PDF
Abstract
Although cartilage degradation is the characteristic feature of osteoarthritis (OA), it is now recognized that the whole joint is involved in the progression of OA. In particular, the interaction (crosstalk) between cartilage and subchondral bone is thought to be a central feature of this process. The interface between articular cartilage and bone of articulating long bones is a unique zone, which comprises articular cartilage, below which is the calcified cartilage sitting on and intercalated into the subchondral bone plate. Below the subchondral plate is the trabecular bone at the end of the respective long bones. In OA, there are well-described progressive destructive changes in the articular cartilage, which parallel characteristic changes in the underlying bone. This review examines the evidence that biochemical and biomechanical signaling between these tissue compartments is important in OA disease progression and asks whether such signaling might provide possibilities for therapeutic intervention to halt or slow disease development.
Osteoarthritis: Communication between cartilage and bone
Communications between cartilage and underlying bone could play a vital role in the progression of osteoarthritis (OA). During OA, a condition characterized by joint pain and swelling, cell behavior and molecular expression in bone and cartilage are altered, but exactly how the two tissues interact and respond to such changes is unclear. David Findlay and Julia Kuliwaba from the University of Adelaide, Australia, reviewed current understanding of cartilage-bone interplay in both healthy joints and those affected by OA. They conclude it is feasible that cartilage and bone function as a single unit, communicating via direct mechanical and biochemical signaling. It is unclear whether signaling molecules travel between the tissues, and if so, whether this is a cause or a result of OA. Further investigation of cartilage-bone communication may inform future OA therapies.
Cite this article
Download citation ▾
David M Findlay, Julia S Kuliwaba.
Bone–cartilage crosstalk: a conversation for understanding osteoarthritis.
Bone Research, 2016, 4(1): 16028 DOI:10.1038/boneres.2016.28
| [1] |
Clark JM, Huber JD. The structure of the human subchondral plate. J Bone Joint Surg Br, 1990, 72: 866-873
|
| [2] |
Duncan H, Jundt J, Riddle JM et al The tibial subchondral plate. A scanning electron microscopic study. J Bone Joint Surg Am, 1987, 69: 1212-1220
|
| [3] |
Lyons TJ, McClure SF, Stoddart RW et al The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces. BMC Musculoskelet Disord, 2006, 7: 52
|
| [4] |
Imhof H, Sulzbacher I, Grampp S et al Subchondral bone and cartilage disease: a rediscovered functional unit. Invest Radiol, 2000, 35: 581-588
|
| [5] |
Kim HK, Bian H, Aya-ay J et al Hypoxia and hif-1alpha expression in the epiphyseal cartilage following ischemic injury to the immature femoral head. Bone, 2009, 45: 280-288
|
| [6] |
Pan J, Zhou X, Li W et al In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res, 2009, 27: 1347-1352
|
| [7] |
Arkill KP, Winlove CP. Solute transport in the deep and calcified zones of articular cartilage. Osteoarthritis Cartilage, 2008, 16: 708-714
|
| [8] |
O’Hara BP, Urban JP, Maroudas A. Influence of cyclic loading on the nutrition of articular cartilage. Ann Rheum Dis, 1990, 49: 536-539
|
| [9] |
Zhang L, Gardiner BS, Smith DW et al On the role of diffusible binding partners in modulating the transport and concentration of proteins in tissues. J Theor Biol, 2010, 263: 20-29
|
| [10] |
Zhang L, Gardiner BS, Smith DW et al The effect of cyclic deformation and solute binding on solute transport in cartilage. Arch Biochem Biophys, 2007, 457: 47-56
|
| [11] |
Wang B, Zhou X, Price C et al Quantifying load-induced solute transport and solute-matrix interaction within the osteocyte lacunar-canalicular system. J Bone Miner Res, 2013, 28: 1075-1086
|
| [12] |
Hwang J, Bae WC, Shieu W et al Increased hydraulic conductance of human articular cartilage and subchondral bone plate with progression of osteoarthritis. Arthritis Rheum, 2008, 58: 3831-3842
|
| [13] |
Botter SM, van Osch GJ, Clockaerts S et al Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice: an in vivo microfocal computed tomography study. Arthritis Rheum, 2011, 63: 2690-2699
|
| [14] |
Iijima H, Aoyama T, Tajino J et al Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis. Osteoarthritis Cartilage, 2016, 24: 354-363
|
| [15] |
Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev Rheumatol, 2012, 8: 390-398
|
| [16] |
Muratovic D, Cicuttini F, Wluka A et al Bone marrow lesions detected by specific combination of MRI sequences are associated with severity of osteochondral degeneration. Arthritis Res Ther, 2016, 18: 54
|
| [17] |
Lee JH, Dyke JP, Ballon D et al Subchondral fluid dynamics in a model of osteoarthritis: use of dynamic contrast-enhanced magnetic resonance imaging. Osteoarthritis Cartilage, 2009, 17: 1350-1355
|
| [18] |
Tsai PH, Lee HS, Siow TY et al Abnormal perfusion in patellofemoral subchondral bone marrow in the rat anterior cruciate ligament transection model of post-traumatic osteoarthritis: a dynamic contrast-enhanced magnetic resonance imaging study. Osteoarthritis Cartilage, 2016, 24: 129-133
|
| [19] |
Aaron RK, Dyke JP, Ciombor DM et al Perfusion abnormalities in subchondral bone associated with marrow edema, osteoarthritis, and avascular necrosis. Ann NY Acad Sci, 2007, 1117: 124-137
|
| [20] |
Sanchez-Adams J, Leddy HA, McNulty AL et al The mechanobiology of articular cartilage: bearing the burden of osteoarthritis. Curr Rheumatol Rep, 2014, 16: 451
|
| [21] |
Burger EH, Klein-Nulend J. Mechanotransduction in bone-role of the lacuno-canalicular network. FASEB J, 1999, 13: S101-S112
|
| [22] |
Bonewald LF. Mechanosensation and transduction in osteocytes. Bonekey Osteovision, 2006, 3: 7-15
|
| [23] |
Verborgt O, Gibson GJ, Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res, 2000, 15: 60-67
|
| [24] |
Findlay DM. Vascular pathology and osteoarthritis. Rheumatology (Oxford), 2007, 46: 1763-1768
|
| [25] |
Liu-Bryan R, Terkeltaub R. Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol, 2015, 11: 35-44
|
| [26] |
Amin AK, Huntley JS, Simpson AH et al Chondrocyte survival in articular cartilage: the influence of subchondral bone in a bovine model. J Bone Joint Surg Br, 2009, 91: 691-699
|
| [27] |
Sanchez C, Deberg MA, Piccardi N et al Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. This effect is mimicked by interleukin-6, -1beta and oncostatin M pre-treated non-sclerotic osteoblasts. Osteoarthritis Cartilage, 2005, 13: 979-987
|
| [28] |
Sanchez C, Horcajada MN, Membrez Scalfo F et al Carnosol inhibits pro-inflammatory and catabolic mediators of cartilage breakdown in human osteoarthritic chondrocytes and mediates cross-talk between subchondral bone osteoblasts and chondrocytes. PLoS One, 2015, 10: e0136118
|
| [29] |
Atkins GJ, Findlay DM. Osteocyte regulation of bone mineral: A little give and take. Osteoporos Int., 2012, 23: 2067-2079
|
| [30] |
Bonewald LF. The amazing osteocyte. J Bone Miner Res., 2011, 26: 229-238
|
| [31] |
Ciani C, Doty SB, Fritton SP. An effective histological staining process to visualize bone interstitial fluid space using confocal microscopy. Bone, 2009, 44: 1015-1017
|
| [32] |
Priam S, Bougault C, Houard X et al Identification of soluble 14-3-3 as a novel subchondral bone mediator involved in cartilage degradation in osteoarthritis. Arthritis Rheum, 2013, 65: 1831-1842
|
| [33] |
Torzilli PA, Bhargava M, Chen CT. Mechanical loading of articular cartilage reduces IL-1-induced enzyme expression. Cartilage, 2011, 2: 364-373
|
| [34] |
Yuan XL, Meng HY, Wang YC et al Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthritis Cartilage, 2014, 22: 1077-1089
|
| [35] |
Ludin A, Sela JJ, Schroeder A et al Injection of vascular endothelial growth factor into knee joints induces osteoarthritis in mice. Osteoarthritis Cartilage, 2013, 21: 491-497
|
| [36] |
Hamilton JL, Nagao M, Levine BR et al Targeting VEGF and its receptors for the treatment of osteoarthritis and associated pain. J Bone Miner Res, 2016, 31: 911-924
|
| [37] |
Oh H, Chun CH, Chun JS. Dkk-1 expression in chondrocytes inhibits experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum, 2012, 64: 2568-2578
|
| [38] |
Lories RJ, Corr M, Lane NE. To Wnt or not to Wnt: the bone and joint health dilemma. Nat Rev Rheumatol, 2013, 9: 328-339
|
| [39] |
Valverde-Franco G, Pelletier JP, Fahmi H et al In vivo bone-specific EphB4 overexpression in mice protects both subchondral bone and cartilage during osteoarthritis. Arthritis Rheum, 2012, 64: 3614-3625
|
| [40] |
Matsuo K, Otaki N. Bone cell interactions through Eph/ephrin: bone modeling, remodeling and associated diseases. Cell Adh Migr, 2012, 6: 148-156
|
| [41] |
Zhen G, Wen C, Jia X et al Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med, 2013, 19: 704-712
|
| [42] |
Dequeker J, Mohan S, Finkelman RD et al Generalized osteoarthritis associated with increased insulin-like growth factor types I and II and transforming growth factor beta in cortical bone from the iliac crest. Possible mechanism of increased bone density and protection against osteoporosis. Arthritis Rheum, 1993, 36: 1702-1708
|
| [43] |
Lotz M, Kekow J, Carson DA. Transforming growth factor-beta and cellular immune responses in synovial fluids. J Immunol, 1990, 144: 4189-4194
|
| [44] |
Hopwood B, Tsykin A, Findlay DM et al Mcroarray gene expression profiling of osteoarthritic bone suggests altered bone remodeling, WNT and transforming growth factor-beta/bone morphogenic protein signalling. Arthritis Res Ther, 2007, 9: R100
|
| [45] |
Kumarasinghe DD, Sullivan T, Kuliwaba JS et al Evidence for the dysregulated expression of TWIST1, TGFβ1 and SMAD3 in differentiating osteoblasts from primary hip osteoarthritis patients. Osteoarthritis Cartilage, 2012, 20: 1357-1366
|
| [46] |
Zhen G, Cao X. Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol Sci, 2014, 35: 227-236
|
| [47] |
Tang Y, Wu X, Lei W et al TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med, 2009, 15: 757-765
|
| [48] |
Cui Z, Crane J, Xie H et al Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone. Ann Rheum Dis, 2015, 75: 1714-1721
|
| [49] |
Xie L, Tintani F, Wang X et al. Systemic neutralization of TGF-β attenuates osteoarthritis. Ann NY Acad Sci 2016 [Epub ahead of print].
|
| [50] |
Zhao W, Wang T, Luo Q et al Cartilage degeneration and excessive subchondral bone formation in spontaneous osteoarthritis involves altered TGF-β signaling. J Orthop Res, 2016, 34: 763-770
|
| [51] |
Burr DB, Gallant MA. Bone remodeling in osteoarthritis. Nat Rev Rheumatol, 2012, 8: 665-673
|
| [52] |
Bertuglia A, Lacourt M, Girard C et al Osteoclasts are recruited to the subchondral bone in naturally occurring post-traumatic equine carpal osteoarthritis and may contribute to cartilage degradation. Osteoarthritis Cartilage, 2016, 24: 555-566
|
| [53] |
Zhang L, Hu H, Tian F et al Enhancement of subchondral bone quality by alendronate administration for the reduction of cartilage degeneration in the early phase of experimental osteoarthritis. Clin Exp Med, 2011, 11: 235-243
|
| [54] |
Shirai T, Kobayashi M, Nishitani K et al Chondroprotective effect of alendronate in a rabbit model of osteoarthritis. J Orthop Res, 2011, 29: 1572-1577
|
| [55] |
Hayami T, Pickarski M, Zhuo Y et al Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone, 2006, 38: 234-243
|
| [56] |
Manicourt DH, Altman RD, Williams JM et al Treatment with calcitonin suppresses the responses of bone, cartilage, and synovium in the early stages of canine experimental osteoarthritis and significantly reduces the severity of the cartilage lesions. Arthritis Rheum, 1999, 42: 1159-1167
|
| [57] |
Kadri A, Ea HK, Bazille C et al Osteoprotegerin inhibits cartilage degradation through an effect on trabecular bone in murine experimental osteoarthritis. Arthritis Rheum, 2008, 58: 2379-2386
|
| [58] |
Van Offel JF, Schuerwegh AJ, Bridts CH et al Effect of bisphosphonates on viability, proliferation, and dexamethasone-induced apoptosis of articular chondrocytes. Ann Rheum Dis, 2002, 61: 925-928
|
| [59] |
Sondergaard BC, Madsen SH, Segovia-Silvestre T et al Investigation of the direct effects of salmon calcitonin on human osteoarthritic chondrocytes. BMC Musculoskelet Disord, 2010, 11: 62
|
| [60] |
Feng ZY, He ZN, Zhang B et al Osteoprotegerin promotes the proliferation of chondrocytes and affects the expression of ADAMTS-5 and TIMP-4 through MEK/ERK signaling. Mol Med Rep, 2013, 8: 1669-1679
|
| [61] |
Roos EM, Arden NK. Strategies for the prevention of knee osteoarthritis. Nat Rev Rheumatol, 2016, 12: 92-101
|
| [62] |
Robling AG, Warden SJ, Shultz KL et al Genetic effects on bone mechanotransduction in congenic mice harboring bone size and strength quantitative trait loci. J Bone Miner Res, 2007, 22: 984-991
|
| [63] |
Rai MF, Sandell LJ. Regeneration of articular cartilage in healer and non-healer mice. Matrix Biol, 2014, 39: 50-55
|
| [64] |
Rai MF, Sandell LJ, Zhang B et al RNA microarray analysis of macroscopically normal articular cartilage from knees undergoing partial medial meniscectomy: potential prediction of the risk for developing osteoarthritis. PLoS One, 2016, 11: e0155373
|
| [65] |
Houard X, Goldring MB, Berenbaum F. Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr Rheumatol Rep, 2013, 15: 375
|
| [66] |
Rahmati M, Mobasheri A, Mozafari M. Inflammatory mediators in osteoarthritis: a critical review of the state-of-the-art, current prospects, and future challenges. Bone, 2016, 85: 81-90
|
| [67] |
Zhou S, Thornhill TS, Meng F et al Influence of osteoarthritis grade on molecular signature of human cartilage. J Orthop Res, 2016, 34: 454-462
|
| [68] |
Upton AR, Holding CA, Dharmapatni AA et al The expression of RANKL and OPG in the various grades of osteoarthritic cartilage. Rheumatol Int, 2012, 32: 535-540
|
| [69] |
Fang J, Xu L, Li Y et al Roles of TGF-beta 1 signaling in the development of osteoarthritis. Histol Histopathol, 2016, 31: 1161-1167
|
| [70] |
Xu L, Golshirazian I, Asbury BJ et al Induction of high temperature requirement A1, a serine protease, by TGF-beta1 in articular chondrocytes of mouse models of OA. Histol Histopathol, 2014, 29: 609-618
|
| [71] |
Cherian JJ, Parvizi J, Bramlet D et al Preliminary results of a phase II randomized study to determine the efficacy and safety of genetically engineered allogeneic human chondrocytes expressing TGF-β1 in patients with grade 3 chronic degenerative joint disease of the knee. Osteoarthritis Cartilage, 2015, 23: 2109-2118
|
| [72] |
Dell'accio F, De Bari C, Eltawil NM et al Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum, 2008, 58: 1410-1421
|
| [73] |
Chan BY, Fuller ES, Russell AK et al Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. Osteoarthritis Cartilage, 2011, 19: 874-885
|
| [74] |
Couchourel D, Aubry I, Delalandre A et al Altered mineralization of human osteoarthritic osteoblasts is attributable to abnormal type I collagen production. Arthritis Rheum, 2009, 60: 1438-1450
|
| [75] |
Chan TF, Couchourel D, Abed E et al Elevated Dickkopf-2 levels contribute to the abnormal phenotype of human osteoarthritic osteoblasts. J Bone Miner Res, 2011, 26: 1399-1410
|
| [76] |
Kuliwaba JS, Findlay DM, Atkins GJ et al Enhanced expression of osteocalcin mRNA in human osteoarthritic trabecular bone of the proximal femur is associated with decreased expression of interleukin-6 and interleukin-11 mRNA. J Bone Miner Res, 2000, 15: 332-341
|
| [77] |
Fazzalari NL, Kuliwaba JS, Atkins GJ et al The ratio of messenger RNA levels of receptor activator of nuclear factor kappaB ligand to osteoprotegerin correlates with bone remodeling indices in normal human cancellous bone but not in osteoarthritis. J Bone Miner Res, 2001, 16: 1015-1027
|
| [78] |
Logar DB, Komadina R, Prezelj J et al Expression of bone resorption genes in osteoarthritis and in osteoporosis. J Bone Miner Metab, 2007, 25: 219-225
|
| [79] |
Kumarasinghe DD, Perilli E, Tsangari H et al Critical molecular regulators, histomorphometric indices and their correlations in the trabecular bone in primary hip osteoarthritis. Osteoarthritis Cartilage, 2010, 18: 1337-1344
|
| [80] |
Hopwood B, Gronthos S, Kuliwaba JS et al Identification of differentially expressed genes between osteoarthritic and normal trabecular bone from the intertrochanteric region of the proximal femur using cDNA microarray analysis. Bone, 2005, 36: 635-644
|
| [81] |
Kumarasinghe DD, Hopwood B, Kuliwaba JS et al An update on primary hip osteoarthritis including altered Wnt and TGF-β associated gene expression from the bony component of the disease. Rheumatology (Oxford), 2011, 50: 2166-2175
|
| [82] |
Sanchez-Sabate E, Alvarez L, Gil-Garay E et al Identification of differentially expressed genes in trabecular bone from the iliac crest of osteoarthritic patients. Osteoarthritis Cartilage, 2009, 17: 1106-1114
|
| [83] |
Chou CH, Lee CH, Lu LS et al Direct assessment of articular cartilage and underlying subchondral bone reveals a progressive gene expression change in human osteoarthritic knees. Osteoarthritis Cartilage, 2013, 21: 450-461
|
| [84] |
Zhang R, Fang H, Chen Y et al Gene expression analyses of subchondral bone in early experimental osteoarthritis by microarray. PLoS One, 2012, 7: e32356
|
| [85] |
Loeser RF, Olex AL, McNulty MA et al Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice. Arthritis Rheum, 2012, 64: 705-717
|
| [86] |
Fazzalari N, Parkinson I. Femoral trabecular bone of osteoarthritic and normal subjects in an age and sex matched group. Osteoarthritis Cartilage, 1998, 6: 377-382
|
| [87] |
Jeffery AK. Osteophytes and the osteoarthritic femoral head. J Bone Joint Surg Br, 1975, 57: 314-324
|
| [88] |
Dall'Ara E, Ohman C, Baleani M et al Reduced tissue hardness of trabecular bone is associated with severe osteoarthritis. J Biomech, 2011, 44: 1593-1598
|
| [89] |
Li B, Aspden RM. Material properties of bone from the femoral neck and calcar femorale of patients with osteoporosis or osteoarthritis. Osteoporos Int, 1997, 7: 450-456
|
| [90] |
Bassiouni HM. Bone marrow lesions in the knee: the clinical conundrum. Int J Rheum Dis, 2010, 13: 196-202
|
| [91] |
Daheshia M, Yao JQ. The bone marrow lesion in osteoarthritis. Rheumatol Int, 2011, 31: 143-148
|
| [92] |
Felson DT, Chaisson CE, Hill CL et al The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med, 2001, 134: 541-549
|
| [93] |
Link TM, Steinbach LS, Ghosh S et al Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology, 2003, 226: 373-381
|
| [94] |
Garnero P, Peterfy C, Zaim S et al Bone marrow abnormalities on magnetic resonance imaging are associated with type II collagen degradation in knee osteoarthritis: a three-month longitudinal study. Arthritis Rheum, 2005, 52: 2822-2829
|
| [95] |
Hunter DJ, Zhang Y, Niu J et al Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum, 2006, 54: 1529-1535
|
| [96] |
Baranyay FJ, Wang Y, Wluka AE et al Association of bone marrow lesions with knee structures and risk factors for bone marrow lesions in the knees of clinically healthy, community-based adults. Semin Arthritis Rheum, 2007, 37: 112-118
|
| [97] |
Sowers MF, Hayes C, Jamadar D et al Magnetic resonance-detected subchondral bone marrow and cartilage defect characteristics associated with pain and X-ray-defined knee osteoarthritis. Osteoarthritis Cartilage, 2003, 11: 387-393
|
| [98] |
Guymer E, Baranyay F, Wluka AE et al A study of the prevalence and associations of subchondral bone marrow lesions in the knees of healthy, middle-aged women. Osteoarthritis Cartilage, 2007, 15: 1437-1442
|
| [99] |
Felson DT, McLaughlin S, Goggins J et al Bone marrow edema and its relation to progression of knee osteoarthritis. Ann Intern Med, 2003, 139: 330-336
|
| [100] |
Zhai G, Blizzard L, Srikanth V et al Correlates of knee pain in older adults: Tasmanian Older Adult Cohort Study. Arthritis Rheum, 2006, 55: 264-271
|
| [101] |
Wluka AE, Wang Y, Davies-Tuck M et al Bone marrow lesions predict progression of cartilage defects and loss of cartilage volume in healthy middle-aged adults without knee pain over 2 yrs. Rheumatology (Oxford), 2008, 47: 1392-1396
|
| [102] |
Dore D, Martens A, Quinn S et al Bone marrow lesions predict site-specific cartilage defect development and volume loss: a prospective study in older adults. Arthritis Res Ther, 2010, 12: R222
|
| [103] |
Campbell TM, Churchman SM, Gomez A. Mesenchymal stem cell alterations in bone marrow lesions in patients with hip osteoarthritis. Arthritis Rheumatol, 2016, 68: 1648-1659
|
| [104] |
Tanamas SK, Wluka AE, Pelletier JP et al Bone marrow lesions in people with knee osteoarthritis predict progression of disease and joint replacement: a longitudinal study. Rheumatology (Oxford), 2010, 49: 2413-2419
|
| [105] |
Wluka AE, Teichtahl AJ, Maulana R et al Bone marrow lesions can be subtyped into groups with different clinical outcomes using two magnetic resonance imaging (MRI) sequences. Arthritis Res Ther, 2015, 17: 270
|
| [106] |
Ko FC, Dragomir CL, Plumb DA et al. Progressive cell-mediated changes in articular cartilage and bone in mice are initiated by a single session of controlled cyclic compressive loading. J Orthop Res 2016 [Epub ahead of print].
|