lysosomal enzymes in the degradation of nucleosomes of apoptotic cells. J. Immunol., 1999, 163:5346-5352

[45]

Rambaldi A et al. Expression of the macrophage colony-stimulating factor and c-fms genes in human acute myeloblastic leukemia cells. J. Clin. Invest., 1988, 81:1030-1035

[46]

Humphrey MB, Lanier LL, Nakamura MC. Role of ITAM-containing adapter proteins and their receptors in the immune system and bone. Immunol. Rev., 2005, 208:50-65

[47]

Cohn ZA, Wiener E. The particulate hydrolases of macrophages: I. Comparative enzymology, isolation, and properties. J. Exp. Med., 1963, 118:991-1008

[48]

Whyte M. P. Sclerosing Bone Disorders. In ASBMR Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (eds Clifford J. R. & Keen, R. W.) 769–785 (John Wiley & Sons, New York, 2013).

[49]

Pressey SNR et al. Distinct neuropathologic phenotypes after disrupting the chloride transport proteins ClC-6 or ClC-7/Ostm1. J. Neuropathol. Exp. Neurol., 2010

[50]

Schulz P, Werner J, Stauber T, Henriksen K, Fendler K. The G215R mutation in the Cl-/H+-antiporter ClC-7 found in ADO II osteopetrosis does not abolish function but causes a severe trafficking defect. PLoS One, 2010, 5

[51]

Henriksen K et al. Characterization of osteoclasts from patients harboring a G215R mutation in ClC-7 causing autosomal dominant osteopetrosis type II. Am. J. Pathol., 2004, 164:1537-1545

[52]

Kajiya Hiroshi, Okamoto Fujio, Ohgi Kimiko, Nakao Akihiro, Fukushima Hidefumi, Okabe Koji. Characteristics of ClC7 Cl− channels and their inhibition in mutant (G215R) associated with autosomal dominant osteopetrosis type II in native osteoclasts and hClcn7 gene-expressing cells. Pflügers Archiv - European Journal of Physiology, 2009, 458 6 1049-1059

[53]

Lange Philipp F., Wartosch Lena, Jentsch Thomas J., Fuhrmann Jens C.. ClC-7 requires Ostm1 as a β-subunit to support bone resorption and lysosomal function. Nature, 2006, 440 7081 220-223

[54]

Steinberg Benjamin E., Huynh Kassidy K., Brodovitch Alexandre, Jabs Sabrina, Stauber Tobias, Jentsch Thomas J., Grinstein Sergio. A cation counterflux supports lysosomal acidification. The Journal of Cell Biology, 2010, 189 7 1171-1186

[55]

Weinert S et al. Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl− accumulation. Science, 2010, 328:1401-1403

[56]

Weinert S et al. Transport activity and presence of ClC-7/Ostm1 complex account for different cellular functions. EMBO Rep., 2014, 15:784-791

[57]

Chakraborty, K., Leung, K. H. & Krishnan, Y. High lumenal chloride in the lysosome is critical for lysosome function. Elife. https://doi.org/10.7554/eLife.28862 (2017).

[58]

Stauber T, Jentsch TJ. Sorting motifs of the endosomal/lysosomal CLC chloride transporters. J. Biol. Chem., 2010, 285:34537-34548

[59]

Leisle L, Ludwig CF, Wagner FA, Jentsch TJ, Stauber T. ClC-7 is a slowly voltage-gated 2Cl(-)/1H(+)-exchanger and requires Ostm1 for transport activity. EMBO J., 2011, 30:2140-2152

[60]

Ryter Stefan W., Bhatia Divya, Choi Mary E.. Autophagy: A Lysosome-Dependent Process with Implications in Cellular Redox Homeostasis and Human Disease. Antioxidants & Redox Signaling, 2019, 30 1 138-159

[61]

Duran A et al. The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell, 2008, 13:343-354

[62]

Maurizi A, Rucci N. The osteoclast in bone metastasis: player and target. Cancers, 2018, 10:218-237

[63]

Cappariello A, Ponzetti M, Rucci N. The ‘soft’ side of the bone: unveiling its endocrine functions. Horm. Mol. Biol. Clin. Invest., 2016, 28:5-20

[64]

Ludwig CF, Ullrich F, Leisle L, Stauber T, Jentsch TJ. Common gating of both CLC transporter subunits underlies voltage-dependent activation of the 2Cl-/1H + exchanger ClC-7/Ostm1. J. Biol. Chem., 2013, 288:28611-28619

[65]

Kardash Elena, Bandemer Jan, Raz Erez. Imaging protein activity in live embryos using fluorescence resonance energy transfer biosensors. Nature Protocols, 2011, 6 12 1835-1846

Funding

EC | Seventh Framework Programme (EC Seventh Framework Programme)(602300)

EC | Horizon 2020 (Horizon 2020 - Research and Innovation Framework Programme)(690850)

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/