The potential risks of C-C chemokine receptor 5-edited babies in bone development

Yong Xie , Shaohua Zhan , Wei Ge , Peifu Tang

Bone Research ›› 2019, Vol. 7 ›› Issue (1) : 4

PDF
Bone Research ›› 2019, Vol. 7 ›› Issue (1) : 4 DOI: 10.1038/s41413-019-0044-0
Comment

The potential risks of C-C chemokine receptor 5-edited babies in bone development

Author information +
History +
PDF

Cite this article

Download citation ▾
Yong Xie, Shaohua Zhan, Wei Ge, Peifu Tang. The potential risks of C-C chemokine receptor 5-edited babies in bone development. Bone Research, 2019, 7(1): 4 DOI:10.1038/s41413-019-0044-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hutter G et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. New Engl. J. Med., 2009, 360:692-698

[2]

Wang, C. et al. Gene-edited babies: Chinese Academy of Medical Sciences’ response and action. Lancet. https://doi.org/10.1016/S0140-6736(18)33080-0 (2018).

[3]

National Academies of Sciences. Human Genome Editing: Science, Ethics, and Governance (National Academies Press, Washington, DC, 2017).

[4]

Haworth, K. G., Peterson, C. W. & Kiem, H. P. CCR5-edited gene therapies for HIV cure: Closing the door to viral entry. Cytotherapy 19, 1325–1338 (2017).

[5]

Martin-Blondel G, Brassat D, Bauer J, Lassmann H, Liblau RS. CCR5 blockade for neuroinflammatory diseases--beyond control of HIV. Nat. Rev. Neurol., 2016, 12:95-105

[6]

Brelot, A. & Chakrabarti, L. A. CCR5 revisited: how mechanisms of HIV entry govern AIDS pPathogenesis. J. Mol. Biol. 430, 2557–2589 (2018).

[7]

Vangelista, L. & Vento, S. The expanding therapeutic perspective of CCR5 blockade. Front. Immunol. 8, 1981(2017).

[8]

Barmania, F. & Pepper, M. S. C-C chemokine receptor type five (CCR5): An emerging target for the control of HIVinfection. Appl. Transl. Genom. 2, 3–16 (2013).

[9]

Samson M et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature, 1996, 382:722-725

[10]

Agrawal L et al. Role for CCR5Delta32 protein in resistance to R5, R5X4, and X4 human immunodeficiency virus type 1 in primary CD4 + cells. J. Virol., 2004, 78:2277-2287

[11]

Guignard F, Combadiere C, Tiffany HL, Murphy PM. Gene organization and promoter function for CC chemokine receptor 5 (CCR5). J. Immunol., 1998 985-992

[12]

Liu R et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell, 1996, 86:367-377

[13]

Lopalco L. CCR5: from natural resistance to a new anti-HIV strategy. Viruses, 2010, 2:574-600

[14]

Galvani AP, Slatkin M. Evaluating plague and smallpox as historical selective pressures for the CCR5-Delta 32 HIV-resistance allele. Proc. Natl Acad. Sci. USA, 2003, 100:15276-15279

[15]

Zhou, M. et al. CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory. eLife 5, https://doi.org/10.7554/eLife.20985 (2016).

[16]

Falcon A et al. CCR5 deficiency predisposes to fatal outcome in influenza virus infection. J. Gen. Virol., 2015, 96:2074-2078

[17]

Glass WG et al. CCR5 deficiency increases risk of symptomatic West Nile virus infection. J. Exp. Med., 2006, 203:35-40

[18]

Sorce, S. et al. Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5. Br. J. Pharmacol. 160, 311–321 (2010).

[19]

Takeuchi T, Kameda H. What is the future of CCR5 antagonists in rheumatoid arthritis? Arthritis Res. Ther., 2012, 14:114

[20]

Fleishaker DL et al. Maraviroc, a chemokine receptor-5 antagonist, fails to demonstrate efficacy in the treatment of patients with rheumatoid arthritis in a randomized, double-blind placebo-controlled trial. Arthritis Res. Ther., 2012, 14:R11

[21]

Taiwo BO et al. Less bone loss with maraviroc- versus tenofovir-containing antiretroviral therapy in the AIDS Clinical Trials Group A5303 Study. Clin. Infect. Dis., 2015, 61:1179-1188

[22]

Han JH et al. Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood, 2001, 97:3349-3353

[23]

Yano, S. et al. Functional expression of beta-chemokine receptors in osteoblasts: role of regulated upon activation, normal T cell expressed and secreted (RANTES) in osteoblasts and regulation of its secretion by osteoblasts and osteoclasts. Endocrinology 146, 2324–2335 (2005).

[24]

Oba Y et al. MIP-1alpha utilizes both CCR1 and CCR5 to induce osteoclast formation and increase adhesion of myeloma cells to marrow stromal cells. Exp. Hematol., 2005, 33:272-278

[25]

Pokorny V et al. Evidence for negative association of the chemokine receptor CCR5d32 polymorphism with rheumatoid arthritis. Ann. Rheum. Dis., 2005, 64:487-490

[26]

Prahalad S et al. Association of two functional polymorphisms in the CCR5 gene with juvenile rheumatoid arthritis. Genes Immun., 2006, 7:468-475

[27]

Andrade I Jr et al. CCR5 down-regulates osteoclast function in orthodontic tooth movement. J. Dent. Res., 2009, 88:1037-1041

[28]

Lee JW et al. The HIV co-receptor CCR5 regulates osteoclast function. Nat. Commun., 2017, 8

[29]

Lee D et al. CCL4 enhances preosteoclast migration and its receptor CCR5 downregulation by RANKL promotes osteoclastogenesis. Cell Death Dis., 2018, 9:495

[30]

Wierda RJ, van den Elsen PJ. Genetic and epigenetic regulation of CCR5 transcription. Biology, 2012, 1:869-879

[31]

Zella D et al. Interferon-gamma increases expression of chemokine receptors CCR1, CCR3, and CCR5, but not CXCR4 in monocytoid U937 cells. Blood, 1998, 91:4444-4450

[32]

Lean JM, Murphy C, Fuller K, Chambers TJ. CCL9/MIP-1gamma and its receptor CCR1 are the major chemokine ligand/receptor species expressed by osteoclasts. J. Cell. Biochem., 2002, 87:386-393

[33]

Rucker J et al. Regions in beta-chemokine receptors CCR5 and CCR2b that determine HIV-1 cofactor specificity. Cell, 1996, 87:437-446

[34]

Okamoto K et al. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems. Physiol. Rev., 2017, 97:1295-1349

[35]

Kong YY et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature, 1999, 402:304

[36]

Shinoda K et al. Resting T cells negatively regulate osteoclast generation from peripheral blood monocytes. Bone, 2003, 33:711-720

[37]

McInnes IB, Leung BP, Sturrock RD, Field M, Liew FY. Interleukin-15 mediates T cell-dependent regulation of tumor necrosis factor-α production in rheumatoid arthritis. Nat. Med., 1997, 3:189-195

[38]

Roato I et al. IL-7 up-regulates TNF-alpha-dependent osteoclastogenesis in patients affected by solid tumor. PLoS ONE, 2006, 1:e124

[39]

Croes, M. et al. Proinflammatory T cells and IL-17 stimulate osteoblast differentiation. Bone 84, 262–270 (2016).

[40]

Dehmel S et al. Chemokine receptor Ccr5 deficiency induces alternative macrophage activation and improves long-term renal allograft outcome. Eur. J. Immunol., 2010, 40:267-278

[41]

Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A. Tumor necrosis factor-α induces differentiation of and bone resorption by osteoclasts. J. Biol. Chem., 2000, 275:4858-4864

[42]

Udagawa, N et al. Interleukin (IL)-6 induction of osteoclast differentiation depends on IL-6 receptors expressed on osteoblastic cells but not on osteoclast progenitors. J. Exp. Med. 182, 1461–1468 (1995).

[43]

Yoshitake F, Itoh S, Narita H, Ishihara K, Ebisu S. Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-kappaB signaling pathways. J. Biol. Chem., 2008, 283:11535-11540

[44]

Lee YM, Fujikado N, Manaka H, Yasuda H, Iwakura Y. IL-1 plays an important role in the bone metabolism under physiological conditions. Int. Immunol., 2010, 22:805-816

[45]

Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol., 2007, 7:292

[46]

Takayanagi H et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature, 2000, 408:600-605

[47]

Champagne CM, Takebe J, Offenbacher S, Cooper LF. Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone, 2002, 30:26-31

[48]

Fromigue O, Marie PJ, Lomri A. Bone morphogenetic protein-2 and transforming growth factor-beta2 interact to modulate human bone marrow stromal cell proliferation and differentiation. J. Cell. Biochem., 1998, 68:411-426

[49]

Weiss, I. D. et al. Ccr5 deficiency regulates the proliferation and trafficking of natural killer cells under physiological conditions. Cytokine 54, 249–257 (2011).

[50]

Ajuebor, M. N. et al. CCR5 deficiency drives enhanced natural killer cell trafficking to and activation within the liver in murine T cell-mediated hepatitis. Am. J. Pathol. 170, 1975–1988 (2007).

[51]

Poggi A et al. Interaction between human NK cells and bone marrow stromal cells induces NK cell triggering: role of NKp30 and NKG2D Receptors. J. Immunol., 2005, 175:6352-6360

[52]

Takeda H et al. Effect of IL-15 and natural killer cells on osteoclasts and osteoblasts in a mouse coculture. Inflammation, 2014, 37:657-669

[53]

Feng S et al. Interleukin-15-activated natural killer cells kill autologous osteoclasts via LFA-1, DNAM-1 and TRAIL, and inhibit osteoclast-mediated bone erosion in vitro. Immunology, 2015, 145:367-379

[54]

Langdahl B, Ferrari S, Dempster DW. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther. Adv. Musculoskelet. Dis., 2016, 8:225-235

[55]

Henriksen K, Karsdal MA, Martin TJ. Osteoclast-derived coupling factors in bone remodeling. Calcif. Tissue Int., 2014, 94:88-97

[56]

Teti A. Bone development: overview of bone cells and signaling. Curr. Osteoporos. Rep., 2011, 9:264-273

[57]

Kikuta J, Ishii M. Osteoclast migration, differentiation and function: novel therapeutic targets for rheumatic diseases. Rheumatology, 2013, 52:226-234

[58]

Batsir S, Geiger B, Kam Z. Dynamics of the sealing zone in cultured osteoclasts. Cytoskeleton, 2017, 74:72-81

[59]

Georgess D, Machuca-Gayet I, Blangy A, Jurdic P. Podosome organization drives osteoclast-mediated bone resorption. Cell Adhes. Migr., 2014, 8:191-204

[60]

Lin, T. H. et al. Inhibition of osteoporosis by the alphavbeta3 integrin antagonist of rhodostomin variants. Eur. J. Pharmacol. 804, 94–1011 (2017).

Funding

CAMS Innovation Fund for Medical Sciences (CIFMS, 2017-I2M-3-001)

National Natural Science Foundation of China (National Science Foundation of China)(81772369)

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/