Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering

Gabriela Fernandes , Shuying Yang

Bone Research ›› 2016, Vol. 4 ›› Issue (1) : 16036

PDF
Bone Research ›› 2016, Vol. 4 ›› Issue (1) : 16036 DOI: 10.1038/boneres.2016.36
Article

Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering

Author information +
History +
PDF

Abstract

Presently, there is a high paucity of bone grafts in the United States and worldwide. Regenerating bone is of prime concern due to the current demand of bone grafts and the increasing number of diseases causing bone loss. Autogenous bone is the present gold standard of bone regeneration. However, disadvantages like donor site morbidity and its decreased availability limit its use. Even allografts and synthetic grafting materials have their own limitations. As certain specific stem cells can be directed to differentiate into an osteoblastic lineage in the presence of growth factors (GFs), it makes stem cells the ideal agents for bone regeneration. Furthermore, platelet-rich plasma (PRP), which can be easily isolated from whole blood, is often used for bone regeneration, wound healing and bone defect repair. When stem cells are combined with PRP in the presence of GFs, they are able to promote osteogenesis. This review provides in-depth knowledge regarding the use of stem cells and PRP in vitro, in vivo and their application in clinical studies in the future.

Tissue engineering: Building bone with stem cells and platelet-rich plasma

Stem cells combined with Platelet-Rich Plasma offer a way to regenerate bone lost due to disease or injury. In this review article, Gabriela Fernandes and Shuying Yang from the State University of New York, Buffalo, USA, discuss how tissue engineering could help overcome the shortage of suitable graft materials for patients with bone defects. The authors describe the various growth factors in platelet-rich plasma, and how the addition of adult stem cells, usually derived from bone marrow, can enhance bone formation. They provide an exhaustive summary of how this combination has been tested in cell culture, in animal models and in clinical trials. While the approach has shown promising, the authors suggest that new delivery techniques are needed that release the growth factors more slowly to fully promote the weeks-long process of bone regeneration.

Cite this article

Download citation ▾
Gabriela Fernandes, Shuying Yang. Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering. Bone Research, 2016, 4(1): 16036 DOI:10.1038/boneres.2016.36

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Moga G. Bone grafts. J Foot Surg, 1976, 15: 125-127

[2]

Aichelmann-Reidy ME, Yukna RA. Bone replacement grafts. The bone substitutes. Dent Clin North Am, 1998, 42: 491-503

[3]

Brunsvold MA, Mellonig JT. Bone grafts and periodontal regeneration. Periodontol 2000, 1993, 1: 80-91

[4]

Delloye C. [Bone grafts using tissue engineering]. Bull Mem Acad R Med Belg, 2001, 156: 418-425

[5]

Garrett S, Bogle G . Periodontal regeneration with bone grafts. Curr Opin Periodontol 1994: 168–177.

[6]

Li W, Xiao L, Hu J. The use of enamel matrix derivative alone versus in combination with bone grafts to treat patients with periodontal intrabony defects: a meta-analysis. J Am Dent Assoc, 2012, 143: e46-e56

[7]

Yukna RA. Synthetic bone grafts in periodontics. Periodontol 2000, 1993, 1: 92-99

[8]

Wiesmann HP, Nazer N, Klatt C et al Bone tissue engineering by primary osteoblast-like cells in a monolayer system and 3-dimensional collagen gel. J Oral Maxillofac Surg, 2003, 61: 1455-1462

[9]

Boeckel DG, Shinkai RS, Grossi ML et al Cell culture-based tissue engineering as an alternative to bone grafts in implant dentistry: a literature review. J Oral Implantol, 2012, 38 Spec No: 538-545

[10]

Andric T, Wright LD, Taylor BL et al Fabrication and characterization of three-dimensional electrospun scaffolds for bone tissue engineering. J Biomed Mater Res A, 2012, 100: 2097-2105

[11]

Yamada Y, Hara K, Nakamura S et al Minimally invasive approach with tissue engineering for severe alveolar bone atrophy case. Int J Oral Maxillofac Surg, 2013, 42: 260-263

[12]

Caplan AI, Sorrell JM. The MSC curtain that stops the immune system. Immunol Lett, 2015, 168: 136-139

[13]

Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell, 2011, 9: 11-15

[14]

da Silva Meirelles L, Sand TT, Harman RJ et al MSC frequency correlates with blood vessel density in equine adipose tissue. Tissue Eng Part A, 2009, 15: 221-229

[15]

Steinmetz NJ, Aisenbrey EA, Westbrook KK et al Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering. Acta Biomater, 2015, 21: 142-153

[16]

Arany PR, Huang GX, Gadish O et al Multi-lineage MSC differentiation via engineered morphogen fields. J Dent Res, 2014, 93: 1250-1257

[17]

Gregory CA, Ylostalo J, Prockop DJ. Adult bone marrow stem/progenitor cells (MSCs) are preconditioned by microenvironmental "niches" in culture: a two-stage hypothesis for regulation of MSC fate. Scis STKE, 2005, 2005: pe37

[18]

Hamada H, Kobune M, Nakamura K et al Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy. Cancer Sci, 2005, 96: 149-156

[19]

Mathiasen AB, Qayyum AA, Jørgensen E et al Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial). Eur Heart J, 2015, 36: 1744-1753

[20]

DeGowin RL, Gibson DP. Prostaglandin-mediated enhancement of erythroid colonies by marrow stromal cells (MSC). Exp Hematol, 1981, 9: 274-280

[21]

Zhuang H, Zhang X, Zhu C et al Molecular Mechanisms of PPAR-gamma Governing MSC Osteogenic and Adipogenic Differentiation. Curr Stem Cell Res Ther, 2016, 11: 255-264

[22]

Vogl M, Fischer J, Jäger M et al Can thrombin-activated platelet releasate compensate the age-induced decrease in cell proliferation of MSC? J Orthop Res, 2013, 31: 1786-1795

[23]

Hao J, Zhang Y, Jing D et al Mechanobiology of mesenchymal stem cells: Perspective into mechanical induction of MSC fate. Acta Biomater, 2015, 20: 1-9

[24]

Schwartz-Arad D, Levin L, Aba M. [The use of platelet rich plasma (PRP) and platelet rich fibrin (PRP) extracts in dental implantology and oral surgery]. Refuat Hapeh Vehashinayim (1993), 2007, 24: 51-55, 84

[25]

Mautner K, Malanga GA, Smith J et al A call for a standard classification system for future biologic research: the rationale for new PRP nomenclature. PM R, 2015, 7: S53-S59

[26]

Marques LF, Stessuk T, Camargo IC et al Platelet-rich plasma (PRP): methodological aspects and clinical applications. Platelets, 2015, 26: 101-113

[27]

Georgakopoulos I, Tsantis S, Georgakopoulos P et al The impact of Platelet Rich Plasma (PRP) in osseointegration of oral implants in dental panoramic radiography: texture based evaluation. Clin Cases Miner Bone Metab, 2014, 11: 59-66

[28]

Roffi A, Filardo G, Kon E et al Does PRP enhance bone integration with grafts, graft substitutes, or implants? A systematic review. BMC Musculoskelet Disord, 2013, 14: 330

[29]

Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent, 2001, 10: 225-228

[30]

Pacifici L, Casella F, Maggiore C. [Platelet rich plasma (PRP): potentialities and techniques of extraction]. Minerva Stomatol, 2002, 51: 341-350

[31]

Vanassche B, Defrancq J. [Use of PRP (Platelet Rich Plasma) in bone volume augmentation]. Rev Belge Med Dent (1984), 2001, 56: 125-133

[32]

Choi BH, Zhu SJ, Kim BY et al Effect of platelet-rich plasma (PRP) concentration on the viability and proliferation of alveolar bone cells: an in vitro study. Int J Oral Maxillofac Surg, 2005, 34: 420-424

[33]

Shashikiran ND, Reddy VV, Yavagal CM et al Applications of platelet-rich plasma (PRP) in contemporary pediatric dentistry. J Clin Pediatr Dent, 2006, 30: 283-286

[34]

Cancedda R, Mastrogiacomo M, Bianchi G et al. Bone marrow stromal cells and their use in regenerating bone. Novartis Found Symp 2003; 249: 133–143.

[35]

Vaquero J, Zurita M. Bone marrow stromal cells for spinal cord repair: a challenge for contemporary neurobiology. Histol Histopathol, 2009, 24: 107-116

[36]

Derubeis AR, Cancedda R. Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Ann Biomed Eng, 2004, 32: 160-165

[37]

Fridenshteĭn A, Piatetskiĭ-Shapiro II, Petrakova KV. [Osteogenesis in transplants of bone marrow cells]. Arkh Anat Gistol Embriol, 1969, 56: 3-11

[38]

Friedenstein AJ, Piatetzky S II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol, 1966, 16: 381-390

[39]

Zhang LX, Yin YM, Zhang ZQ et al Grafted bone marrow stromal cells: a contributor to glial repair after spinal cord injury. Neuroscientist, 2015, 21: 277-289

[40]

Dezawa M. Insights into autotransplantation: the unexpected discovery of specific induction systems in bone marrow stromal cells. Cell Mol Life Sci, 2006, 63: 2764-2772

[41]

Komori T, Yagi H, Nomura S et al Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 1997, 89: 755-764

[42]

Abdul Rahman R, Mohamad Sukri N, Md Nazir N et al The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering. Tissue Cell, 2015, 47: 420-430

[43]

Wang P, Liu X, Zhao L et al Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium. Acta Biomater, 2015, 18: 236-248

[44]

Ohgushi H. Osteogenically differentiated mesenchymal stem cells and ceramics for bone tissue engineering. Expert Opin Biol Ther, 2014, 14: 197-208

[45]

Bertolo A, Mehr M, Janner-Jametti T et al An in vitro expansion score for tissue-engineering applications with human bone marrow-derived mesenchymal stem cells. J Tissue Eng Regen Med, 2016, 10: 149-161

[46]

Mattioli-Belmonte M, Teti G, Salvatore V et al Stem cell origin differently affects bone tissue engineering strategies. Front Physiol, 2015, 6: 266

[47]

Rennerfeldt DA, Van Vliet KJ. Concise review: when colonies are not clones: evidence and implications of intracolony heterogeneity in mesenchymal stem cells. Stem Cells, 2016, 34: 1135-1141

[48]

Lee KD. Applications of mesenchymal stem cells: an updated review. Chang Gung Med J, 2008, 31: 228-236

[49]

Heldring N, Mager I, Wood MJ et al Therapeutic Potential of Multipotent Mesenchymal Stromal Cells and Their Extracellular Vesicles. Hum Gene Ther, 2015, 26: 506-517

[50]

Satija NK, Gurudutta GU, Sharma S et al Mesenchymal stem cells: molecular targets for tissue engineering. Stem Cells Dev, 2007, 16: 7-23

[51]

Bruder SP, Jaiswal N, Ricalton NS et al Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res, 1998, 335: S247-S256

[52]

Charbord P. Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther, 2010, 21: 1045-1056

[53]

Zuk PA. The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell, 2010, 21: 1783-1787

[54]

Zuk PA, Zhu M, Mizuno H et al Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 2001, 7: 211-228

[55]

Zuk P, Chou YF, Mussano F et al Adipose-derived stem cells and BMP2: part 2. BMP2 may not influence the osteogenic fate of human adipose-derived stem cells. Connect Tissue Res, 2011, 52: 119-132

[56]

Chou YF, Zuk PA, Chang TL et al Adipose-derived stem cells and BMP2: part 1. BMP2-treated adipose-derived stem cells do not improve repair of segmental femoral defects. Connect Tissue Res, 2011, 52: 109-118

[57]

Levi B, James AW, Nelson ER et al Human adipose derived stromal cells heal critical size mouse calvarial defects. PloS one, 2010, 5: e11177

[58]

Shu M, Liu L. [Application of adipose-derived mesenchymal stem cells in craniomaxillofacial restoration and reconstruction]. Hua Xi Kou Qiang Yi Xue Za Zhi, 2013, 31: 644-647

[59]

Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M et al Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy, 2006, 8: 166-177

[60]

Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res, 2003, 18: 696-704

[61]

Akiyama K, Chen C, Gronthos S et al Lineage differentiation of mesenchymal stem cells from dental pulp, apical papilla, and periodontal ligament. Methods Mol Biol, 2012, 887: 111-121

[62]

Bao LY, Jin Y, Shi JN et al [Tissue engineering of dentin-pulp complex-like structures by human dental mesenchymal cells]. Zhonghua Kou Qiang Yi Xue Za Zhi, 2005, 40: 408-411

[63]

Moshaverinia A, Chen C, Xu X et al Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold. Tissue Eng Part A, 2014, 20: 611-621

[64]

Zhang W, Walboomers XF, van Osch GJ et al Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Tissue Eng Part A, 2008, 14: 285-294

[65]

Yang JW, Zhang YF, Sun ZY et al Dental pulp tissue engineering with bFGF-incorporated silk fibroin scaffolds. J Biomater Appl, 2015, 30: 221-229

[66]

Giuliani A, Manescu A, Langer M et al Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cells Transl Med, 2013, 2: 316-324

[67]

Dimond L. Blood Platelets in the Treatment of Disease. Br Med J, 1914, 2: 828-829

[68]

Ross R, Glomset J, Kariya B et al A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci USA, 1974, 71: 1207-1210

[69]

Witte LD, Kaplan KL, Nossel HL et al Studies of the release from human platelets of the growth factor for cultured human arterial smooth muscle cells. Circ Res, 1978, 42: 402-409

[70]

Kaplan DR, Chao FC, Stiles CD et al Platelet alpha granules contain a growth factor for fibroblasts. Blood, 1979, 53: 1043-1052

[71]

Assoian RK, Komoriya A, Meyers CA et al Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem, 1983, 258: 7155-7160

[72]

Karey KP, Sirbasku DA. Human platelet-derived mitogens. II. Subcellular localization of insulinlike growth factor I to the alpha-granule and release in response to thrombin. Blood, 1989, 74: 1093-1100

[73]

Banks RE, Forbes MA, Kinsey SE et al Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from platelets: significance for VEGF measurements and cancer biology. Br J Cancer, 1998, 77: 956-964

[74]

Ferrari M, Zia S, Valbonesi M et al A new technique for hemodilution, preparation of autologous platelet-rich plasma and intraoperative blood salvage in cardiac surgery. Int J Artif Organs, 1987, 10: 47-50

[75]

Gibble JW, Ness PM. Fibrin glue: the perfect operative sealant? Transfusion, 1990, 30: 741-747

[76]

Zhang Y, Zeng B, Zhang C et al [Effects of platelet-rich plasma on proliferation and osteogenetic activity of marrow mesenchymal stem cells in vitro]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2005, 19: 109-113

[77]

Yamada Y, Hata K, Ueda M. [Injectable bone]. Clin Calcium, 2002, 12: 228-232

[78]

Elder BD, Holmes C, Goodwin CR et al A systematic assessment of the use of platelet-rich plasma in spinal fusion. Ann Biomed Eng, 2015, 43: 1057-1070

[79]

Rodriguez IA, Growney Kalaf EA, Bowlin GL et al Platelet-rich plasma in bone regeneration: engineering the delivery for improved clinical efficacy. Biomed Res Int, 2014, 2014: 392398

[80]

Zellner J, Taeger CD, Schaffer M et al Are applied growth factors able to mimic the positive effects of mesenchymal stem cells on the regeneration of meniscus in the avascular zone? Biomed Res Int, 2014, 2014: 537686

[81]

Yoshida K, Sumita Y, Marukawa E et al Effect of platelet-rich plasma on bone engineering with an alloplastic substitute containing BMP2. Biomed Mater Eng, 2013, 23: 163-172

[82]

Huang S, Wang Z. Platelet-rich plasma-derived growth factors promote osteogenic differentiation of rat muscle satellite cells: in vitro and in vivo studies. Cell Biol Int, 2012, 36: 1195-1205

[83]

Evans CH . Advances in regenerative orthopedics. Mayo Clin Proc 2013; 88: 1323–1339.

[84]

El Backly RM, Zaky SH, Muraglia A et al A platelet-rich plasma-based membrane as a periosteal substitute with enhanced osteogenic and angiogenic properties: a new concept for bone repair. Tissue Eng Part A, 2013, 19: 152-165

[85]

Chatterjea A, Yuan H, Fennema E et al Engineering new bone via a minimally invasive route using human bone marrow-derived stromal cell aggregates, microceramic particles, and human platelet-rich plasma gel. Tissue Eng Part A, 2013, 19: 340-349

[86]

Dong Z, Li B, Liu B et al Platelet-rich plasma promotes angiogenesis of prefabricated vascularized bone graft. J Oral Maxillofac Surg, 2012, 70: 2191-2197

[87]

Lei H, Xiao R, Tang XJ et al Evaluation of the efficacy of platelet-rich plasma in delivering BMSCs into 3D porous scaffolds. J Biomed Mater Res B Appl Biomater, 2009, 91: 679-691

[88]

Yokote K, Mori S. [Platelet derived growth factor (PDGF)]. Nihon Rinsho, 2005, 63 Suppl 8 103-106

[89]

Lawrence DA. Transforming growth factor-beta: a general review. Eur Cytokine Netw, 1996, 7: 363-374

[90]

Jacobs CI. A review of the role of insulin-like growth factor 2 in malignancy and its potential as a modifier of radiation sensitivity. Clin Oncol (R Coll Radiol), 2008, 20: 345-352

[91]

Przybylski M. A review of the current research on the role of bFGF and VEGF in angiogenesis. J Wound Care, 2009, 18: 516-519

[92]

Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys, 2004, 59: 21-26

[93]

Fei Y, Gronowicz G, Hurley MM. Fibroblast growth factor-2, bone homeostasis and fracture repair. Curr Pharm Des, 2013, 19: 3354-3363

[94]

Rubin JS, Bottaro DP, Chedid M et al Keratinocyte growth factor. Cell Biol Int, 1995, 19: 399-411

[95]

Leask A, Abraham DJ. The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem Cell Biol, 2003, 81: 355-363

[96]

Hebert CA, Baker JB. Interleukin-8: a review. Cancer Invest, 1993, 11: 743-750

[97]

Mussano F, Genova T, Munaron L et al Cytokine, chemokine, and growth factor profile of platelet-rich plasma. Platelets, 2016, 27: 467-471

[98]

Lavrova LA, Iakunin GA, Smolianitskii A. [Platelet factor 4. Properties and clinical significance of its determination (review of the literature)]. Lab Delo, 1986, 2: 73-76

[99]

Casati L, Celotti F, Negri-Cesi P et al Platelet derived growth factor (PDGF) contained in Platelet Rich Plasma (PRP) stimulates migration of osteoblasts by reorganizing actin cytoskeleton. Cell Adh Migr, 2014, 8: 595-602

[100]

Colciago A, Celotti F, Casati L et al In Vitro Effects of PDGF Isoforms (AA, BB, AB and CC) on Migration and Proliferation of SaOS-2 Osteoblasts and on Migration of Human Osteoblasts. Int J Biomed Sci, 2009, 5: 380-389

[101]

Cenni E, Ciapetti G, Granchi D et al Endothelial cells incubated with platelet-rich plasma express PDGF-B and ICAM-1 and induce bone marrow stromal cell migration. J Orthop Res, 2009, 27: 1493-1498

[102]

Hock JM, Canalis E. Platelet-derived growth factor enhances bone cell replication, but not differentiated function of osteoblasts. Endocrinology, 1994, 134: 1423-1428

[103]

Canalis E. Effect of platelet-derived growth factor on DNA and protein synthesis in cultured rat calvaria. Metabolism, 1981, 30: 970-975

[104]

Servold SA. Growth factor impact on wound healing. Clin Podiatr Med Surg, 1991, 8: 937-953

[105]

Canalis E, Varghese S, McCarthy TL et al Role of platelet derived growth factor in bone cell function. Growth Regul, 1992, 2: 151-155

[106]

Wrana JL. TGF-beta receptors and signalling mechanisms. Miner Electrolyte Metab, 1998, 24: 120-130

[107]

Miyazono K. TGF-beta signaling by Smad proteins. Cytokine Growth Factor Rev, 2000, 11: 15-22

[108]

Rahman MS, Akhtar N, Jamil HM et al TGF-beta/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res, 2015, 3: 15005

[109]

Shen J, Li S, Chen D. TGF-beta signaling and the development of osteoarthritis. Bone Res, 2014, 2: 14002

[110]

Crane JL, Cao X. Bone marrow mesenchymal stem cells and TGF-beta signaling in bone remodeling. J Clin Invest, 2014, 124: 466-472

[111]

McCarthy TL, Centrella M. Regulation of IGF activity in bone. Adv Exp Med Biol, 1993, 343: 407-414

[112]

McCarthy TL, Centrella M, Canalis E. Insulin-like growth factor (IGF) and bone. Connect Tissue Res, 1989, 20: 277-282

[113]

Minuto F, Palermo C, Arvigo M et al The IGF system and bone. J Endocrinol Invest, 2005, 28: 8-10

[114]

Ueland T. GH/IGF-I and bone resorption in vivo and in vitro. Eur J Endocrinol, 2005, 152: 327-332

[115]

Bikle DD, Tahimic C, Chang W et al Role of IGF-I signaling in muscle bone interactions. Bone, 2015, 80: 79-88

[116]

Marcus R. Skeletal effects of growth hormone and IGF-I in adults. Endocrine, 1997, 7: 53-55

[117]

Mehta V. Platelet-rich plasma: a review of the science and possible clinical applications. Orthopedics, 2010, 33: 111

[118]

Arora NS, Ramanayake T, Ren YF et al Platelet-rich plasma: a literature review. Implant Dent, 2009, 18: 303-310

[119]

Arora NS, Ramanayake T, Ren YF et al Platelet-rich plasma in sinus augmentation procedures: a systematic literature review: Part II. Implant Dent, 2010, 19: 145-157

[120]

Everts PA, Knape JT, Weibrich G et al Platelet-rich plasma and platelet gel: a review. J Extra Corpor Technol, 2006, 38: 174-187

[121]

Denfors I, Jacobsson S, Kutti J et al The effect of centrifugation time and gravitational force on platelet yield and platelet volume distribution in platelet-rich plasma (PRP) obtained by differential centrifugation. Thromb Res, 1991, 61: 463-468

[122]

do Amaral RJ, da Silva NP, Haddad NF et al Platelet-rich plasma obtained with different anticoagulants and their effect on platelet numbers and mesenchymal stromal cells behavior in vitro. Stem Cells Int, 2016, 2016: 7414036

[123]

Gao F, Wang JX, Han Y. [Research advance on application of platelet-rich plasma in wound repair -- review]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2009, 17: 840-843

[124]

Grageda E. Platelet-rich plasma and bone graft materials: a review and a standardized research protocol. Implant Dent, 2004, 13: 301-309

[125]

Griffin XL, Smith CM, Costa ML. The clinical use of platelet-rich plasma in the promotion of bone healing: a systematic review. Injury, 2009, 40: 158-162

[126]

Roh YH, Kim W, Park KU et al Cytokine-release kinetics of platelet-rich plasma according to various activation protocols. Bone Joint Res, 2016, 5: 37-45

[127]

Textor JA, Tablin F. Activation of equine platelet-rich plasma: comparison of methods and characterization of equine autologous thrombin. Vet Surg, 2012, 41: 784-794

[128]

Yin W, Qi X, Zhang Y et al Advantages of pure platelet-rich plasma compared with leukocyte- and platelet-rich plasma in promoting repair of bone defects. J Transl Med, 2016, 14: 73

[129]

Liao HT, Marra KG, Rubin JP. Application of platelet-rich plasma and platelet-rich fibrin in fat grafting: basic science and literature review. Tissue Eng Part B Rev, 2014, 20: 267-276

[130]

Rodrigues SV, Acharya AB, Thakur SL. Platelet-rich plasma. A review. N Y State Dent J, 2012, 78: 26-30

[131]

Alsousou J, Thompson M, Hulley P et al The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: a review of the literature. J Bone Joint Surg Br, 2009, 91: 987-996

[132]

Nikolidakis D, Jansen JA. The biology of platelet-rich plasma and its application in oral surgery: literature review. Tissue Eng Part B Rev, 2008, 14: 249-258

[133]

Nikolidakis D, Meijer GJ, Jansen JA. Sinus floor elevation using platelet-rich plasma and beta-tricalcium phosphate: case report and histological evaluation. Dent Today, 2008, 27: 66

[134]

Nikolidakis D, van den Dolder J, Wolke JG et al The effect of platelet-rich plasma on the bone healing around calcium phosphate-coated and non-coated oral implants in trabecular bone. Tissue Eng, 2006, 12: 2555-2563

[135]

Yun JH, Han SH, Choi SH et al Effects of bone marrow-derived mesenchymal stem cells and platelet-rich plasma on bone regeneration for osseointegration of dental implants: preliminary study in canine three-wall intrabony defects. J Biomed Mater Res Part B Appl Biomater, 2014, 102: 1021-1030

[136]

Chang SH, Hsu YM, Wang YJ et al Fabrication of pre-determined shape of bone segment with collagen-hydroxyapatite scaffold and autogenous platelet-rich plasma. J Mater Sci Mater Med, 2009, 20: 23-31

[137]

Han B, Woodell-May J, Ponticiello M et al The effect of thrombin activation of platelet-rich plasma on demineralized bone matrix osteoinductivity. J Bone Joint Surg Am, 2009, 91: 1459-1470

[138]

Kütük N, Baş B, Soylu E et al Effect of platelet-rich plasma on fibrocartilage, cartilage, and bone repair in temporomandibular joint. J Oral Maxillofac Surg, 2014, 72: 277-284

[139]

Scala M, Mereu P, Spagnolo F et al The use of platelet-rich plasma gel in patients with mixed tumour undergoing superficial parotidectomy: a randomized study. In Vivo , 2014, 28: 121-124

[140]

Scala M, Gipponi M, Mereu P et al Regeneration of mandibular osteoradionecrosis defect with platelet rich plasma gel. In Vivo, 2010, 24: 889-893

[141]

Rupreht M, Vogrin M, Hussein M. MRI evaluation of tibial tunnel wall cortical bone formation after platelet-rich plasma applied during anterior cruciate ligament reconstruction. Radiol Oncol, 2013, 47: 119-124

[142]

Rupreht M, Jevtič V, Serša I et al Evaluation of the tibial tunnel after intraoperatively administered platelet-rich plasma gel during anterior cruciate ligament reconstruction using diffusion weighted and dynamic contrast-enhanced MRI. J Magn Reson Imaging, 2013, 37: 928-935

[143]

Galasso O, Mariconda M, Romano G et al Expandable intramedullary nailing and platelet rich plasma to treat long bone non-unions. J Orthop Traumatol, 2008, 9: 129-134

[144]

Smrke D, Gubina B, Domanovic D et al Allogeneic platelet gel with autologous cancellous bone graft for the treatment of a large bone defect. Eur Surg Res, 2007, 39: 170-174

[145]

Kanthan SR, Kavitha G, Addi S et al Platelet-rich plasma (PRP) enhances bone healing in non-united critical-sized defects: a preliminary study involving rabbit models. Injury, 2011, 42: 782-789

[146]

Lin SS, Landesberg R, Chin HS et al Controlled release of PRP-derived growth factors promotes osteogenic differentiation of human mesenchymal stem cells. Conf Proc IEEE Eng Med Biol Soc, 2006, 1: 4358-4361

[147]

Lu HH, Vo JM, Chin HS et al Controlled delivery of platelet-rich plasma-derived growth factors for bone formation. J Biomed Mater Res A, 2008, 86: 1128-1136

[148]

Huang S, Jia S, Liu G et al Osteogenic differentiation of muscle satellite cells induced by platelet-rich plasma encapsulated in three-dimensional alginate scaffold. Oral Surg Oral Med Oral Pathol Oral Radiol, 2012, 114: S32-S40

[149]

Hokugo A, Sawada Y, Hokugo R et al Controlled release of platelet growth factors enhances bone regeneration at rabbit calvaria. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 104: 44-48

[150]

Hokugo A, Ozeki M, Kawakami O et al Augmented bone regeneration activity of platelet-rich plasma by biodegradable gelatin hydrogel. Tissue Eng, 2005, 11: 1224-1233

[151]

Kim ES, Kim JJ, Park EJ. Angiogenic factor-enriched platelet-rich plasma enhances in vivo bone formation around alloplastic graft material. J Adv Prosthodont, 2010, 2: 7-13

[152]

Wiltfang J, Kloss FR, Kessler P et al Effects of platelet-rich plasma on bone healing in combination with autogenous bone and bone substitutes in critical-size defects. An animal experiment. Clin Oral Implants Res, 2004, 15: 187-193

[153]

Taschieri S, Corbella S, Weinstein R et al Maxillary sinus floor elevation using platelet-rich plasma combined with either biphasic calcium phosphate or deproteinized bovine bone. J Craniofac Surg, 2016, 27: 702-707

[154]

Berner A, Boerckel JD, Saifzadeh S et al Biomimetic tubular nanofiber mesh and platelet rich plasma-mediated delivery of BMP-7 for large bone defect regeneration. Cell Tissue Res, 2012, 347: 603-612

[155]

Dutra CE, Pereira MM, Serakides R et al In vivo evaluation of bioactive glass foams associated with platelet-rich plasma in bone defects. J Tissue Eng Regen Med, 2008, 2: 221-227

[156]

Wang SZ, Jin JY, Guo YD et al Intervertebral disc regeneration using plateletrich plasmacontaining bone marrowderived mesenchymal stem cells: A preliminary investigation. Mol Med Rep, 2016, 13: 3475-3481

[157]

Rosselot G, Martínez J, Pablo Rodríguez J. [Cellular basis of bone tissue development]. Rev Med Chil, 1996, 124: 15-20

[158]

Bruder SP, Caplan AI. Cellular and molecular events during embryonic bone development. Connect Tissue Res, 1989, 20: 65-71

[159]

Hall BK. Cellular interactions during cartilage and bone development. J Craniofac Genet Dev Biol, 1991, 11: 238-250

[160]

Kale S, Biermann S, Edwards C et al Three-dimensional cellular development is essential for ex vivo formation of human bone. Nat Biotechnol, 2000, 18: 954-958

[161]

Mistura DV, Messias AD, Duek EA et al Development, characterization, and cellular adhesion of poly(L-lactic acid)/poly(caprolactone triol) membranes for potential application in bone tissue regeneration. Artif Organs, 2013, 37: 978-984

[162]

Rameis MT, Cei S, Bernardi J et al Development of an in vitro model on cellular adhesion on granular natural bone mineral under dynamic seeding conditions--a pilot study. J Biomed Mater Res B Appl Biomater, 2009, 91: 766-771

[163]

Pneumaticos SG, Triantafyllopoulos GK, Basdra EK et al Segmental bone defects: from cellular and molecular pathways to the development of novel biological treatments. J Cell Mol Med, 2010, 14: 2561-2569

[164]

Schenk RK, Willenegger HR. [Histology of primary bone healing: modifications and limits of recovery of gaps in relation to extent of the defect (author's transl)]. Unfallheilkunde, 1977, 80: 155-160

[165]

Church LE. Histology of bone and healing of fractures. J Oral Surg Anesth Hosp Dent Serv, 1963, 21: 337-344

[166]

Schenk RK. [Histology of primary bone healing]. Fortschr Kiefer Gesichtschir, 1975, 19: 8-12

[167]

Mann M, Quitta P, Drápela J et al [Recent views of bone fracture healing with respect to age and fixation in rats. Mechanical tests, histology and electron microscopy (author's transl)]. Cas Lek Cesk, 1981, 120: 561-566

[168]

Sakata R, Reddi AH. Platelet-rich plasma modulates actions on articular cartilage lubrication and regeneration. Tissue Eng Part B Rev, 2016, 22: 408-419

[169]

Martinez-Zapata MJ, Marti-Carvajal A, Sola I et al Efficacy and safety of the use of autologous plasma rich in platelets for tissue regeneration: a systematic review. Transfusion, 2009, 49: 44-56

[170]

Plachokova AS, Nikolidakis D, Mulder J et al Effect of platelet-rich plasma on bone regeneration in dentistry: a systematic review. Clin Oral Implants Res, 2008, 19: 539-545

[171]

Sampson S, Gerhardt M, Mandelbaum B. Platelet rich plasma injection grafts for musculoskeletal injuries: a review. Curr Rev Musculoskelet Med, 2008, 1: 165-174

[172]

Roubelakis MG, Trohatou O, Roubelakis A et al Platelet-rich plasma (PRP) promotes fetal mesenchymal stem/stromal cell migration and wound healing process. Stem Cell Rev, 2014, 10: 417-428

[173]

Mishra A, Tummala P, King A et al Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue Eng Part C Methods, 2009, 15: 431-435

[174]

Xie X, Zhang C, Tuan RS. Biology of platelet-rich plasma and its clinical application in cartilage repair. Arthritis Res Ther, 2014, 16: 204

[175]

Rubio-Azpeitia E, Andia I. Partnership between platelet-rich plasma and mesenchymal stem cells: in vitro experience. Muscles Ligaments Tendons J, 2014, 4: 52-62

[176]

Zou J, Yuan C, Wu C et al The effects of platelet-rich plasma on the osteogenic induction of bone marrow mesenchymal stem cells. Connect Tissue Res, 2014, 55: 304-309

[177]

Fernandes G, Wang C, Yuan X et al Combination of controlled release platelet-rich plasma alginate beads and bone morphogenetic protein-2 genetically modified mesenchymal stem cells for bone regeneration. J Periodontol, 2016, 87: 470-480

[178]

Tang HC, Chen WC, Chiang CW et al Differentiation effects of platelet-rich plasma concentrations on synovial fluid mesenchymal stem cells from pigs cultivated in alginate complex hydrogel. Int J Mol Sci, 2015, 16: 18507-18521

[179]

Souza TF, Sakamoto SS, Ferreira GT et al Osteogenic potential of mesenchymal cells derived from canine umbilical cord matrix co-cultured with platelet-rich plasma and demineralized bone matrix. J Vet Sci, 2015, 16: 381-384

[180]

Busilacchi A, Gigante A, Mattioli-Belmonte M et al Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydr Polym, 2013, 98: 665-676

[181]

Zhao SN, Liu WF, Zhang ZT. [Effect of platelet-rich plasma on cell proliferation and osteogenic activity of pulp stem cells]. Zhonghua Kou Qiang Yi Xue Za Zhi, 2013, 48: 177-182

[182]

Lee UL, Jeon SH, Park JY et al Effect of platelet-rich plasma on dental stem cells derived from human impacted third molars. Regen Med, 2011, 6: 67-79

[183]

Li H, Liu D, Yu Y et al [Experimental research of the promotion effect of autogeneic PRP on osteogenic differentiation of human adipose-derived stem cells in vitro]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2009, 23: 732-736

[184]

Kasten P, Vogel J, Beyen I et al Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds: the specific surface area makes a difference. J Biomater Appl, 2008, 23: 169-188

[185]

Murphy MB, Blashki D, Buchanan RM et al Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation. Biomaterials, 2012, 33: 5308-5316

[186]

Kocaoemer A, Kern S, Kluter H et al Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells, 2007, 25: 1270-1278

[187]

Duan J, Kuang W, Tan J et al Differential effects of platelet rich plasma and washed platelets on the proliferation of mouse MSC cells. Mol Biol Rep, 2011, 38: 2485-2490

[188]

Mifune Y, Matsumoto T, Takayama K et al The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair. Osteoarthritis Cartilage, 2013, 21: 175-185

[189]

Drengk A, Zapf A, Sturmer EK et al Influence of platelet-rich plasma on chondrogenic differentiation and proliferation of chondrocytes and mesenchymal stem cells. Cells Tissues Organs, 2009, 189: 317-326

[190]

Scioli MG, Bielli A, Gentile P et al. Combined treatment with platelet-rich plasma and insulin favours chondrogenic and osteogenic differentiation of human adipose-derived stem cells in three-dimensional collagen scaffolds. J Tissue Eng Regen Med 2016; doi: 10.1002/term.2139. [Epub ahead of print].

[191]

Yamada Y, Ueda M, Naiki T et al Autogenous injectable bone for regeneration with mesenchymal stem cells and platelet-rich plasma: tissue-engineered bone regeneration. Tissue Eng, 2004, 10: 955-964

[192]

Vogel JP, Szalay K, Geiger F et al Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics. Platelets, 2006, 17: 462-469

[193]

Dohan Ehrenfest DM, Doglioli P, de Peppo GM et al Choukroun's platelet-rich fibrin (PRF) stimulates in vitro proliferation and differentiation of human oral bone mesenchymal stem cell in a dose-dependent way. Arch Oral Biol, 2010, 55: 185-194

[194]

Gobbi A, Fishman M. Platelet-rich plasma and bone marrow-derived mesenchymal stem cells in sports medicine. Sports Med Arthrosc, 2016, 24: 69-73

[195]

Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am, 1993, 75: 532-553

[196]

Kruger JP, Hondke S, Endres M et al Human platelet-rich plasma stimulates migration and chondrogenic differentiation of human subchondral progenitor cells. J Orthop Res, 2012, 30: 845-852

[197]

Hu ZM, Peel SA, Ho SK et al Comparison of platelet-rich plasma, bovine BMP, and rhBMP-4 on bone matrix protein expression in vitro. Growth Factors, 2009, 27: 280-288

[198]

Chen JC, Ko CL, Shih CJ et al Calcium phosphate bone cement with 10 wt% platelet-rich plasma in vitro and in vivo. J Dent, 2012, 40: 114-122

[199]

Jiang ZQ, Liu HY, Zhang LP et al Repair of calvarial defects in rabbits with platelet-rich plasma as the scaffold for carrying bone marrow stromal cells. Oral Surg Oral Med Oral Pathol Oral Radiol, 2012, 113: 327-333

[200]

Kreuz PC, Krüger JP, Metzlaff S et al Platelet-rich plasma preparation types show impact on chondrogenic differentiation, migration, and proliferation of human subchondral mesenchymal progenitor cells. Arthroscopy, 2015, 31: 1951-1961

[201]

Muraglia A, Ottonello C, Spanò R et al Biological activity of a standardized freeze-dried platelet derivative to be used as cell culture medium supplement. Platelets, 2014, 25: 211-220

[202]

Friedenstein AJ. Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Haematol Blood Transfus, 1980, 25: 19-29

[203]

Wright NA. Stem cell identification--in vivo lineage analysis versus in vitro isolation and clonal expansion. J Pathol, 2012, 227: 255-266

[204]

Janicki P, Boeuf S, Steck E et al Prediction of in vivo bone forming potency of bone marrow-derived human mesenchymal stem cells. Eur Cell Mater, 2011, 21: 488-507

[205]

Cheng W, Jin D, Zhao Y. [Effect of platelet-rich plasma on proliferation and osteogenic differentiation of bone marrow stem cells in China goats]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2007, 21: 386-389

[206]

Castro FO, Torres A, Cabezas J et al Combined use of platelet rich plasma and vitamin C positively affects differentiation in vitro to mesodermal lineage of adult adipose equine mesenchymal stem cells. Res Vet Sci, 2014, 96: 95-101

[207]

Qi Y, Niu L, Zhao T et al Combining mesenchymal stem cell sheets with platelet-rich plasma gel/calcium phosphate particles: a novel strategy to promote bone regeneration. Stem Cell Res Ther, 2015, 6: 256

[208]

Seo JP, Kambayashi Y, Itho M et al Effects of a synovial flap and gelatin/beta-tricalcium phosphate sponges loaded with mesenchymal stem cells, bone morphogenetic protein-2, and platelet rich plasma on equine osteochondral defects. Res Vet Sci, 2015, 101: 140-143

[209]

Cvetković VJ, Najdanović JG, Vukelić-Nikolić et al Osteogenic potential of in vitro osteo-induced adipose-derived mesenchymal stem cells combined with platelet-rich plasma in an ectopic model. Int Orthop, 2015, 39: 2173-2180

[210]

Tajima S, Tobita M, Orbay H et al Direct and indirect effects of a combination of adipose-derived stem cells and platelet-rich plasma on bone regeneration. Tissue Eng Part A, 2015, 21: 895-905

[211]

Xu Q, Li B, Yuan L et al. Combination of platelet-rich plasma within periodontal ligament stem cell sheets enhances cell differentiation and matrix production. J Tissue Eng Regen Med 2014; doi: 10.1002/term.1953. [Epub ahead of print].

[212]

Ng MH, Duski S, Tan KK et al Repair of segmental load-bearing bone defect by autologous mesenchymal stem cells and plasma-derived fibrin impregnated ceramic block results in early recovery of limb function. Biomed Res Int, 2014, 2014: 345910

[213]

Wen Y, Gu W, Cui J et al Platelet-rich plasma enhanced umbilical cord mesenchymal stem cells-based bone tissue regeneration. Arch Oral Biol, 2014, 59: 1146-1154

[214]

Man Y, Wang P, Guo Y et al Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres. Biomaterials, 2012, 33: 8802-8811

[215]

Monteiro BS, Del Carlo RJ, Argôlo-Neto NM et al Association of mesenchymal stem cells with platelet rich plasma on the repair of critical calvarial defects in mice. Acta Cir Bras, 2012, 27: 201-209

[216]

Ito K, Yamada Y, Nakamura S et al Osteogenic potential of effective bone engineering using dental pulp stem cells, bone marrow stem cells, and periosteal cells for osseointegration of dental implants. Int J Oral Maxillofac Implants, 2011, 26: 947-954

[217]

Liu X, Cao L, Jiang Y et al [Repair of radial segmental bone defects by combined angiopoietin 1 gene transfected bone marrow mesenchymal stem cells and platelet-rich plasma tissue engineered bone in rabbits]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2011, 25: 1115-1119

[218]

Kohgo T, Yamada Y, Ito K et al Bone regeneration with self-assembling peptide nanofiber scaffolds in tissue engineering for osseointegration of dental implants. Int J Periodontics Restorative Dent, 2011, 31: e9-e16

[219]

Yamada Y, Ito K, Nakamura S et al Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow. Cell Transplant, 2011, 20: 1003-1013

[220]

Kang J, Hur J, Kang JA et al Activated platelet supernatant can augment the angiogenic potential of human peripheral blood stem cells mobilized from bone marrow by G-CSF. J Mol Cell Cardiol, 2014, 75: 64-75

[221]

Yoshimi R, Yamada Y, Ito K et al Self-assembling peptide nanofiber scaffolds, platelet-rich plasma, and mesenchymal stem cells for injectable bone regeneration with tissue engineering. J Craniofac Surg, 2009, 20: 1523-1530

[222]

Pieri F, Lucarelli E, Corinaldesi G et al Effect of mesenchymal stem cells and platelet-rich plasma on the healing of standardized bone defects in the alveolar ridge: a comparative histomorphometric study in minipigs. J Oral Maxillofac Surg, 2009, 67: 265-272

[223]

Ito K, Yamada Y, Naiki T et al Simultaneous implant placement and bone regeneration around dental implants using tissue-engineered bone with fibrin glue, mesenchymal stem cells and platelet-rich plasma. Clin Oral Implants Res, 2006, 17: 579-586

[224]

Xie X, Wang Y, Zhao C et al Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials, 2012, 33: 7008-7018

[225]

Ricco S, Renzi S, Del Bue M et al Allogeneic adipose tissue-derived mesenchymal stem cells in combination with platelet rich plasma are safe and effective in the therapy of superficial digital flexor tendonitis in the horse. Int J Immunopathol Pharmacol, 2013, 26: 61-68

[226]

Betsch M, Schneppendahl J, Thuns S et al Bone marrow aspiration concentrate and platelet rich plasma for osteochondral repair in a porcine osteochondral defect model. PLoS One, 2013, 8: e71602

[227]

Lee JC, Min HJ, Park HJ et al Synovial membrane-derived mesenchymal stem cells supported by platelet-rich plasma can repair osteochondral defects in a rabbit model. Arthroscopy, 2013, 29: 1034-1046

[228]

Renzi S, Riccò S, Dotti S et al Autologous bone marrow mesenchymal stromal cells for regeneration of injured equine ligaments and tendons: a clinical report. Res Vet Sci, 2013, 95: 272-277

[229]

Zhang ZY, Huang AW, Fan JJ et al The potential use of allogeneic platelet-rich plasma for large bone defect treatment: immunogenicity and defect healing efficacy. Cell Transplant, 2013, 22: 175-187

[230]

Yuksel S, Gulec MA, Gultekin MZ et al Comparison of the early period effects of bone marrow-derived mesenchymal stem cells and platelet-rich plasma on the Achilles tendon ruptures in rats. Connect Tissue Res, 2016, 57: 360-373

[231]

Koh YG, Choi YJ. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee, 2012, 19: 902-907

[232]

Liebergall M, Schroeder J, Mosheiff R et al Stem cell-based therapy for prevention of delayed fracture union: a randomized and prospective preliminary study. Mol Ther, 2013, 21: 1631-1638

[233]

Qu Z, Mi S, Fang G. [Clinical study on treatment of bone nonunion with MSCs derived from human umbilical cord]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2009, 23: 345-347

[234]

Ueda M, Yamada Y, Kagami H et al Injectable bone applied for ridge augmentation and dental implant placement: human progress study. Implant Dent, 2008, 17: 82-90

[235]

Yamada Y, Nakamura S, Ueda M et al Osteotome technique with injectable tissue-engineered bone and simultaneous implant placement by cell therapy. Clin Oral Implants Res, 2013, 24: 468-474

[236]

Yamada Y, Ueda M, Hibi H et al A novel approach to periodontal tissue regeneration with mesenchymal stem cells and platelet-rich plasma using tissue engineering technology: a clinical case report. Int J Periodontics Restorative Dent, 2006, 26: 363-369

[237]

Kanitkar M, Tailor HD, Khan WS. The use of growth factors and mesenchymal stem cells in orthopaedics. Open Orthop J, 2011, 5: 271-275

[238]

Filho Cerruti H, Kerkis I, Kerkis A et al Allogenous bone grafts improved by bone marrow stem cells and platelet growth factors: clinical case reports. Artif Organs, 2007, 31: 268-273

[239]

Ueda M, Yamada Y, Ozawa R et al Clinical case reports of injectable tissue-engineered bone for alveolar augmentation with simultaneous implant placement. Int J Periodontics Restorative Dent, 2005, 25: 129-137

[240]

Kitoh H, Kitakoji T, Tsuchiya H et al Distraction osteogenesis of the lower extremity in patients with achondroplasia/hypochondroplasia treated with transplantation of culture-expanded bone marrow cells and platelet-rich plasma. J Pediatr Orthop, 2007, 27: 629-634

[241]

Yu S, Wang Y, Dong Q. [Platelet-rich plasma and its applications in orthopedics field]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2008, 22: 880-883

[242]

Bianco P, Robey PG, Saggio I et al "Mesenchymal" stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature, identity, and significance in incurable skeletal disease. Hum Gene Ther, 2010, 21: 1057-1066

[243]

Sabali M, Mangano A, Lianos GD et al Bone regeneration using mesenchymal stem cells: challenges and future perspectives in regenerative surgery. Regen Med, 2015, 10: 543-547

[244]

Jones E, Schäfer R. Where is the common ground between bone marrow mesenchymal stem/stromal cells from different donors and species? Stem Cell Res Ther, 2015, 6: 143

[245]

Dhillon RS, Schwarz EM, Maloney MD. Platelet-rich plasma therapy - future or trend? Arthritis Res Ther, 2012, 14: 219

[246]

Russell RP, Apostolakos J, Hirose T et al Variability of platelet-rich plasma preparations. Sports Med Arthrosc, 2013, 21: 186-190

[247]

Zhu Y, Yuan M, Meng HY et al Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review. Osteoarthritis Cartilage, 2013, 21: 1627-1637

[248]

Olivier V, Faucheux N, Hardouin P. Biomaterial challenges and approaches to stem cell use in bone reconstructive surgery. Drug Discov Today, 2004, 9: 803-811

[249]

Zhang L, Peng LP, Wu N et al Development of bone marrow mesenchymal stem cell culture in vitro. Chinese Med J, 2012, 125: 1650-1655

[250]

Sampson S, Botto-van Bemden A, Aufiero D. Stem cell therapies for treatment of cartilage and bone disorders: osteoarthritis, avascular necrosis, and non-union fractures. PM R, 2015, 7: S26-S32

[251]

Lin BN, Whu SW, Chen CH et al Bone marrow mesenchymal stem cells, platelet-rich plasma and nanohydroxyapatite-type I collagen beads were integral parts of biomimetic bone substitutes for bone regeneration. J Tissue Eng Regen Med, 2013, 7: 841-854

[252]

Smith B, Goldstein T, Ekstein C. Biologic adjuvants and bone: current use in orthopedic surgery. Curr Rev Musculoskelet Med, 2015, 8: 193-199

[253]

Park EJ, Kim ES, Weber HP et al Improved bone healing by angiogenic factor-enriched platelet-rich plasma and its synergistic enhancement by bone morphogenetic protein-2. Int J Oral Maxillofac Implants, 2008, 23: 818-826

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/