Current research on pharmacologic and regenerative therapies for osteoarthritis

Wei Zhang , Hongwei Ouyang , Crispin R Dass , Jiake Xu

Bone Research ›› 2016, Vol. 4 ›› Issue (1) : 15040

PDF
Bone Research ›› 2016, Vol. 4 ›› Issue (1) : 15040 DOI: 10.1038/boneres.2015.40
Article

Current research on pharmacologic and regenerative therapies for osteoarthritis

Author information +
History +
PDF

Abstract

Osteoarthritis (OA) is a degenerative joint disorder commonly encountered in clinical practice, and is the leading cause of disability in elderly people. Due to the poor self-healing capacity of articular cartilage and lack of specific diagnostic biomarkers, OA is a challenging disease with limited treatment options. Traditional pharmacologic therapies such as acetaminophen, non-steroidal anti-inflammatory drugs, and opioids are effective in relieving pain but are incapable of reversing cartilage damage and are frequently associated with adverse events. Current research focuses on the development of new OA drugs (such as sprifermin/recombinant human fibroblast growth factor-18, tanezumab/monoclonal antibody against β-nerve growth factor), which aims for more effectiveness and less incidence of adverse effects than the traditional ones. Furthermore, regenerative therapies (such as autologous chondrocyte implantation (ACI), new generation of matrix-induced ACI, cell-free scaffolds, induced pluripotent stem cells (iPS cells or iPSCs), and endogenous cell homing) are also emerging as promising alternatives as they have potential to enhance cartilage repair, and ultimately restore healthy tissue. However, despite currently available therapies and research advances, there remain unmet medical needs in the treatment of OA. This review highlights current research progress on pharmacologic and regenerative therapies for OA including key advances and potential limitations.

Osteoarthritis: Treatments for mobility

Next-generation therapies for osteoarthritis strive to go beyond symptom relief to achieve actual repair of damaged joint tissue. Existing treatments do little more than ease the pain for many elderly patients experiencing the painful cartilage degradation and bone growth associated with this disease. University of Western Australia researcher Jiake Xu and colleagues have reviewed a variety of treatments that are currently in the clinical pipeline which might offer a more meaningful restoration of joint function. Some are OA drugs that slow disease progression and tissue damage, while others promise to repair OA-related injuries. These include treatments based on biologic agents and regenerative therapies that could promote natural regeneration of cartilage at the joint. Finally, the authors examine a handful of potential therapies that are showing preclinical promise in animal models.

Cite this article

Download citation ▾
Wei Zhang, Hongwei Ouyang, Crispin R Dass, Jiake Xu. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Research, 2016, 4(1): 15040 DOI:10.1038/boneres.2015.40

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med, 2010, 26: 355-369

[2]

Felson DT. Clinical practice. osteoarthritis of the knee. N Engl J Med, 2006, 354: 841-848

[3]

Zhang W, Moskowitz RW, Nuki G et al OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage, 2008, 16: 137-162

[4]

Hochberg MC, Dougados M. Pharmacological therapy of osteoarthritis. Best Pract Res Clin Rheumatol, 2001, 15: 583-593

[5]

Lanza R, Langer R, Vacanti JP. Principles of Tissue Engineering, 2011 Academic Press: Burlington, VT, USA

[6]

Pearle AD, Warren RF, Rodeo SA. Basic science of articular cartilage and osteoarthritis. Clin Sports Med, 2005, 24: 1-12

[7]

Hunter W. Of the structure and diseases of articulating cartilages, by William Hunter, Surgeon. Phil. Trans, 1742, 42: 514-521

[8]

Gilbert JE. Current treatment options for the restoration of articular cartilage. Am J Knee Surg, 1998, 11: 42-46

[9]

Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage, 2002, 10: 432-463

[10]

Brocklehurst R, Bayliss MT, Maroudas A et al The composition of normal and osteoarthritic articular cartilage from human knee joints. With special reference to unicompartmental replacement and osteotomy of the knee. J Bone Joint Surg Am, 1984, 66: 95-106

[11]

Venn M, Maroudas A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis, 1977, 36: 121-129

[12]

Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res, 2001, 3: 107-113

[13]

Khan IM, Williams R, Archer CW. One flew over the progenitor's nest: migratory cells find a home in osteoarthritic cartilage. Cell Stem Cell, 2009, 4: 282-284

[14]

Del CMJ, Loeser RF. Cell death in osteoarthritis. Curr Rheumatol Rep, 2008, 10: 37-42

[15]

Dreier R. Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders. Arthritis Res Ther, 2010, 12: 216

[16]

van den Berg WB. Osteoarthritis year 2010 in review: pathomechanisms. Osteoarthritis Cartilage, 2011, 19: 338-341

[17]

Ea HK, Nguyen C, Bazin D et al Articular cartilage calcification in osteoarthritis: insights into crystal-induced stress. Arthritis Rheum, 2011, 63: 10-18

[18]

Fuerst M, Bertrand J, Lammers L et al Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum, 2009, 60: 2694-2703

[19]

van der Kraan PM, van den Berg WB. Osteophytes: relevance and biology. Osteoarthritis Cartilage, 2007, 15: 237-244

[20]

Felson DT, Gale DR, Elon GM et al Osteophytes and progression of knee osteoarthritis. Rheumatology (Oxford), 2005, 44: 100-104

[21]

Hayami T, Pickarski M, Zhuo Y et al Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone, 2006, 38: 234-243

[22]

Dixon AS, Jacoby RK, Berry H et al Clinical trial of intra-articular injection of sodium hyaluronate in patients with osteoarthritis of the knee. Curr Med Res Opin, 1988, 11: 205-213

[23]

Benito MJ, Veale DJ, FitzGerald O et al Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis, 2005, 64: 1263-1267

[24]

Treatment of Osteoarthritis of the Knee. 2nd edn. Rosemont: American Academy of Orthopaedic Surgeons, 2013.

[25]

Felson DT, Zhang Y, Hannan MT et al Risk factors for incident radiographic knee osteoarthritis in the elderly: the framingham study. Arthritis Rheum, 1997, 40: 728-733

[26]

Creamer P, Hochberg MC. Osteoarthritis. Lancet, 1997, 350: 503-508

[27]

Christensen R, Astrup A, Bliddal H. Weight loss: the treatment of choice for knee osteoarthritis? A Randomized trial. Osteoarthritis Cartilage, 2005, 13: 20-27

[28]

Roddy E, Zhang W, Doherty M. Aerobic walking or strengthening exercise for osteoarthritis of the knee? A systematic review. Ann Rheum Dis, 2005, 64: 544-548

[29]

van Baar ME, Dekker J, Oostendorp RA et al The effectiveness of exercise therapy in patients with osteoarthritis of the hip or knee: a randomized clinical trial. J Rheumatol, 1998, 25: 2432-2439

[30]

Ernst E, Posadzki P. Complementary and alternative medicine for rheumatoid arthritis and osteoarthritis: an overview of systematic reviews. Curr Pain Headache Rep, 2011, 15: 431-437

[31]

De Luigi AJ. Complementary and alternative medicine in osteoarthritis. PM R, 2012, 4: S122-S133

[32]

Dervin GF, Stiell IG, Rody K et al Effect of arthroscopic debridement for osteoarthritis of the knee on health-related quality of life. J Bone Joint Surg Am, 2003, 85-A: 10-19

[33]

Laupattarakasem W, Laopaiboon M, Laupattarakasem P et al. Arthroscopic debridement for knee osteoarthritis. Cochrane Database Syst Rev 2008, D5118.

[34]

Knutsen G, Drogset JO, Engebretsen L et al A randomized trial comparing autologous chondrocyte implantation with microfracture. findings at five years. J Bone Joint Surg Am, 2007, 89: 2105-2112

[35]

Saris DB, Vanlauwe J, Victor J et al Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med, 2008, 36: 235-246

[36]

Malchau H, Herberts P, Eisler T et al The Swedish total hip replacement register. J Bone Joint Surg Am, 2002, 85-A Suppl 2 2-20

[37]

Grayson CW, Decker RC. Total joint arthroplasty for persons with osteoarthritis. PM R, 2012, 4: S97-S103

[38]

Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med, 2008, 3: 1-5

[39]

Tang QO, Carasco CF, Gamie Z et al Preclinical and clinical data for the use of mesenchymal stem cells in articular cartilage tissue engineering. Expert Opin Biol Ther, 2012, 12: 1361-1382

[40]

Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis, 2011, 14: 211-215

[41]

Orozco L, Munar A, Soler R et al Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation, 2013, 95: 1535-1541

[42]

Koh YG, Jo SB, Kwon OR et al Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy, 2013, 29: 748-755

[43]

Bauer S, Khan RJ, Ebert JR et al Knee joint preservation with combined neutralising high tibial osteotomy (HTO) and matrix-induced autologous chondrocyte implantation (MACI) in younger patients with medial knee osteoarthritis: a case series with prospective clinical and MRI follow-up over 5 years. Knee, 2012, 19: 431-439

[44]

Ossendorf C, Kaps C, Kreuz PC et al Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts: 2-year clinical results. Arthritis Res Ther, 2007, 9: R41

[45]

Kreuz PC, Muller S, Ossendorf C et al Treatment of focal degenerative cartilage defects with polymer-based autologous chondrocyte grafts: four-year clinical results. Arthritis Res Ther, 2009, 11: R33

[46]

Kon E, Delcogliano M, Filardo G et al Novel nano-composite multi-layered biomaterial for the treatment of multifocal degenerative cartilage lesions. Knee Surg Sports Traumatol Arthrosc, 2009, 17: 1312-1315

[47]

Siclari A, Mascaro G, Gentili C et al A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year. Clin Orthop Relat Res, 2012, 470: 910-919

[48]

Zhang W, Moskowitz RW, Nuki G et al OARSI recommendations for the management of hip and knee osteoarthritis, part I: critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarthritis Cartilage, 2007, 15: 981-1000

[49]

Hochberg Marc C., Altman Roy D., April Karine Toupin, Benkhalti Maria, Guyatt Gordon, McGowan Jessie, Towheed Tanveer, Welch Vivian, Wells George, Tugwell Peter. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care & Research, 2012, 64 4 465-474

[50]

Schiodt FV, Rochling FA, Casey DL et al Acetaminophen toxicity in an urban county hospital. N Engl J Med, 1997, 337: 1112-1117

[51]

Black M. Acetaminophen hepatotoxicity. Annu Rev Med, 1984, 35: 577-593

[52]

US Food and Drug Administration. FDA Limits Acetaminophen in Prescription Combination Products; Requires Liver Toxicity Warnings. Silver Spring: FDA, 2011. Available at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm239894.htm. 25 September 2015.

[53]

Zhang W, Jones A, Doherty M. Does paracetamol (acetaminophen) reduce the pain of osteoarthritis? A meta-analysis of randomised controlled trials. Ann Rheum Dis, 2004, 63: 901-907

[54]

Towheed TE, Maxwell L, Judd MG et al. Acetaminophen for osteoarthritis. Cochrane Database Syst Rev 2006, D4257.

[55]

Pirmohamed M, James S, Meakin S et al Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ, 2004, 329: 15-19

[56]

Garcia RL, Jick H. Risk of upper gastrointestinal bleeding and perforation associated with individual non-steroidal anti-inflammatory drugs. Lancet, 1994, 343: 769-772

[57]

Langman MJ, Weil J, Wainwright P et al Risks of bleeding peptic ulcer associated with individual non-steroidal anti-inflammatory drugs. Lancet, 1994, 343: 1075-1078

[58]

US Food and Drug Administration Information for Healthcare Professionals: Celecoxib (marketed as Celebrex). Silver Spring: FDA, 2005. Available at http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm124655.htm. 25 September 2015.

[59]

US Food and Drug Administration. FDA Public Health Advisory: Safety of Vioxx. Silver Spring: FDA, 2004. Available at http://www.fda.gov/drugs/drugsafety/postmarketdrugsafetyinformationforpatientsandproviders/ucm106274.htm. 25 September 2015.

[60]

US Food and Drug Administration. Information for Healthcare Professionals: Valdecoxib (marketed as Bextra). Silver Spring: FDA, 2005. Available at http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm124649.htm. 25 September 2015.

[61]

Wright EA, Katz JN, Abrams S et al Trends in prescription of opioids from 2003-2009 in persons with knee osteoarthritis. Arthritis Care Res (Hoboken), 2014, 66: 1489-1495

[62]

Beaulieu AD, Peloso PM, Haraoui B et al Once-daily, controlled-release tramadol and sustained-release diclofenac relieve chronic pain due to osteoarthritis: a randomized controlled Trial. Pain Res Manag, 2008, 13: 103-110

[63]

Gana TJ, Pascual ML, Fleming RR et al Extended-release tramadol in the treatment of osteoarthritis: a multicenter, randomized, double-blind, placebo-controlled clinical trial. Curr Med Res Opin, 2006, 22: 1391-1401

[64]

DeLemos BP, Xiang J, Benson C et al Tramadol hydrochloride extended-release once-daily in the treatment of osteoarthritis of the knee and/or hip: a double-blind, randomized, dose-ranging trial. Am J Ther, 2011, 18: 216-226

[65]

US Food and Drug Administration. FDA Clears Cymbalta to Treat Chronic Musculoskeletal Pain. Silver Spring: FDA, 2010. Available at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm232708.htm. 25 September 2015.

[66]

Chappell AS, Desaiah D, Liu-Seifert H et al A double-blind, randomized, placebo-controlled study of the efficacy and safety of duloxetine for the treatment of chronic pain due to osteoarthritis of the knee. Pain Pract, 2011, 11: 33-41

[67]

Chappell AS, Ossanna MJ, Liu-Seifert H et al Duloxetine, a centrally acting analgesic, in the treatment of patients with osteoarthritis knee pain: a 13-week, randomized, placebo-controlled trial. Pain, 2009, 146: 253-260

[68]

Noth U, Steinert AF, Tuan RS. Technology insight: adult mesenchymal stem cells for osteoarthritis therapy. Nat Clin Pract Rheumatol, 2008, 4: 371-380

[69]

Ong KL, Villarraga ML, Lau E et al Off-label use of bone morphogenetic proteins in the United States using administrative data. Spine (Phila Pa 1976), 2010, 35: 1794-1800

[70]

Hunter DJ, Pike MC, Jonas BL et al Phase 1 Safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis. BMC Musculoskelet Disord, 2010, 11: 232

[71]

Chevalier X, Goupille P, Beaulieu AD et al Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum, 2009, 61: 344-352

[72]

Cohen SB, Proudman S, Kivitz AJ et al A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R1) in patients with osteoarthritis of the knee. Arthritis Res Ther, 2011, 13: R125

[73]

Lane NE, Schnitzer TJ, Birbara CA et al Tanezumab for the treatment of pain from osteoarthritis of the knee. N Engl J Med, 2010, 363: 1521-1531

[74]

US Food and Drug Administration. Tanezumab Arthritis Advisory Committee Briefing Document. Silver Spring: FDA, 2012. Available at http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/ArthritisAdvisoryCommittee/UCM295205.pdf. 25 September 2015.

[75]

Seidel MF, Lane NE. Control of arthritis pain with anti-nerve-growth factor: risk and benefit. Curr Rheumatol Rep, 2012, 14: 583-588

[76]

Lohmander LS, Hellot S, Dreher D et al Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol, 2014, 66: 1820-1831

[77]

Sánchez M, Anitua E, Azofra J et al Intra-articular injection of an autologous preparation rich in growth factors for the treatment of knee oa: a retrospective cohort study. Clin Exp Rheumatol, 2008, 26: 910-913

[78]

Wang-Saegusa A, Cugat R, Ares O et al Infiltration of plasma rich in growth factors for osteoarthritis of the knee short-term effects on function and quality of life. Arch Orthop Trauma Surg, 2011, 131: 311-317

[79]

Sampson S, Reed M, Silvers H et al Injection of platelet-rich plasma in patients with primary and secondary knee osteoarthritis: a pilot study. Am J Phys Med Rehabil, 2010, 89: 961-969

[80]

Kon E, Buda R, Filardo G et al Platelet-rich plasma: intra-articular knee injections produced favorable results on degenerative cartilage lesions. Knee Surg Sports Traumatol Arthrosc, 2010, 18: 472-479

[81]

Shimonkevitz R, Thomas G, Slone DS et al A diketopiperazine fragment of human serum albumin modulates t-lymphocyte cytokine production through Rap1. J Trauma, 2008, 64: 35-41

[82]

Bar-Or D, Salottolo KM, Loose H et al A randomized clinical trial to evaluate two doses of an intra-articular injection of LMWF-5A in adults with pain due to osteoarthritis of the knee. Plos One, 2014, 9: e87910

[83]

Ampio Pharmaceuticals Inc. Results from the 20 Weeks Extension of the Ampion SPRING Study to be Presented at the Western Orthopedic Association Conference. Englewood: Ampio Pharmaceuticals Inc., 2014. Available at http://ampiopharma.com/news/results-20-weeks-extension-ampiontm-spring-study-presented-western-orthopedic-association-conference. 25 September 2015.

[84]

Ampio Pharmaceuticals Inc. Ampio Announces Top-Line Results of the Double-Blind Multiple Intra-Articular Injections (STRUT) Study of AmpionTM in Patients with Moderate to Severe Osteoarthritis of the Knee. Englewood: Ampio Pharmaceuticals Inc., 2015. Available at http://ampiopharma.com/news/ampio-announces-top-line-results-of-the-double-blind-multiple-intra-articular-injections-strut-study-of-ampion-in-patients-with-moderate-to-severe-osteoarthritis-of-the-knee/. 25 September 2015.

[85]

Wenham CY, Grainger AJ, Hensor EM et al Methotrexate for pain relief in knee osteoarthritis: an open-label study. Rheumatology (Oxford), 2013, 52: 888-892

[86]

Kingsbury SR, Tharmanathan P, Arden NK et al Pain reduction with oral methotrexate in knee osteoarthritis, a pragmatic phase iii trial of treatment effectiveness (PROMOTE): study protocol for a randomized controlled trial. Trials, 2015, 16: 77

[87]

ISRCTN Registry. Pain Reduction with Oral Methotrexate in Knee Osteoarthritis: A Pragmatic Phase III Trial of Treatment Effectiveness. London: BioMed Central, 2015. Available at http://www.controlled-trials.com/ISRCTN77854383. 25 September 2015.

[88]

Abou-Raya A, Abou-Raya S, Khadrawe T. Retracted: Methotrexate in the treatment of symptomatic knee osteoarthritis: randomised placebo-controlled trial. Annals of the Rheumatic Diseases, 2014, 77 7 e46-e46

[89]

Jiang YZ, Zhang SF, Qi YY et al Cell transplantation for articular cartilage defects: principles of past, present, and future practice. Cell Transplant, 2011, 20: 593-607

[90]

Brittberg M, Lindahl A, Nilsson A et al Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med, 1994, 331: 889-895

[91]

Tuan RS. A second-generation autologous chondrocyte implantation approach to the treatment of focal articular cartilage defects. Arthritis Res Ther, 2007, 9: 109

[92]

Marlovits S, Zeller P, Singer P et al Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol, 2006, 57: 24-31

[93]

Peterson L, Minas T, Brittberg M et al Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am, 2003, 85-A Suppl 2 17-24

[94]

Peterson L, Minas T, Brittberg M et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 2000: 212–234.

[95]

US Food and Drug Administration. 22 August 22 1997 Approval Letter—Carticel. Rockville: FDA, 1997. Available at http://www.fda.gov/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/ucm171702.htm. 25 September 2015.

[96]

Knutsen G, Engebretsen L, Ludvigsen TC et al Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am, 2004, 86-A: 455-464

[97]

Marcacci M, Kon E, Grigolo B et al 8.3 The clinician view. Osteoarthr Cartilage, 2007, 15: B11-B13

[98]

Gomoll AH, Filardo G, de Girolamo L et al Surgical treatment for early osteoarthritis. Part I: cartilage repair procedures. Knee Surg Sports Traumatol Arthrosc, 2012, 20: 450-466

[99]

Rosenberger RE, Gomoll AH, Bryant T et al Repair of large chondral defects of the knee with autologous chondrocyte implantation in patients 45 years or older. Am J Sports Med, 2008, 36: 2336-2344

[100]

Minas T, Gomoll AH, Solhpour S et al Autologous chondrocyte implantation for joint preservation in patients with early osteoarthritis. Clin Orthop Relat Res, 2010, 468: 147-157

[101]

Matricali GA, Dereymaeker GP, Luyten FP. Donor site morbidity after articular cartilage repair procedures: a review. Acta Orthop Belg, 2010, 76: 669-674

[102]

Schnabel M, Marlovits S, Eckhoff G et al Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage, 2002, 10: 62-70

[103]

Mackay AM, Beck SC, Murphy JM et al Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng, 1998, 4: 415-428

[104]

Lee RH, Kim B, Choi I et al Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem, 2004, 14: 311-324

[105]

De Bari C, Dell'Accio F, Tylzanowski P et al Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum, 2001, 44: 1928-1942

[106]

Koh YG, Choi YJ. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee, 2012, 19: 902-907

[107]

Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage. Biomaterials, 2000, 21: 431-440

[108]

Daher RJ, Chahine NO, Greenberg AS et al New methods to diagnose and treat cartilage degeneration. Nat Rev Rheumatol, 2009, 5: 599-607

[109]

Schinhan M, Gruber M, Dorotka R et al Matrix-associated autologous chondrocyte transplantation in a compartmentalized early stage of osteoarthritis. Osteoarthritis Cartilage, 2013, 21: 217-225

[110]

Evans CH, Ghivizzani SC, Robbins PD. Getting arthritis gene therapy into the clinic. Nat Rev Rheumatol, 2011, 7: 244-249

[111]

US National Institutes of Health. Safety Study of TissueGene-C in Degenerative Joint Disease of the Knee (TGC-03-01). Bethesda: ClinicalTrials.gov, 2010. Available at http://clinicaltrials.gov/ct2/show/NCT00599248. 25 September 2015.

[112]

US National Institutes of Health. Efficacy and Safety Study of TissueGene-C to Degenerative Arthritis. Bethesda: ClinicalTrials.gov, 2015. Available at http://clinicaltrials.gov/ct2/show/NCT01671072. 25 September 2015.

[113]

Ha CW, Noh MJ, Choi KB et al Initial phase I safety of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 in degenerative arthritis patients. Cytotherapy, 2012, 14: 247-256

[114]

Ha C, Park SH, Cho JJ et al A phase IIA clinical study of tissuegene-C (TG-C) in patients with osteoarthritis. Osteoarthr Cartilage, 2012, 20: S27-S28

[115]

US National Institutes of Health. Efficacy and Safety Study of TissueGene-C to Degenerative Arthritis. Bethesda: ClinicalTrials.gov, 2015. Available at http://clinicaltrials.gov/ct2/show/NCT02072070. 25 September 2015.

[116]

Zhu M, Tang D, Wu Q et al Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice. J Bone Miner Res, 2009, 24: 12-21

[117]

Shen J, Li J, Wang B et al Deletion of the transforming growth factor beta receptor type ii gene in articular chondrocytes leads to a progressive osteoarthritis-like phenotype in mice. Arthritis Rheum, 2013, 65: 3107-3119

[118]

Wang M, Sampson ER, Jin H et al MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Res Ther, 2013, 15: R5

[119]

Chen P, Zhu S, Wang Y et al The amelioration of cartilage degeneration by ADAMTS-5 inhibitor delivered in a hyaluronic acid hydrogel. Biomaterials, 2014, 35: 2827-2836

[120]

Echtermeyer F, Bertrand J, Dreier R et al Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat Med, 2009, 15: 1072-1076

[121]

Krzeski P, Buckland-Wright C, Balint G et al Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res Ther, 2007, 9: R109

[122]

Zhang W, Chen J, Zhang S et al Inhibitory function of parathyroid hormone-related protein on chondrocyte hypertrophy: the implication for articular cartilage repair. Arthritis Res Ther, 2012, 14: 221

[123]

Zhang W, Chen J, Tao J et al The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold. Biomaterials, 2013, 34: 6046-6057

[124]

Vortkamp A, Lee K, Lanske B et al Regulation of rate of cartilage differentiation by indian hedgehog and PTH-related protein. Science, 1996, 273: 613-622

[125]

Chung UI, Lanske B, Lee K et al The parathyroid hormone/parathyroid hormone-related peptide receptor coordinates endochondral bone development by directly controlling chondrocyte differentiation. Proc Natl Acad Sci USA, 1998, 95: 13030-13035

[126]

Sampson ER, Hilton MJ, Tian Y et al Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis. Sci Transl Med, 2011, 3: 101r-193r

[127]

Lin AC, Seeto BL, Bartoszko JM et al Modulating hedgehog signaling can attenuate the severity of osteoarthritis. Nat Med, 2009, 15: 1421-1425

[128]

Ruiz-Heiland G, Horn A, Zerr P et al Blockade of the hedgehog pathway inhibits osteophyte formation in arthritis. Ann Rheum Dis, 2012, 71: 400-407

[129]

Zhen G, Wen C, Jia X et al Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med, 2013, 19: 704-712

[130]

Lories RJ, Corr M, Lane NE. To Wnt or not to Wnt: the bone and joint health dilemma. Nat Rev Rheumatol, 2013, 9: 328-339

[131]

Funck-Brentano T, Bouaziz W, Marty C et al Dkk-1-mediated inhibition of Wnt signaling in bone ameliorates osteoarthritis in mice. Arthritis Rheumatol, 2014, 66: 3028-3039

[132]

Trounson A. The production and directed differentiation of human embryonic stem cells. Endocr Rev, 2006, 27: 208-219

[133]

Thomson JA, Itskovitz-Eldor J, Shapiro SS et al Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282: 1145-1147

[134]

Kramer J, Hegert C, Guan K et al Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev, 2000, 92: 193-205

[135]

Yang Z, Sui L, Toh WS et al Stage-dependent effect of TGF-beta1 on chondrogenic differentiation of human embryonic stem cells. Stem Cells Dev, 2009, 18: 929-940

[136]

Wakitani S, Aoki H, Harada Y et al Embryonic stem cells form articular cartilage, not teratomas, in osteochondral defects of rat joints. Cell Transplant, 2004, 13: 331-336

[137]

Dattena M, Pilichi S, Rocca S et al Sheep embryonic stem‐like cells transplanted in full‐thickness cartilage defects. J Tissue Eng Regen Med, 2009, 3: 175-187

[138]

Alper J. Geron gets green light for human trial of ES cell-derived product. Nat Biotechnol, 2009, 27: 213-214

[139]

Hackett CH, Fortier LA. Embryonic stem cells and iPS cells: sources and characteristics. Vet Clin North Am Equine Pract, 2011, 27: 233

[140]

Guzzo RM, Gibson J, Xu RH et al Efficient differentiation of human iPSC‐derived mesenchymal stem cells to chondroprogenitor cells. J Cell Biochem, 2013, 114: 480-490

[141]

Tashiro K, Inamura M, Kawabata K et al Efficient adipocyte and osteoblast differentiation from mouse induced pluripotent stem cells by adenoviral transduction. Stem Cells, 2009, 27: 1802-1811

[142]

Tanaka T, Tohyama S, Murata M et al In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytes. Biochem Biophys Res Commun, 2009, 385: 497-502

[143]

Wei Y, Zeng W, Wan R et al Chondrogenic differentiation of induced pluripotent stem cells from osteoarthritic chondrocytes in alginate matrix. Eur Cell Mater, 2012, 23: 1-12

[144]

Chen FM, Wu LA, Zhang M et al Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives. Biomaterials, 2011, 32: 3189-3209

[145]

Zhang W, Chen J, Tao J et al The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials, 2013, 34: 713-723

[146]

Chen J, Chen H, Li P et al Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials, 2011, 32: 4793-4805

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/