Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12

Chuangxin Lin , Liangliang Liu , Chun Zeng , Zhong-Kai Cui , Yuhui Chen , Pinling Lai , Hong Wang , Yan Shao , Haiyan Zhang , Rongkai Zhang , Chang Zhao , Hang Fang , Daozhang Cai , Xiaochun Bai

Bone Research ›› 2019, Vol. 7 ›› Issue (1) : 5

PDF
Bone Research ›› 2019, Vol. 7 ›› Issue (1) : 5 DOI: 10.1038/s41413-018-0041-8
Article
research-article

Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12

Author information +
History +
PDF

Abstract

Increasing evidences show that aberrant subchondral bone remodeling plays an important role in the development of osteoarthritis (OA). However, how subchondral bone formation is activated and the mechanism by which increased subchondral bone turnover promotes cartilage degeneration during OA remains unclear. Here, we show that the mechanistic target of rapamycin complex 1 (mTORC1) pathway is activated in subchondral bone preosteoblasts (Osterix+) from OA patients and mice. Constitutive activation of mTORC1 in preosteoblasts by deletion of the mTORC1 upstream inhibitor, tuberous sclerosis 1, induced aberrant subchondral bone formation, and sclerosis with little-to-no effects on articular cartilage integrity, but accelerated post-traumatic OA development in mice. In contrast, inhibition of mTORC1 in preosteoblasts by disruption of Raptor (mTORC1-specific component) reduced subchondral bone formation and cartilage degeneration, and attenuated post-traumatic OA in mice. Mechanistically, mTORC1 activation promoted preosteoblast expansion and Cxcl12 secretion, which induced subchondral bone remodeling and cartilage degeneration during OA. A Cxcl12-neutralizing antibody reduced cartilage degeneration and alleviated OA in mice. Altogether, these findings demonstrate that mTORC1 activation in subchondral preosteoblasts is not sufficient to induce OA, but can induce aberrant subchondral bone formation and secrete of Cxcl12 to accelerate disease progression following surgical destabilization of the joint. Pharmaceutical inhibition of the pathway presents a promising therapeutic approach for OA treatment.

Cite this article

Download citation ▾
Chuangxin Lin, Liangliang Liu, Chun Zeng, Zhong-Kai Cui, Yuhui Chen, Pinling Lai, Hong Wang, Yan Shao, Haiyan Zhang, Rongkai Zhang, Chang Zhao, Hang Fang, Daozhang Cai, Xiaochun Bai. Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12. Bone Research, 2019, 7(1): 5 DOI:10.1038/s41413-018-0041-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhen G. et al.. Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med., 2013, 19: 704-712.

[2]

Hootman JM, Helmick CG. Projections of US prevalence of arthritis and associated activity limitations. Arthritis Rheum., 2006, 54: 226-229.

[3]

Pereira D. et al.. The effect of osteoarthritis definition on prevalence and incidence estimates: a systematic review. Osteoarthr. Cartil., 2011, 19: 1270-1285.

[4]

Carr AJ. et al.. Knee replacement. Lancet, 2012, 379: 1331-1340.

[5]

Robinson WH. et al.. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol., 2016, 12: 580-592.

[6]

Chapman K, Valdes AM. Genetic factors in OA pathogenesis. Bone, 2012, 51: 258-264.

[7]

Chu CR. et al.. Mechanically stimulated biomarkers signal cartilage changes over 5 years consistent with disease progression in medial knee osteoarthritis patients. J. Orthop. Res., 2018, 36: 891-897.

[8]

Shane AA, Loeser RF. Why is osteoarthritis an age-related disease?. Best. Pract. Res. Clin. Rheumatol., 2010, 24: 15-26.

[9]

Lohmander LS, Gerhardsson DVM, Rollof J, Nilsson PM, Engstrom G. Incidence of severe knee and hip osteoarthritis in relation to different measures of body mass: a population-based prospective cohort study. Ann. Rheum. Dis., 2009, 68: 490-496.

[10]

Chen Y. et al.. Abnormal subchondral bone remodeling and its association with articular cartilage degradation in knees of type 2 diabetes patients. Bone Res., 2017, 5: 17034.

[11]

Ilas DC, Churchman SM, McGonagle D, Jones E. Targeting subchondral bone mesenchymal stem cell activities for intrinsic joint repair in osteoarthritis. Future Sci. OA, 2017, 3: O228.

[12]

Goldring SR. Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis. Ther. Adv. Musculoskelet. Dis., 2012, 4: 249-258.

[13]

Lories RJ, Luyten FP. The bone–cartilage unit in osteoarthritis. Nat. Rev. Rheumatol., 2011, 7: 43-49.

[14]

Cinque ME, Dornan GJ, Chahla J, Moatshe G, LaPrade RF. High rates of osteoarthritis develop after anterior cruciate ligament surgery: an analysis of 4108 patients. Am. J. Sports Med., 2018, 46: 2011-2019.

[15]

Thijssen E, van Caam A, van der Kraan PM. Obesity and osteoarthritis, more than just wear and tear: pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis. Rheumatology (Oxf.), 2015, 54: 588-600.

[16]

de Zwart AH. et al.. Factors associated with upper leg muscle strength in knee osteoarthritis: a scoping review. J. Rehabil. Med., 2018, 50: 140-150.

[17]

Tanamas SK. et al.. Bone marrow lesions in people with knee osteoarthritis predict progression of disease and joint replacement: a longitudinal study. Rheumatology (Oxf.), 2010, 49: 2413-2419.

[18]

Loewith R, Hall MN. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics, 2011, 189: 1177-1201.

[19]

Reiling JH, Sabatini DM. Stress and mTORture signaling. Oncogene, 2006, 25: 6373-6383.

[20]

Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell, 2006, 124: 471-484.

[21]

Jiang M, Fu X, Yang H, Long F, Chen J. mTORC1 signaling promotes limb bud cell growth and chondrogenesis. J. Cell. Biochem., 2017, 118: 748-753.

[22]

Yan B. et al.. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat. Commun., 2016, 7. 11151

[23]

Zhang H. et al.. mTORC1 activation downregulates FGFR3 and PTH/PTHrP receptor in articular chondrocytes to initiate osteoarthritis. Osteoarthr. Cartil., 2017, 25: 952-963.

[24]

Zhang Y. et al.. mTORC1 Inhibits NF-kappaB/NFATc1 Signaling and prevents osteoclast precursor differentiation, in vitro and in mice. J. Bone Miner. Res., 2017, 32: 1829-1840.

[25]

Huang B. et al.. mTORC1 prevents preosteoblast differentiation through the Notch signaling pathway. PLoS Genet., 2015, 11: e1005426.

[26]

Dai Q. et al.. mTOR/Raptor signaling is critical for skeletogenesis in mice through the regulation of Runx2 expression. Cell Death Differ., 2017, 24: 1886-1899.

[27]

Jo DY, Rafii S, Hamada T, Moore MA. Chemotaxis of primitive hematopoietic cells in response to stromal cell-derived factor-1. J. Clin. Invest., 2000, 105: 101-111.

[28]

Wei L. et al.. Stimulation of chondrocyte hypertrophy by chemokine stromal cell-derived factor 1 in the chondro-osseous junction during endochondral bone formation. Dev. Biol., 2010, 341: 236-245.

[29]

Kanbe K, Takagishi K, Chen Q. Stimulation of matrix metalloprotease 3 release from human chondrocytes by the interaction of stromal cell-derived factor 1 and CXC chemokine receptor 4. Arthritis Rheum., 2002, 46: 130-137.

[30]

Wei F. et al.. Attenuation of osteoarthritis via blockade of the SDF-1/CXCR4 signaling pathway. Arthritis Res. Ther., 2012, 14: R177.

[31]

Tchetina EV. et al.. Differences in mammalian target of rapamycin gene expression in the peripheral blood and articular cartilages of osteoarthritic patients and disease activity. Arthritis, 2013, 2013: 1-14.

[32]

Zhang Y. et al.. Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis. Ann. Rheum. Dis., 2015, 74: 1432-1440.

[33]

Lorenz J, Grassel S. Experimental osteoarthritis models in mice. Methods Mol. Biol., 2014, 1194: 401-419.

[34]

Chen Y. et al.. Bone turnover and articular cartilage differences localized to subchondral cysts in knees with advanced osteoarthritis. Osteoarthr. Cartil., 2015, 23: 2174-2183.

[35]

Zhen G, Cao X. Targeting TGFbeta signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol. Sci., 2014, 35: 227-236.

[36]

Saito T. et al.. Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development. Nat. Med., 2010, 16: 678-686.

[37]

Hugle T, Geurts J. What drives osteoarthritis?—Synovial versus subchondral bone pathology. Rheumatology (Oxf.), 2017, 56: 1461-1471

[38]

Zuo Q. et al.. Characterization of nano-structural and nano-mechanical properties of osteoarthritic subchondral bone. BMC Musculoskelet. Disord., 2016, 17. 367

[39]

Reece DS, Thote T, Lin A, Willett NJ, Guldberg RE. Contrast enhanced muCT imaging of early articular changes in a pre-clinical model of osteoarthritis. Osteoarthr. Cartil., 2018, 26: 118-127.

[40]

Li G. et al.. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res. Ther., 2013, 15: 223.

[41]

Burr DB, Radin EL. Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrosis?. Rheum. Dis. Clin. N. Am., 2003, 29: 675-685.

[42]

Stein V. et al.. Pattern of joint damage in persons with knee osteoarthritis and concomitant ACL tears. Rheumatol. Int., 2012, 32: 1197-1208.

[43]

Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. NY Acad. Sci., 2010, 1192: 230-237.

[44]

Fang F. et al.. Neural crest-specific TSC1 deletion in mice leads to sclerotic craniofacial bone lesion. J. Bone Miner. Res., 2015, 30: 1195-1205.

[45]

Thomas NP. et al.. Attenuation of cartilage pathogenesis in post-traumatic osteoarthritis (PTOA) in mice by blocking the stromal derived factor 1 receptor (CXCR4) with the specific inhibitor, AMD3100. J. Orthop. Res., 2015, 33: 1071-1078.

[46]

Dong Y. et al.. Inhibition of SDF-1α/CXCR4 signalling in subchondral bone attenuates post-traumatic osteoarthritis. Int. J. Mol. Sci., 2016, 17: 943.

[47]

Wang SX, Laverty S, Dumitriu M, Plaas A, Grynpas MD. The effects of glucosamine hydrochloride on subchondral bone changes in an animal model of osteoarthritis. Arthritis Rheum., 2007, 56: 1537-1548.

[48]

Glasson SS, Blanchet TJ, Morris EA. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr. Cartil., 2007, 15: 1061-1069.

[49]

Pritzker KP. et al.. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr. Cartil., 2006, 14: 13-29.

[50]

Chen J. et al.. Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice. PLoS ONE, 2014, 9: e85161.

[51]

Rodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development, 2006, 133: 3231-3244.

[52]

Bucan, M. in Brenner's Encyclopedia of Genetics 2nd edn (eds Maloy, S. & Hughes, K.) 486–488 (Academic Press, San Diego, 2013).

[53]

Glasson SS, Chambers MG, Van Den Berg WB, Little CB. The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr Cartil., 2010, 18: S17-S23.

[54]

Hou C. et al.. The role of microRNA-381 in chondrogenesis and interleukin-1-beta induced chondrocyte responses. Cell. Physiol. Biochem., 2015, 36: 1753-1766.

[55]

Tropel P. et al.. Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp. Cell Res., 2004, 295: 395-406.

[56]

Bellows CG, Aubin JE. Determination of numbers of osteoprogenitors present in isolated fetal rat calvaria cells in vitro. Dev. Biol., 1989, 133: 8-13.

Funding

National Natural Science Foundation of China(Grant No 81625015,81530070)and the Program for Changjiang Scholars and Innovative Research Team in University (IRT_16R37).

National Natural Science Foundation of China(Grant No 81601945).

National Natural Science Foundation of China(Grant No 81371990).

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/