PDF
Abstract
Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-β and BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-β and BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-β and BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.
Deciphering bone-building signals
Two families of signaling proteins represent valuable targets for human diseases associated with defects in bone and cartilage development. Yi-Ping Li and colleagues at the University of Alabama at Birmingham have reviewed how pathways activated by transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) help coordinate the development and maintenance of the skeletal system. TGF-β and BMP can promote both the construction and disassembly of bone and cartilage, and modulate the behavior of cells that form these tissues. The outcomes resulting from pathway activation are shaped by interactions between further signaling proteins and other cellular pathways, and diverse other regulatory mechanisms. Treatments targeting these activated pathways have already shown promise for repairing fractures and other bone damage, and evidence suggests that patients with osteoarthritis and other skeletal disorders may benefit from similar approaches.
Cite this article
Download citation ▾
Mengrui Wu, Guiqian Chen, Yi-Ping Li.
TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease.
Bone Research, 2016, 4(1): 16009 DOI:10.1038/boneres.2016.9
| [1] |
Guo X, Wang XF. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res, 2009, 19: 71-88
|
| [2] |
Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol, 2005, 21: 659-693
|
| [3] |
Bernabeu C, Lopez-Novoa JM, Quintanilla M. The emerging role of TGF-beta superfamily coreceptors in cancer. Biochim Biophys Acta, 2009, 1792: 954-973
|
| [4] |
Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci, 2012, 8: 272-288
|
| [5] |
Berendsen AD, Olsen BR. Bone development. Bone, 2015, 80: 14-18
|
| [6] |
Long F, Ornitz DM. Development of the endochondral skeleton. Cold Spring Harb Perspect Biol, 2013, 5: a008334
|
| [7] |
Crane JL, Xian L, Cao X. Role of TGF-β signaling in coupling bone remodeling. Methods Mol Biol, 2016, 1344: 287-300
|
| [8] |
Tang Y, Wu X, Lei W et al TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med, 2009, 15: 757-765
|
| [9] |
Li YP, Chen W, Stashenko P. Molecular cloning and characterization of a putative novel human osteoclast-specific 116-kDa vacuolar proton pump subunit. Biochem Biophys Res Commun, 1996, 218: 813-821
|
| [10] |
Li YP, Chen W, Liang Y et al Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet, 1999, 23: 447-451
|
| [11] |
Chen W, Yang S, Abe Y et al Novel pycnodysostosis mouse model uncovers cathepsin K function as a potential regulator of osteoclast apoptosis and senescence. Hum Mol Genet, 2007, 16: 410-423
|
| [12] |
Li YP, Alexander M, Wucherpfenni AL et al Cloning and complete coding sequence of a novel human cathepsin expressed in giant cells of osteoclastomas. J Bone Miner Res, 1995, 8: 1197-1202
|
| [13] |
Razzouk S, Sarkis R. BMP-2: biological challenges to its clinical use. N Y State Dent J, 2012, 78: 37-39
|
| [14] |
Kanakaris NK, Giannoudis PV. Clinical applications of bone morphogenetic proteins: current evidence. J Surg Orthop Adv, 2008, 17: 133-146
|
| [15] |
Zhang W, Zhou M, Liu C et al A novel mutation of SMAD3 identified in a Chinese family with aneurysms-osteoarthritis syndrome. BioMed Res Int, 2015, 2015: 1-6
|
| [16] |
Dodd AW, Syddall CM, Loughlin J. A rare variant in the osteoarthritis-associated locus GDF5 is functional and reveals a site that can be manipulated to modulate GDF5 expression. Eur J Hum Genet, 2013, 21: 517-521
|
| [17] |
van der Kraan PM, Goumans MJ, Blaney Davidson E et al Age-dependent alteration of TGF-β signalling in osteoarthritis. Cell Tissue Res, 2012, 347: 257-265
|
| [18] |
Hayashi M, Muneta T, Ju YJ et al Weekly intra-articular injections of bone morphogenetic protein-7 inhibits osteoarthritis progression. Arthritis Res Ther, 2008, 10: R118
|
| [19] |
Blaney Davidson EN, van der Kraan PM, van den Berg WB. TGF-beta and osteoarthritis. Osteoarthritis Cartilage, 2007, 15: 597-604
|
| [20] |
van den Bosch MH, Blom AB, van Lent PL et al Canonical Wnt signaling skews TGF-β signaling in chondrocytes towards signaling via ALK1 and Smad 1/5/8. Cell Signal, 2014, 26: 951-958
|
| [21] |
Sakou T, Onishi T, Yamamoto T et al Localization of Smads, the TGF-β family intracellular signaling components during endochondral ossification. J Bone Miner Res, 1999, 14: 1145-1152
|
| [22] |
Serra R, Karaplis A, Sohn P. Parathyroid hormone-related peptide (PTHrP)-dependent and -independent effects of transforming growth factor beta (TGF-beta) on endochondral bone formation. J Cell Biol, 1999, 145: 783-794
|
| [23] |
Li TF, O'Keefe RJ, Chen D. TGF-beta signaling in chondrocytes. Front Biosci, 2005, 10: 681-688
|
| [24] |
Sanford LP, Ormsby I, Gittenberger-de Groot AC et al TGF beta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development, 1997, 124: 2659-2670
|
| [25] |
Kulkarni AB, Huh CG, Becker D et al Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA, 1993, 90: 770-774
|
| [26] |
Kaartinen V, Voncken JW, Shuler C et al Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet, 1995, 11: 415-421
|
| [27] |
Proetzel G, Pawlowski SA, Wiles MV et al Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet, 1995, 11: 409-414
|
| [28] |
Crane JL, Cao X. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling. J Clin Invest, 2014, 124: 466-472
|
| [29] |
Karsdal MA, Larsen L, Engsig MT et al Matrix metalloproteinase-dependent activation of latent transforming growth factor-beta controls the conversion of osteoblasts into osteocytes by blocking osteoblast apoptosis. J Biol Chem, 2002, 277: 44061-44067
|
| [30] |
Matsunobu T, Torigoe K, Ishikawa M et al Critical roles of the TGF-beta type I receptor ALK5 in perichondrial formation and function, cartilage integrity, and osteoblast differentiation during growth plate development. Dev Biol, 2009, 332: 325-338
|
| [31] |
Karst M, Gorny G, Galvin RJ et al Roles of stromal cell RANKL, OPG, and M-CSF expression in biphasic TGF-beta regulation of osteoclast differentiation. J Cell Physiol, 2004, 200: 99-106
|
| [32] |
Yasui T, Kadono Y, Nakamura M et al Regulation of RANKL-induced osteoclastogenesis by TGF-β through molecular interaction between Smad3 and Traf6. J Bone Miner Res, 2011, 26: 1447-1456
|
| [33] |
Leah E. Osteoarthritis: TGF-β overload at bones of cartilage degeneration. Nat Rev Rheumatol, 2013, 9: 382
|
| [34] |
Serra R, Johnson M, Filvaroff EH et al Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J Cell Biol, 1997, 139: 541-552
|
| [35] |
Bush JR, Beier F. TGF-β and osteoarthritis--the good and the bad. Nat Med, 2013, 19: 667-669
|
| [36] |
van der Kraan PM. Age-related alterations in TGF beta signaling as a causal factor of cartilage degeneration in osteoarthritis. Biomed Mater Eng, 2014, 24 1 Suppl 75-80
|
| [37] |
Zhen G, Wen C, Jia X et al Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med, 2013, 19: 704-712
|
| [38] |
Xu X, Zheng L, Bian Q et al Aberrant activation of TGF-β in subchondral bone at the onset of rheumatoid arthritis joint destruction. J Bone Miner Res, 2015, 30: 2033-2043
|
| [39] |
Dabovic B, Levasseur R, Zambuto L et al Osteopetrosis-like phenotype in latent TGF-beta binding protein 3 deficient mice. Bone, 2005, 37: 25-31
|
| [40] |
Koli K, Ryynänen MJ, Keski-Oja J. Latent TGF-beta binding proteins (LTBPs)-1 and -3 coordinate proliferation and osteogenic differentiation of human mesenchymal stem cells. Bone, 2008, 43: 679-688
|
| [41] |
Nikitovic D, Aggelidakis J, Young MF et al The biology of small leucine-rich proteoglycans in bone pathophysiology. J Biol Chem, 2012, 287: 33926-33933
|
| [42] |
Grafe I, Yang T, Alexander S et al Excessive transforming growth factor-β signaling is a common mechanism in osteogenesis imperfecta. Nat Med, 2014, 20: 670-675
|
| [43] |
Qiu T, Wu X, Zhang F et al TGF-beta type II receptor phosphorylates PTH receptor to integrate bone remodelling signalling. Nat Cell Biol, 2010, 12: 224-234
|
| [44] |
Longobardi L, Li T, Myers TJ et al TGF-β type II receptor/MCP-5 axis: at the crossroad between joint and growth plate development. Dev Cell, 2012, 23: 71-81
|
| [45] |
Spagnoli A, O'Rear L, Chandler RL et al TGF-beta signaling is essential for joint morphogenesis. J Cell Biol, 2007, 177: 1105-1117
|
| [46] |
Seo HS, Serra R. Deletion of Tgfbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints. Dev Biol, 2007, 310: 304-316
|
| [47] |
Baffi MO, Slattery E, Sohn P et al Conditional deletion of the TGF-beta type II receptor in Col2a expressing cells results in defects in the axial skeleton without alterations in chondrocyte differentiation or embryonic development of long bones. Dev Biol, 2004, 276: 124-142
|
| [48] |
Kang JS, Alliston T, Delston R et al Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. EMBO J, 2005, 24: 2543-2555
|
| [49] |
Alliston T, Choy L, Ducy P et al TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J, 2001, 20: 2254-2272
|
| [50] |
Hjelmeland AB, Schilling SH, Guo X et al Loss of Smad3-mediated negative regulation of Runx2 activity leads to an alteration in cell fate determination. Mol Cell Biol, 2005, 25: 9460-9468
|
| [51] |
Li J, Tsuji K, Komori T et al Smad2 overexpression enhances Smad4 gene expression and suppresses CBFA1 gene expression in osteoblastic osteosarcoma ROS17/2.8 cells and primary rat calvaria cells. J Biol Chem, 1998, 273: 31009-31015
|
| [52] |
Borton AJ, Frederick JP, Datto MB et al The loss of Smad3 results in a lower rate of bone formation and osteopenia through dysregulation of osteoblast differentiation and apoptosis. J Bone Miner Res, 2001, 16: 1754-1764
|
| [53] |
Kaji H, Naito J, Sowa H et al Smad3 differently affects osteoblast differentiation depending upon its differentiation stage. Horm Metab Res, 2006, 38: 740-745
|
| [54] |
Ferguson CM, Schwarz EM, Reynolds PR et al Smad2 and 3 mediate transforming growth factor-beta1-induced inhibition of chondrocyte maturation. Endocrinology, 2000, 141: 4728-4735
|
| [55] |
Alvarez J, Serra R. Unique and redundant roles of Smad3 in TGF-beta-mediated regulation of long bone development in organ culture. Dev Dyn, 2004, 230: 685-699
|
| [56] |
Li TF, Darowish M, Zuscik MJ et al Smad3-deficient chondrocytes have enhanced BMP signaling and accelerated differentiation. J Bone Miner Res, 2006, 21: 4-16
|
| [57] |
Ashcroft GS, Yang X, Glick AB et al Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol, 1999, 1: 260-266
|
| [58] |
Chen CG, Thuillier D, Chin EN et al Chondrocyte-intrinsic Smad3 represses Runx2-inducible matrix metalloproteinase 13 expression to maintain articular cartilage and prevent osteoarthritis. Arthritis Rheum, 2012, 64: 3278-3289
|
| [59] |
Yang X, Chen L, Xu X et al TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol, 2001, 153: 35-46
|
| [60] |
van de Laar IM, Oldenburg RA, Pals G et al Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet, 2011, 43: 121-126
|
| [61] |
van de Laar IM, van der Linde D, Oei EH et al Phenotypic spectrum of the SMAD3-related aneurysms-osteoarthritis syndrome. J Med Genet, 2012, 49: 47-57
|
| [62] |
Lee KS, Hong SH, Bae SC. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-β and bone morphogenetic protein. Oncogene, 2002, 21: 7156-7163
|
| [63] |
Lai CF, Cheng SL. Signal transductions induced by bone morphogenetic protein-2 and transforming growth factor-beta in normal human osteoblastic cells. J Biol Chem, 2002, 277: 15514-15522
|
| [64] |
Luu HH, Song WX, Luo X et al Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res, 2007, 25: 665-677
|
| [65] |
Abula K, Muneta T, Miyatake K et al Elimination of BMP7 from the developing limb mesenchyme leads to articular cartilage degeneration and synovial inflammation with increased age. FEBS Lett, 2015, 589: 1240-1248
|
| [66] |
Huang Z, Ren PG, Ma T et al Modulating osteogenesis of mesenchymal stem cells by modifying growth factor availability. Cytokine, 2010, 51: 305-310
|
| [67] |
Noël D, Gazit D, Bouquet C et al Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells, 2004, 22: 74-85
|
| [68] |
Gu K, Zhang L, Jin T et al Identification of potential modifiers of Runx2/Cbfa1 activity in C2C12 cells in response to bone morphogenetic protein-7. Cells Tissues Organs (Print), 2004, 176: 28-40
|
| [69] |
Shen B, Wei A, Whittaker S et al The role of BMP-7 in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in vitro. J Cell Biochem, 2010, 109: 406-416
|
| [70] |
Tsuji K, Cox K, Gamer L et al Conditional deletion of BMP7 from the limb skeleton does not affect bone formation or fracture repair. J Orthop Res, 2010, 28: 384-389
|
| [71] |
Kokabu S, Gamer L, Cox K et al BMP3 suppresses osteoblast differentiation of bone marrow stromal cells via interaction with Acvr2b. Mol Endocrinol, 2012, 26: 87-94
|
| [72] |
Daluiski A, Engstrand T, Bahamonde ME et al Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet, 2001, 27: 84-88
|
| [73] |
Gamer LW, Cox K, Carlo JM et al Overexpression of BMP3 in the developing skeleton alters endochondral bone formation resulting in spontaneous rib fractures. Dev Dyn, 2009, 238: 2374-2381
|
| [74] |
Chan CK, Seo EY, Chen JY et al Identification and specification of the mouse skeletal stem cell. Cell, 2015, 160: 285-298
|
| [75] |
Worthley DL, Churchill M, Compton JT et al Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell, 2015, 160: 269-284
|
| [76] |
Minina E, Kreschel C, Naski MC et al Interaction of FGF, IHH/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell, 2002, 3: 439-449
|
| [77] |
Kobayashi T, Lyons KM, McMahon AP et al BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. Proc Natl Acad Sci USA, 2005, 102: 18023-18027
|
| [78] |
Komatsu Y, Kaartinen V, Mishina Y. Cell cycle arrest in node cells governs ciliogenesis at the node to break left-right symmetry. Development, 2011, 138: 3915-3920
|
| [79] |
Haas AR, Tuan RS. Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: II. Stimulation by bone morphogenetic protein-2 requires modulation of N-cadherin expression and function. Differentiation, 1999, 64: 77-89
|
| [80] |
Luo G, Hofmann C, Bronckers AL et al BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev, 1995, 9: 2808-2820
|
| [81] |
Selever J, Liu W, Lu MF et al Bmp4 in limb bud mesoderm regulates digit pattern by controlling AER development. Dev Biol, 2004, 276: 268-279
|
| [82] |
Bandyopadhyay A, Tsuji K, Cox K et al Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet, 2006, 2: e216
|
| [83] |
Tsuji K, Bandyopadhyay A, Harfe BD et al BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet, 2006, 38: 1424-1429
|
| [84] |
Tsuji K, Cox K, Bandyopadhyay A et al BMP4 is dispensable for skeletogenesis and fracture-healing in the limb. J Bone Joint Surg Am, 2008, 90 Suppl 1 14-18
|
| [85] |
Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol, 2012, 13: 27-38
|
| [86] |
Shu B, Zhang M, Xie R et al BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. J Cell Sci, 2011, 124 Pt 20 3428-3440
|
| [87] |
Sekiya I, Tang T, Hayashi M et al Periodic knee injections of BMP-7 delay cartilage degeneration induced by excessive running in rats. J Orthop Res, 2009, 27: 1088-1092
|
| [88] |
Takahashi T, Muneta T, Tsuji K et al BMP-7 inhibits cartilage degeneration through suppression of inflammation in rat zymosan-induced arthritis. Cell Tissue Res, 2011, 344: 321-332
|
| [89] |
Rountree RB, Schoor M, Chen H et al BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol, 2004, 2: e355
|
| [90] |
Medici D, Shore EM, Lounev VY et al Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med, 2010, 16: 1400-1406
|
| [91] |
Shore EM, Xu M, Feldman GJ et al A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet, 2006, 38: 525-527
|
| [92] |
Shen Q, Little SC, Xu M et al The fibrodysplasia ossificans progressiva R206H ACVR1 mutation activates BMP-independent chondrogenesis and zebrafish embryo ventralization. J Clin Invest, 2009, 119: 3462-3472
|
| [93] |
van Dinther M, Visser N, de Gorter DJ et al ALK2 R206H mutation linked to fibrodysplasia ossificans progressiva confers constitutive activity to the BMP type I receptor and sensitizes mesenchymal cells to BMP-induced osteoblast differentiation and bone formation. J Bone Miner Res, 2010, 25: 1208-1215
|
| [94] |
Yang C, Yang L, Wan M et al Generation of a mouse model with expression of bone morphogenetic protein type II receptor lacking the cytoplasmic domain in osteoblasts. Ann N Y Acad Sci, 2010, 1192: 286-291
|
| [95] |
Mishina Y, Starbuck MW, Gentile MA et al Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling. J Biol Chem, 2004, 279: 27560-27566
|
| [96] |
Kamiya N, Kobayashi T, Mochida Y et al Wnt inhibitors Dkk1 and Sost are downstream targets of BMP signaling through the type IA receptor (BMPRIA) in osteoblasts. J Bone Miner Res, 2010, 25: 200-210
|
| [97] |
Kamiya N, Ye L, Kobayashi T et al Disruption of BMP signaling in osteoblasts through type IA receptor (BMPRIA) increases bone mass. J Bone Miner Res, 2008, 23: 2007-2017
|
| [98] |
Kamiya N, Ye L, Kobayashi T et al BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development, 2008, 135: 3801-3811
|
| [99] |
Dewulf N, Verschueren K, Lonnoy O et al Distinct spatial and temporal expression patterns of two type I receptors for bone morphogenetic proteins during mouse embryogenesis. Endocrinology, 1995, 136: 2652-2663
|
| [100] |
Francis PH, Richardson MK, Brickell PM et al Bone morphogenetic proteins and a signalling pathway that controls patterning in the developing chick limb. Development, 1994, 120: 209-218
|
| [101] |
Kawakami Y, Ishikawa T, Shimabara M et al BMP signaling during bone pattern determination in the developing limb. Development, 1996, 122: 3557-3566
|
| [102] |
Yamaji N, Celeste AJ, Thies RS et al A mammalian serine/threonine kinase receptor specifically binds BMP-2 and BMP-4. Biochem Biophys Res Commun, 1994, 205: 1944-1951
|
| [103] |
Zou H, Wieser R, Massagué J et al Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev, 1997, 11: 2191-2203
|
| [104] |
Yoon BS, Ovchinnikov DA, Yoshii I et al Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci USA, 2005, 102: 5062-5067
|
| [105] |
Rigueur D, Brugger S, Anbarchian T et al The type I BMP receptor ACVR1/ALK2 is required for chondrogenesis during development. J Bone Miner Res, 2015, 30: 733-741
|
| [106] |
Enomoto-Iwamoto M, Iwamoto M, Mukudai Y et al Bone morphogenetic protein signaling is required for maintenance of differentiated phenotype, control of proliferation, and hypertrophy in chondrocytes. J Cell Biol, 1998, 140: 409-418
|
| [107] |
Fujii M, Takeda K, Imamura T et al Roles of bone morphogenetic protein type I receptors and Smad proteins in osteoblast and chondroblast differentiation. Mol Biol Cell, 1999, 10: 3801-3813
|
| [108] |
Zhang D, Schwarz EM, Rosier RN et al ALK2 functions as a BMP type I receptor and induces Indian hedgehog in chondrocytes during skeletal development. J Bone Miner Res, 2003, 18: 1593-1604
|
| [109] |
Yi SE, Daluiski A, Pederson R et al The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development, 2000, 127: 621-630
|
| [110] |
Yoon BS, Pogue R, Ovchinnikov DA et al BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development, 2006, 133: 4667-4678
|
| [111] |
Afzal F, Pratap J, Ito K et al Smad function and intranuclear targeting share a Runx2 motif required for osteogenic lineage induction and BMP2 responsive transcription. J Cell Physiol, 2005, 204: 63-72
|
| [112] |
Franceschi RT, Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem, 2003, 88: 446-454
|
| [113] |
Wang M, Jin H, Tang D et al Smad1 plays an essential role in bone development and postnatal bone formation. Osteoarthritis Cartilage, 2011, 19: 751-762
|
| [114] |
Keller B, Yang T, Chen Y et al Interaction of TGFβ and BMP signaling pathways during chondrogenesis. PLoS One, 2011, 6: e16421
|
| [115] |
Retting KN, Song B, Yoon BS et al BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development, 2009, 136: 1093-1104
|
| [116] |
Matsumoto Y, Otsuka F, Hino J et al Bone morphogenetic protein-3b (BMP-3b) inhibits osteoblast differentiation via Smad2/3 pathway by counteracting Smad1/5/8 signaling. Mol Cell Endocrinol, 2012, 350: 78-86
|
| [117] |
Ishibashi N, Sasaki Y, Asakura Y. Myhre syndrome: a rare craniofacial disorder. Cranio, 2014, 32: 300-306
|
| [118] |
Le Goff C, Mahaut C, Abhyankar A et al Mutations at a single codon in Mad homology 2 domain of SMAD4 cause Myhre syndrome. Nat Genet, 2012, 44: 85-88
|
| [119] |
Nojima J, Kanomata K, Takada Y et al Dual roles of smad proteins in the conversion from myoblasts to osteoblastic cells by bone morphogenetic proteins. J Biol Chem, 2010, 285: 15577-15586
|
| [120] |
Zhang J, Tan X, Li W et al Smad4 is required for the normal organization of the cartilage growth plate. Dev Biol, 2005, 284: 311-322
|
| [121] |
Tan X, Weng T, Zhang J et al Smad4 is required for maintaining normal murine postnatal bone homeostasis. J Cell Sci, 2007, 120: 2162-2170
|
| [122] |
Salazar VS, Zarkadis N, Huang L et al Embryonic ablation of osteoblast Smad4 interrupts matrix synthesis in response to canonical Wnt signaling and causes an osteogenesis-imperfecta-like phenotype. J Cell Sci, 2013, 126 Pt 21 4974-4984
|
| [123] |
Salazar VS, Zarkadis N, Huang L et al Postnatal ablation of osteoblast Smad4 enhances proliferative responses to canonical Wnt signaling through interactions with β-catenin. J Cell Sci, 2013, 126 Pt 24 5598-5609
|
| [124] |
Billings PC, Fiori JL, Bentwood JL et al Dysregulated BMP signaling and enhanced osteogenic differentiation of connective tissue progenitor cells from patients with fibrodysplasia ossificans progressiva (FOP). J Bone Miner Res, 2008, 23: 305-313
|
| [125] |
Gunnell LM, Jonason JH, Loiselle AE et al TAK1 regulates cartilage and joint development via the MAPK and BMP signaling pathways. J Bone Miner Res, 2010, 25: 1784-1797
|
| [126] |
Gao L, Sheu TJ, Dong Y et al TAK1 regulates SOX9 expression in chondrocytes and is essential for postnatal development of the growth plate and articular cartilages. J Cell Sci, 2013, 126 Pt 24 5704-5713
|
| [127] |
Greenblatt MB, Shim JH, Zou W et al The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest, 2010, 120: 2457-2473
|
| [128] |
Ge C, Yang Q, Zhao G et al Interactions between extracellular signal-regulated kinase 1/2 and p38 MAP kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity. J Bone Miner Res, 2012, 27: 538-551
|
| [129] |
Ulsamer A, Ortuño MJ, Ruiz S et al BMP-2 induces Osterix expression through up-regulation of Dlx5 and its phosphorylation by p38. J Biol Chem, 2008, 283: 3816-3826
|
| [130] |
Ortuno MJ, Ruiz-Gaspa S, Rodriguez-Carballo E et al p38 Regulates Expression of Osteoblast-specific Genes by Phosphorylation of Osterix. J Biol Chem, 2010, 285: 31985-31994
|
| [131] |
Celil AB, Hollinger JO, Campbell PG. Osx transcriptional regulation is mediated by additional pathways to BMP2/Smad signaling. J Cell Biochem, 2005, 95: 518-528
|
| [132] |
Choi YH, Gu YM, Oh JW et al Osterix is regulated by Erk1/2 during osteoblast differentiation. Biochem Biophys Res Commun, 2011, 415: 472-478
|
| [133] |
Gazzerro E, Gangji V, Canalis E. Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts. J Clin Invest, 1998, 102: 2106-2114
|
| [134] |
Abe E, Yamamoto M, Taguchi Y et al Essential requirement of BMPs-2/4 for both osteoblast and osteoclast formation in murine bone marrow cultures from adult mice: antagonism by noggin. J Bone Miner Res, 2000, 15: 663-673
|
| [135] |
Wan DC, Pomerantz JH, Brunet LJ et al Noggin suppression enhances in vitro osteogenesis and accelerates in vivo bone formation. J Biol Chem, 2007, 282: 26450-26459
|
| [136] |
Glaser DL, Economides AN, Wang L et al In vivo somatic cell gene transfer of an engineered Noggin mutein prevents BMP4-induced heterotopic ossification. J Bone Joint Surg Am, 2003, 85-A: 2332-2342
|
| [137] |
Wang Y, Hong S, Li M et al Noggin resistance contributes to the potent osteogenic capability of BMP9 in mesenchymal stem cells. J Orthop Res, 2013, 31: 1796-1803
|
| [138] |
Gong Y, Krakow D, Marcelino J et al Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. Nat Genet, 1999, 21: 302-304
|
| [139] |
Wijgerde M, Karp S, McMahon J et al Noggin antagonism of BMP4 signaling controls development of the axial skeleton in the mouse. Dev Biol, 2005, 286: 149-157
|
| [140] |
Stafford DA, Brunet LJ, Khokha MK et al Cooperative activity of noggin and gremlin 1 in axial skeleton development. Development, 2011, 138: 1005-1014
|
| [141] |
Stafford DA, Monica SD, Harland RM. Follistatin interacts with Noggin in the development of the axial skeleton. Mech Dev, 2014, 131: 78-85
|
| [142] |
Devlin RD, Du Z, Pereira RC et al Skeletal overexpression of noggin results in osteopenia and reduced bone formation. Endocrinology, 2003, 144: 1972-1978
|
| [143] |
Wu XB, Li Y, Schneider A et al Impaired osteoblastic differentiation, reduced bone formation, and severe osteoporosis in noggin-overexpressing mice. J Clin Invest, 2003, 112: 924-934
|
| [144] |
Pathi S, Rutenberg JB, Johnson RL et al Interaction of IHH and BMP/Noggin signaling during cartilage differentiation. Dev Biol, 1999, 209: 239-253
|
| [145] |
Warren SM, Brunet LJ, Harland RM et al The BMP antagonist noggin regulates cranial suture fusion. Nature, 2003, 422: 625-629
|
| [146] |
Zehentner BK, Haussmann A, Burtscher H. The bone morphogenetic protein antagonist Noggin is regulated by Sox9 during endochondral differentiation. Dev Growth Differ, 2002, 44: 1-9
|
| [147] |
Kalajzic I, Kalajzic Z, Hurley MM et al Stage specific inhibition of osteoblast lineage differentiation by FGF2 and noggin. J Cell Biochem, 2003, 88: 1168-1176
|
| [148] |
Reinhold MI, Abe M, Kapadia RM et al FGF18 represses noggin expression and is induced by calcineurin. J Biol Chem, 2004, 279: 38209-38219
|
| [149] |
Nakayama N, Han CE, Scully S et al A novel chordin-like protein inhibitor for bone morphogenetic proteins expressed preferentially in mesenchymal cell lineages. Dev Biol, 2001, 232: 372-387
|
| [150] |
Fisher S, Halpern ME. Patterning the zebrafish axial skeleton requires early chordin function. Nat Genet, 1999, 23: 442-446
|
| [151] |
Oren A, Toporik A, Biton S et al hCHL2, a novel chordin-related gene, displays differential expression and complex alternative splicing in human tissues and during myoblast and osteoblast maturation. Gene, 2004, 331: 17-31
|
| [152] |
Nakayama N, Han CY, Cam L et al A novel chordin-like BMP inhibitor, CHL2, expressed preferentially in chondrocytes of developing cartilage and osteoarthritic joint cartilage. Development, 2004, 131: 229-240
|
| [153] |
Petryk A, Shimmi O, Jia XH et al Twisted gastrulation and chordin inhibit differentiation and mineralization in MC3T3-E1 osteoblast-like cells. Bone, 2005, 36: 617-626
|
| [154] |
Zhang D, Ferguson CM, O'Keefe RJ et al A role for the BMP antagonist chordin in endochondral ossification. J Bone Miner Res, 2002, 17: 293-300
|
| [155] |
Anderson RM, Lawrence AR, Stottmann RW et al Chordin and noggin promote organizing centers of forebrain development in the mouse. Development, 2002, 129: 4975-4987
|
| [156] |
Yan X, Liu Z, Chen Y. Regulation of TGF-beta signaling by Smad7. Acta Biochim Biophys Sin (Shanghai), 2009, 41: 263-272
|
| [157] |
Moustakas A, Heldin CH. The regulation of TGF signal transduction. Development, 2009, 136: 3699-3714
|
| [158] |
Scharstuhl A, Diepens R, Lensen J et al Adenoviral overexpression of Smad-7 and Smad-6 differentially regulates TGF-beta-mediated chondrocyte proliferation and proteoglycan synthesis. Osteoarthritis Cartilage, 2003, 11: 773-782
|
| [159] |
Valcourt U, Gouttenoire J, Moustakas A et al Functions of transforming growth factor-beta family type I receptors and Smad proteins in the hypertrophic maturation and osteoblastic differentiation of chondrocytes. J Biol Chem, 2002, 277: 33545-33558
|
| [160] |
Li X, Ionescu AM, Schwarz EM et al Smad6 is induced by BMP-2 and modulates chondrocyte differentiation. J Orthop Res, 2003, 21: 908-913
|
| [161] |
Yano M, Inoue Y, Tobimatsu T et al Smad7 inhibits differentiation and mineralization of mouse osteoblastic cells. Endocr J, 2012, 59: 653-662
|
| [162] |
Horiki M, Imamura T, Okamoto M et al Smad6/Smurf1 overexpression in cartilage delays chondrocyte hypertrophy and causes dwarfism with osteopenia. J Cell Biol, 2004, 165: 433-445
|
| [163] |
Shen R, Chen M, Wang YJ et al Smad6 interacts with Runx2 and mediates Smad ubiquitin regulatory factor 1-induced Runx2 degradation. J Biol Chem, 2006, 281: 3569-3576
|
| [164] |
Wang Q, Wei X, Zhu T et al Bone morphogenetic protein 2 activates Smad6 gene transcription through bone-specific transcription factor Runx2. J Biol Chem, 2007, 282: 10742-10748
|
| [165] |
Iwai T, Murai J, Yoshikawa H et al Smad7 Inhibits chondrocyte differentiation at multiple steps during endochondral bone formation and down-regulates p38 MAPK pathways. J Biol Chem, 2008, 283: 27154-27164
|
| [166] |
Wu Q, Wang M, Zuscik MJ et al Regulation of embryonic endochondral ossification by Smurf2. J Orthop Res, 2008, 26: 704-712
|
| [167] |
Yamashita M, Ying SX, Zhang GM et al Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell, 2005, 121: 101-113
|
| [168] |
Qi H, Jin M, Duan Y et al FGFR3 induces degradation of BMP type I receptor to regulate skeletal development. Biochim Biophys Acta, 2014, 1843: 1237-1247
|
| [169] |
Tsubakihara Y, Hikita A, Yamamoto S et al Arkadia enhances BMP signalling through ubiquitylation and degradation of Smad6. J Biochem, 2015, 158: 61-71
|
| [170] |
Shimada K, Suzuki N, Ono Y et al Ubc9 promotes the stability of Smad4 and the nuclear accumulation of Smad1 in osteoblast-like Saos-2 cells. Bone, 2008, 42: 886-893
|
| [171] |
Yukita A, Hosoya A, Ito Y et al Ubc9 negatively regulates BMP-mediated osteoblastic differentiation in cultured cells. Bone, 2012, 50: 1092-1099
|
| [172] |
Herhaus L, Al-Salihi MA, Dingwell KS et al USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling. Open Biol, 2014, 4: 140065
|
| [173] |
Kawamura I, Maeda S, Imamura K et al SnoN suppresses maturation of chondrocytes by mediating signal cross-talk between transforming growth factor-β and bone morphogenetic protein pathways. J Biol Chem, 2012, 287: 29101-29113
|
| [174] |
Usui M, Yoshida Y, Tsuji K et al Tob deficiency superenhances osteoblastic activity after ovariectomy to block estrogen deficiency-induced osteoporosis. Proc Natl Acad Sci USA, 2004, 101: 6653-6658
|
| [175] |
Yoshida Y, Tanaka S, Umemori H et al Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell, 2000, 103: 1085-1097
|
| [176] |
Li Z, Hassan MQ, Volinia S et al A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci USA, 2008, 105: 13906-13911
|
| [177] |
Balderman JAF, Lee HY, Mahoney CE et al Bone morphogenetic protein-2 decreases microRNA-30b and microRNA-30c to promote vascular smooth muscle cell calcification. J Am Heart Assoc, 2012, 1: e003905-e003905
|
| [178] |
Wu T, Zhou H, Hong Y et al miR-30 family members negatively regulate osteoblast differentiation. J Biol Chem, 2012, 287: 7503-7511
|
| [179] |
Gámez B, Rodríguez-Carballo E, Bartrons R et al MicroRNA-322 (miR-322) and its target protein Tob2 modulate Osterix (Osx) mRNA stability. J Biol Chem, 2013, 288: 14264-14275
|
| [180] |
Itoh T, Nozawa Y, Akao Y. MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. J Biol Chem, 2009, 284: 19272-19279
|
| [181] |
Kureel J, Dixit M, Tyagi AM et al miR-542-3p suppresses osteoblast cell proliferation and differentiation, targets BMP-7 signaling and inhibits bone formation. Cell Death Dis, 2014, 5: e1050
|
| [182] |
Zhang JF, Fu WM, He ML et al MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling. RNA Biol, 2011, 8: 829-838
|
| [183] |
Nakamura Y, Inloes JB, Katagiri T et al Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol Cell Biol, 2011, 31: 3019-3028
|
| [184] |
Borgonio Cuadra VM, González-Huerta NC, Romero-Córdoba S et al Altered expression of circulating microRNA in plasma of patients with primary osteoarthritis and in silico analysis of their pathways. PLoS One, 2014, 9: e97690
|
| [185] |
Díaz-Prado S, Cicione C, Muiños-López E et al Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes. BMC Musculoskelet Disord, 2012, 13: 144
|
| [186] |
Tew SR, Vasieva O, Peffers MJ et al Post-transcriptional gene regulation following exposure of osteoarthritic human articular chondrocytes to hyperosmotic conditions. Osteoarthritis Cartilage, 2011, 19: 1036-1046
|
| [187] |
Jin L, Zhao J, Jing W et al Role of miR-146a in human chondrocyte apoptosis in response to mechanical pressure injury in vitro. Int J Mol Med, 2014, 34: 451-463
|
| [188] |
Li J, Huang J, Dai L et al miR-146a, an IL-1β responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4. Arthritis Res Ther, 2012, 14: R75
|
| [189] |
Lin EA, Kong L, Bai XH et al miR-199a, a bone morphogenic protein 2-responsive microRNA, regulates chondrogenesis via direct targeting to Smad1. J Biol Chem, 2009, 284: 11326-11335
|
| [190] |
Furumatsu T, Asahara H. Histone acetylation influences the activity of Sox9-related transcriptional complex. Acta Med Okayama, 2010, 64: 351-357
|
| [191] |
Lee HL, Yu B, Deng P et al Transforming growth factor-β-induced KDM4B promotes chondrogenic differentiation of human mesenchymal. Stem Cells, 2016, 34: 711-719
|
| [192] |
Lee ZH, Kim HJ, Ryoo HM. A novel osteogenic activity of suberoylanilide hydroxamic acid is synergized by BMP-2. J Bone Metab, 2015, 22: 51-56
|
| [193] |
Cho YD, Yoon WJ, Kim WJ et al Epigenetic modifications and canonical wingless/int-1 class (WNT) signaling enable trans-differentiation of nonosteogenic cells into osteoblasts. J Biol Chem, 2014, 289: 20120-20128
|
| [194] |
Zhou S, Eid K, Glowacki J. Cooperation between TGF-β and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Miner Res, 2003, 19: 463-470
|
| [195] |
Dao DY, Yang X, Chen D et al Axin1 and Axin2 are regulated by TGF- and mediate cross-talk between TGF- and Wnt signaling pathways. Ann NY Acad Sci, 2007, 1116: 82-99
|
| [196] |
McCarthy TL, Centrella M. Novel links among Wnt and TGF-beta signaling and Runx2. Mol Endocrinol, 2010, 24: 587-597
|
| [197] |
Liu Z, Tang Y, Qiu T et al A dishevelled-1/Smad1 interaction couples WNT and bone morphogenetic protein signaling pathways in uncommitted bone marrow stromal cells. J Biol Chem, 2006, 281: 17156-17163
|
| [198] |
Rawadi G, Vayssière B, Dunn F et al BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res, 2003, 18: 1842-1853
|
| [199] |
Zhang M, Yan Y, Lim YB et al BMP-2 modulates beta-catenin signaling through stimulation of Lrp5 expression and inhibition of beta-TrCP expression in osteoblasts. J Cell Biochem, 2009, 108: 896-905
|
| [200] |
Papathanasiou I, Malizos KN, Tsezou A. Bone morphogenetic protein-2-induced Wnt/β-catenin signaling pathway activation through enhanced low-density-lipoprotein receptor-related protein 5 catabolic activity contributes to hypertrophy in osteoarthritic chondrocytes. Arthritis Res Ther, 2012, 14: R82
|
| [201] |
Tang N, Song WX, Luo J et al BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. J Cell Mol Med, 2009, 13: 2448-2464
|
| [202] |
Rodríguez-Carballo E, Ulsamer A, Susperregui AR et al Conserved regulatory motifs in osteogenic gene promoters integrate cooperative effects of canonical Wnt and BMP pathways. J Bone Miner Res, 2011, 26: 718-729
|
| [203] |
Zhang R, Oyajobi BO, Harris SE et al Wnt/β-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone, 2013, 52: 145-156
|
| [204] |
Jiang T, Ge S, Shim YH et al Bone morphogenetic protein is required for fibroblast growth factor 2-dependent later-stage osteoblastic differentiation in cranial suture cells. Int J Clin Exp Pathol, 2015, 8: 2946-2954
|
| [205] |
Naganawa T, Xiao L, Coffin JD et al Reduced expression and function of bone morphogenetic protein-2 in bones of Fgf2 null mice. J Cell Biochem, 2008, 103: 1975-1988
|
| [206] |
Agas D, Sabbieti MG, Marchetti L et al FGF-2 enhances Runx-2/Smads nuclear localization in BMP-2 canonical signaling in osteoblasts. J Cell Physiol, 2013, 228: 2149-2158
|
| [207] |
Nagayama T, Okuhara S, Ota MS et al FGF18 accelerates osteoblast differentiation by upregulating Bmp2 expression. Congenit Anom (Kyoto), 2013, 53: 83-88
|
| [208] |
Fakhry A, Ratisoontorn C, Vedhachalam C et al Effects of FGF-2/-9 in calvarial bone cell cultures: differentiation stage-dependent mitogenic effect, inverse regulation of BMP-2 and noggin, and enhancement of osteogenic potential. Bone, 2005, 36: 254-266
|
| [209] |
Hughes-Fulford M, Li CF. The role of FGF-2 and BMP-2 in regulation of gene induction, cell proliferation and mineralization. J Orthop Surg Res, 2011, 6: 8
|
| [210] |
Park JB. Effects of the combination of fibroblast growth factor-2 and bone morphogenetic protein-2 on the proliferation and differentiation of osteoprecursor cells. Adv Clin Exp Med, 2014, 23: 463-467
|
| [211] |
Matsushita T, Wilcox WR, Chan YY et al FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway. Hum Mol Genet, 2009, 18: 227-240
|
| [212] |
Allen JM, McGlinn E, Hill A et al Autopodial development is selectively impaired by misexpression of chordin-like 1 in the chick limb. Dev Biol, 2013, 381: 159-169
|
| [213] |
Long F, Chung UI, Ohba S et al IHH signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development, 2004, 131: 1309-1318
|
| [214] |
Lenton K, James AW, Manu A et al Indian hedgehog positively regulates calvarial ossification and modulates bone morphogenetic protein signaling. Genesis, 2011, 49: 784-796
|
| [215] |
Hojo H, Ohba S, Taniguchi K et al Hedgehog-Gli activators direct osteo-chondrogenic function of bone morphogenetic protein toward osteogenesis in the perichondrium. J Biol Chem, 2013, 288: 9924-9932
|
| [216] |
Zhao M, Ko SY, Liu JH et al Inhibition of microtubule assembly in osteoblasts stimulates bone morphogenetic protein 2 expression and bone formation through transcription factor Gli2. Mol Cell Biol, 2008, 29: 1291-1305
|
| [217] |
Zhao M, Qiao M, Harris SE et al The zinc finger transcription factor Gli2 mediates bone morphogenetic protein 2 expression in osteoblasts in response to hedgehog signaling. Mol Cell Biol, 2006, 26: 6197-6208
|
| [218] |
Minina E, Wenzel HM, Kreschel C et al BMP and IHH/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development, 2001, 128: 4523-4534
|
| [219] |
Kameda T, Koike C, Saitoh K et al Developmental patterning in chondrocytic cultures by morphogenic gradients: BMP induces expression of indian hedgehog and noggin. Genes Cells, 1999, 4: 175-184
|
| [220] |
Grimsrud CD, Romano PR, D'Souza M et al BMP-6 is an autocrine stimulator of chondrocyte differentiation. J Bone Miner Res, 1999, 14: 475-482
|
| [221] |
Mak KK, Kronenberg HM, Chuang PT et al Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy. Development, 2008, 135: 1947-1956
|
| [222] |
Mak KK, Chen MH, Day TF et al Wnt/beta-catenin signaling interacts differentially with IHH signaling in controlling endochondral bone and synovial joint formation. Development, 2006, 133: 3695-3707
|
| [223] |
Zeng L. SHH establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev, 2002, 16: 1990-2005
|
| [224] |
Choi KY, Kim HJ, Lee MH et al Runx2 regulates FGF2-induced Bmp2 expression during cranial bone development. Dev Dyn, 2005, 233: 115-121
|
| [225] |
Tezuka K, Yasuda M, Watanabe N et al Stimulation of osteoblastic cell differentiation by Notch. J Bone Miner Res, 2002, 17: 231-239
|
| [226] |
Nobta M, Tsukazaki T, Shibata Y et al Critical regulation of bone morphogenetic protein-induced osteoblastic differentiation by Delta1/Jagged1-activated Notch1 signaling. J Biol Chem, 2005, 280: 15842-15848
|
| [227] |
de Jong DS, Steegenga WT, Hendriks JM et al Regulation of Notch signaling genes during BMP2-induced differentiation of osteoblast precursor cells. Biochem Biophys Res Commun, 2004, 320: 100-107
|
| [228] |
Atfi A, Baron R. PTH battles TGF-β in bone. Nat Cell Biol, 2010, 12: 205-207
|
| [229] |
Yu B, Zhao X, Yang C et al Parathyroid hormone induces differentiation of mesenchymal stromal/stem cells by enhancing bone morphogenetic protein signaling. J Bone Miner Res, 2012, 27: 2001-2014
|
| [230] |
Kobayashi T, Soegiarto DW, Yang Y et al Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP. J Clin Invest, 2005, 115: 1734-1742
|
| [231] |
Bocciardi R, Bordo D, Di Duca M et al Mutational analysis of the ACVR1 gene in Italian patients affected with fibrodysplasia ossificans progressiva: confirmations and advancements. Eur J Hum Genet, 2009, 17: 311-318
|
| [232] |
Gregson CL, Hollingworth P, Williams M et al A novel ACVR1 mutation in the glycine/serine-rich domain found in the most benign case of a fibrodysplasia ossificans progressiva variant reported to date. Bone, 2011, 48: 654-658
|
| [233] |
Petrie KA, Lee WH, Bullock AN et al Novel mutations in ACVR1 result in atypical features in two fibrodysplasia ossificans progressiva patients. PLoS One, 2009, 4: e5005
|
| [234] |
Su P, Ding H, Huang D et al A 4.6 kb genomic duplication on 20p12.2-12.3 is associated with brachydactyly type A2 in a Chinese family. J Med Genet, 2011, 48: 312-316
|
| [235] |
Lehmann K, Seemann P, Boergermann J et al A novel R486Q mutation in BMPR1B resulting in either a brachydactyly type C/symphalangism-like phenotype or brachydactyly type A2. Eur J Hum Genet, 2006, 14: 1248-1254
|
| [236] |
Lehmann K, Seemann P, Stricker S et al Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2. Proc Natl Acad Sci USA, 2003, 100: 12277-12282
|
| [237] |
Plöger F, Seemann P, Schmidt-von Kegler M et al Brachydactyly type A2 associated with a defect in proGDF5 processing. Hum Mol Genet, 2008, 17: 1222-1233
|
| [238] |
Seemann P, Schwappacher R, Kjaer KW et al Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2. J Clin Invest, 2005, 115: 2373-2381
|
| [239] |
Dathe K, Kjaer KW, Brehm A et al Duplications involving a conserved regulatory element downstream of BMP2 are associated with brachydactyly type A2. Am J Hum Genet, 2009, 84: 483-492
|
| [240] |
Thomas JT, Kilpatrick MW, Lin K et al Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nat Genet, 1997, 17: 58-64
|
| [241] |
Lindor NM, Gunawardena SR, Thibodeau SN. Mutations of SMAD4 account for both LAPS and Myhre syndromes. Am J Med Genet, 2012, 158A: 1520-1521
|
| [242] |
Lehmann K, Seemann P, Silan F et al A new subtype of brachydactyly type B caused by point mutations in the bone morphogenetic protein antagonist NOGGIN. Am J Hum Genet, 2007, 81: 388-396
|
| [243] |
Dixon ME, Armstrong P, Stevens DB et al Identical mutations in NOG can cause either tarsal/carpal coalition syndrome or proximal symphalangism. Genet Med, 2001, 3: 349-353
|
| [244] |
Hirshoren N, Gross M, Banin E et al P35S mutation in the NOG gene associated with Teunissen-Cremers syndrome and features of multiple NOG joint-fusion syndromes. Eur J Med Genet, 2008, 51: 351-357
|
| [245] |
Campos-Xavier B, Saraiva JM, Savarirayan R et al Phenotypic variability at the TGF-beta1 locus in Camurati-Engelmann disease. Hum Genet, 2001, 109: 653-658
|
| [246] |
Kinoshita A, Saito T, Tomita H et al Domain-specific mutations in TGFB1 result in Camurati-Engelmann disease. Nat Genet, 2000, 26: 19-20
|
| [247] |
Sakuma M, Hatsushika K, Koyama K et al TGF- type I receptor kinase inhibitor down-regulates rheumatoid synoviocytes and prevents the arthritis induced by type II collagen antibody. Int Immunol, 2006, 19: 117-126
|
| [248] |
Yu PB, Deng DY, Lai CS et al BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat Med, 2008, 14: 1363-1369
|
| [249] |
Lories RJ, Luyten FP. Bone morphogenetic protein signaling in joint homeostasis and disease. Cytokine Growth Factor Rev, 2005, 16: 287-298
|
| [250] |
Zouani OF, Chollet C, Guillotin B et al Differentiation of pre-osteoblast cells on poly(ethylene terephthalate) grafted with RGD and/or BMPs mimetic peptides. Biomaterials, 2010, 31: 8245-8253
|
| [251] |
Dünker N, Krieglstein K. Tgfbeta2 -/- Tgfbeta3 -/- double knockout mice display severe midline fusion defects and early embryonic lethality. Anat Embryol, 2002, 206: 73-83
|
| [252] |
Gu Z, Reynolds EM, Song J et al The type I serine/threonine kinase receptor ActRIA (ALK2) is required for gastrulation of the mouse embryo. Development, 1999, 126: 2551-2561
|
| [253] |
Nomura M, Li E. Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature, 1998, 393: 786-790
|
| [254] |
Zhou S. TGF-β regulates β-catenin signaling and osteoblast differentiation in human mesenchymal stem cells. J Cell Biochem, 2011, 112: 1651-1660
|
| [255] |
Tachi K, Takami M, Sato H et al Enhancement of bone morphogenetic protein-2-induced ectopic bone formation by transforming growth factor-β1. Tissue Eng Part A, 2011, 17: 597-606
|
| [256] |
Sasaki T, Ito Y, Bringas P Jr et al. . TGFbeta-mediated FGF signaling is crucial for regulating cranial neural crest cell proliferation during frontal bone development. Development, 2006, 133: 371-381
|
| [257] |
van der Horst G, Farih-Sips H, Löwik CW et al Hedgehog stimulates only osteoblastic differentiation of undifferentiated KS483 cells. Bone, 2003, 33: 899-910
|
| [258] |
Zhang R, Edwards JR, Ko SY et al Transcriptional regulation of BMP2 expression by the PTH-CREB signaling pathway in osteoblasts. PLoS One, 2011, 6: e20780
|