High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes

Robert Brommage , Jeff Liu , Gwenn M Hansen , Laura L Kirkpatrick , David G Potter , Arthur T Sands , Brian Zambrowicz , David R Powell , Peter Vogel

Bone Research ›› 2014, Vol. 2 ›› Issue (1) : 14034

PDF
Bone Research ›› 2014, Vol. 2 ›› Issue (1) : 14034 DOI: 10.1038/boneres.2014.34
Article

High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes

Author information +
History +
PDF

Abstract

Screening gene function in vivo is a powerful approach to discover novel drug targets. We present high-throughput screening (HTS) data for 3 762 distinct global gene knockout (KO) mouse lines with viable adult homozygous mice generated using either gene-trap or homologous recombination technologies. Bone mass was determined from DEXA scans of male and female mice at 14 weeks of age and by microCT analyses of bones from male mice at 16 weeks of age. Wild-type (WT) cagemates/littermates were examined for each gene KO. Lethality was observed in an additional 850 KO lines. Since primary HTS are susceptible to false positive findings, additional cohorts of mice from KO lines with intriguing HTS bone data were examined. Aging, ovariectomy, histomorphometry and bone strength studies were performed and possible non-skeletal phenotypes were explored. Together, these screens identified multiple genes affecting bone mass: 23 previously reported genes (Calcr, Cebpb, Crtap, Dcstamp, Dkk1, Duoxa2, Enpp1, Fgf23, Kiss1/Kiss1r, Kl (Klotho), Lrp5, Mstn, Neo1, Npr2, Ostm1, Postn, Sfrp4, Slc30a5, Slc39a13, Sost, Sumf1, Src, Wnt10b), five novel genes extensively characterized (Cldn18, Fam20c, Lrrk1, Sgpl1, Wnt16), five novel genes with preliminary characterization (Agpat2, Rassf5, Slc10a7, Slc26a7, Slc30a10) and three novel undisclosed genes coding for potential osteoporosis drug targets.

Osteoporosis: Mouse screen reveals novel drug targets

A systematic analysis in mice has identified multiple genes affecting bone mass that could code for novel drug targets. Robert Brommage and his colleagues from Lexicon Pharmaceuticals in Texas, USA, scanned the bones f 3,776 mouse lines, each containing a global ‘knockout’ mutation that disables the function of a single gene. The researchers further examined bone architecture, strength and mineralization in any mice with signs of skeletal phenotypes. These analyses revealed dozens of genes that affected bone mass in some way, many of which were not previously known to impact skeletal health. Three of the newly identified genes were not disclosed. These genes code for enzymes or secreted proteins and, although their identity remains a secret, the authors suggest they could be potential therapeutic targets for treating osteoporosis.

Cite this article

Download citation ▾
Robert Brommage, Jeff Liu, Gwenn M Hansen, Laura L Kirkpatrick, David G Potter, Arthur T Sands, Brian Zambrowicz, David R Powell, Peter Vogel. High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes. Bone Research, 2014, 2(1): 14034 DOI:10.1038/boneres.2014.34

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Moore MW. High-throughput gene knockouts and phenotyping in mice. Ernst Schering Res Found Workshop, 2005, 50: 27-44

[2]

International Mouse Knockout Consortium, Collins FS, Rossant J, Wurst W. A mouse for all reasons. Cell, 2007, 128: 9-13

[3]

Collins FS, Finnell RH, Rossant J. Wurst W. A new partner for the International Knockout Mouse Consortium. Cell, 2007, 129: 235

[4]

Bradley A, Anastassiadis K, Ayadi A et al The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm Genome, 2012, 23: 580-586

[5]

Schofield PN, Hoehndorf R, Gkoutos GV. Mouse genetic and phenotypic resources for human genetics. Hum Mutat, 2012, 33: 826-836

[6]

Ramirez-Solis R, Ryder E, Houghton R, White JK, Bottomley J. Large-scale mouse knockouts and phenotypes. Wiley Interdiscip Rev Syst Biol Med, 2012, 4: 547-563

[7]

Friddle CJ, Abuin A, Ramirez-Solis R et al High-throughput mouse knockouts provide a functional analysis of the genome. Cold Spring Harb Symp Quant Biol, 2003, 68: 311-315

[8]

Hansen GM, Markesich DC, Burnett MB et al Large-scale gene trapping in C57BL/6N mouse embryonic stem cells. Genome Res, 2008, 18: 1670-1679

[9]

Clark HF, Gurney AL, Abaya E et al The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment. Genome Res, 2003, 13: 2265-2270

[10]

Tang T, Li L, Tang J et al A mouse knockout library for secreted and transmembrane proteins. Nat Biotechnol, 2010, 28: 749-775

[11]

Brommage R, Desai U, Revelli JP et al High-throughput screening of mouse knockout lines identifies true lean and obese phenotypes. Obesity (Silver Spring), 2008, 16: 2362-2367

[12]

Brown SD, Moore MW. The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping. Mammalian Genome, 2012, 23: 632-640

[13]

Koscielny G, Yaikhom G, Iyer V et al The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res, 2014, 42: D802-D809

[14]

Ayadi A, Birling MC, Bottomley J et al Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project. Mamm Genome, 2012, 23: 600-610

[15]

Beckers J, Wurst W, de Angelis MH. Towards better mouse models: enhanced genotypes, systemic phenotyping and envirotype modelling. Nat Rev Genet, 2009, 10: 371-380

[16]

Brown MJ, Murray KA. Phenotyping of genetically engineered mice: humane, ethical, environmental, and husbandry issues. ILAR J, 2006, 47: 118-123

[17]

Fuchs H, Lisse T, Hans W et al Phenotypic characterization of mouse models for bone-related diseases in the German Mouse Clinic. J Musculoskelet Neuronal Interact, 2008, 8: 13-14

[18]

Fuchs H, Gailus-Durner V, Neschen S et al Innovations in phenotyping of mouse models in the German Mouse Clinic. Mamm Genome, 2012, 23: 611-622

[19]

Justice MJ. Removing the cloak of invisibility: phenotyping the mouse. Dis Models Mech, 2008, 1: 109-112

[20]

Murray KA. Issues to consider when phenotyping mutant mouse models. Lab Anim (NY), 2002, 31: 25-29

[21]

Schofield PN, Dubus P, Klein L et al Pathology of the laboratory mouse: an International Workshop on Challenges for High Throughput Phenotyping. Toxicol Pathol, 2011, 39: 559-562

[22]

Schofield PN, Vogel P, Gkoutos GV, Sundberg JP. Exploring the elephant: histopathology in high-throughput phenotyping of mutant mice. Dis Models Mech, 2012, 5: 19-25

[23]

Zeiss CJ, Ward JM, Allore HG. Designing phenotyping studies for genetically engineered mice. Vet Pathol, 2012, 49: 24-31

[24]

Bassett JH, Gogakos A, White JK et al Rapid-throughput skeletal phenotyping of 100 knockout mice identifies 9 new genes that determine bone strength. PLoS Genet, 2012, 8: e1002858

[25]

White JK, Gerdin AK, Karp NA et al Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell, 2013, 154: 452-464

[26]

Iwaniec UT, Wronski TJ, Liu J et al PTH stimulates bone formation in mice deficient in Lrp5. J Bone Miner Res, 2007, 22: 394-402

[27]

Brommage R, Liu J, Suwanichkul A, Powell DR. High bone mass in sclerostin-deficient knockout mice. J Musculoskelet Neuronal Interact, 2006, 6: 392

[28]

Brommage R, Liu J, Revelli JP, Kirkpatrick LL, Powell DR. Gene knockouts of Wnt10b and Wnt16 in mice result in low bone mass. Bone, 2007, 40 Suppl 2 S187

[29]

Brommage R, Liu J, Bright D et al Elevated bone mass in mice treated with anti-Dickkopf-1 neutralizing antibodies. J Bone Miner Res, 2010, 25 Suppl 1 S81

[30]

Brommage R, Liu J, Lee E. Elevated trabecular bone mass with reduced cortical bone thickness in sFRP4 knockout mice. J Bone Miner Res, 2009, 24 Suppl 1 S82

[31]

Walke DW, Han C, Shaw J, Wann E, Zambrowicz B, Sands A. In vivo drug target discovery: identifying the best targets from the genome. Curr Opin Biotechnol, 2001, 12: 626-631

[32]

Zambrowicz BP, Sands AT. Knockouts model the 100 best-selling drugs—will they model the next 100? Nat Rev Drug Discov, 2003, 2: 38-51

[33]

Zambrowicz BP, Turner CA, Sands AT. Predicting drug efficacy: knockouts model pipeline drugs of the pharmaceutical industry. Curr Opin Pharmacol, 2003, 3: 563-570

[34]

Russ AP, Lampel S. The druggable genome: an update. Drug Discov Today, 2005, 10: 1607-1610

[35]

Plewczynski D, Rychlewski L. Meta-basic estimates the size of druggable human genome. J Mol Model, 2009, 15: 695-699

[36]

Nieman BJ, Blank MC, Roman BB, Henkelman RM, Millen KJ. If the skull fits: magnetic resonance imaging and microcomputed tomography for combined analysis of brain and skull phenotypes in the mouse. Physiol Genomics, 2012, 44: 992-1002

[37]

Medina-Gomez C, Kemp JP, Estrada K et al Meta-analysis of genome-wide scans for total body BMD in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus. PLoS Genet, 2012, 8: e1002718

[38]

Zheng HF, Tobias JH, Duncan E et al WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet, 2012, 8: e1002745

[39]

Xing W, Liu J, Cheng S, Vogel P, Mohan S, Brommage R. Targeted disruption of leucine-rich repeat kinase 1 but not leucine-rich repeat kinase 2 in mice causes severe osteopetrosis. J Bone Miner Res, 2013, 28: 1962-1974

[40]

Linares GR, Brommage R, Powell DR et al Claudin 18 is a novel negative regulator of bone resorption and osteoclast differentiation. J Bone Miner Res, 2012, 27: 1553-1565

[41]

Tagliabracci VS, Pinna LA, Dixon JE. Secreted protein kinases. Trends Biochem Sci, 2013, 38: 121-130

[42]

Vogel P, Hansen GM, Read RW et al Amelogenesis imperfecta and other biomineralization defects in Fam20a and Fam20c null mice. Vet Pathol, 2012, 49: 998-1017

[43]

Hla T, Dannenberg AJ. Sphingolipid signaling in metabolic disorders. Cell Metab, 2012, 16: 420-434

[44]

Lotinun S, Kiviranta R, Matsubara T et al Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J Clin Invest, 2013, 123: 666-681

[45]

Vogel P, Donoviel MS, Read R et al Incomplete inhibition of sphingosine 1-phosphate lyase modulates immune system function yet prevents early lethality and non-lymphoid lesions. PloS One, 2009, 4: e4112

[46]

Wattler S, Kelly M, Nehls M. Construction of gene targeting vectors from lambda KOS genomic libraries. Biotechniques, 1999, 26: 1150-1156, 1158, 1160

[47]

Zambrowicz BP, Holt KH, Walke W, Kirkpatrick LL, Eberhart DE, Metcalf B, Dillon S. Generation of transgenic animals. Target validation in drug discovery, 2006 New York Elsevier Academic Press 3-25

[48]

Abuin A, Hansen GM, Zambrowicz B. Gene trap mutagenesis. Handb Exp Pharmacol, 2007, 178: 129-147

[49]

Atasoy D, Schoch S, Ho A et al Deletion of CASK in mice is lethal and impairs synaptic function. Proc Natl Acad Sci USA, 2007, 104: 2525-2530

[50]

Gale NW, Dominguez MG, Noguera I et al Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA, 2004, 101: 15949-15954

[51]

Brommage R. Validation and calibration of DEXA body composition in mice. Am J Physiol Endocrinol Metab, 2003, 285: E454-E459

[52]

Rissanen JP, Suominen MI, Peng Z et al Short-term changes in serum PINP predict long-term changes in trabecular bone in the rat ovariectomy model. Calcified Tissue Int, 2008, 82: 155-161

[53]

Anderson JM, van Itallie CM. Physiology and function of the tight junction. Cold Spring Harb Perspect Biol, 2009, 1: a002584

[54]

Wongdee K, Pandaranandaka J, Teerapornpuntakit J et al Osteoblasts express claudins and tight junction-associated proteins. Histochem Cell Biol, 2008, 130: 79-90

[55]

Doty SB. Morphological evidence of gap junctions between bone cells. Calcif Tissue Int, 1981, 33: 509-512

[56]

Hayashi D, Tamura A, Tanaka H et al Deficiency of claudin-18 causes paracellular H+ leakage, up-regulation of interleukin-1beta, and atrophic gastritis in mice. Gastroenterology, 2012, 142: 292-304

[57]

Alshbool FZ, Alarcon C, Wergedal J, Mohan S. A high-calcium diet failed to rescue an osteopenia phenotype in claudin-18 knockout mice. Physiol Rep, 2014, 2: e00200

[58]

Wang X, Wang S, Li C et al Inactivation of a novel FGF23 regulator, FAM20C, leads to hypophosphatemic rickets in mice. PLoS Genet, 2012, 8: e1002708

[59]

Simpson MA, Hsu R, Keir LS et al Mutations in FAM20C are associated with lethal osteosclerotic bone dysplasia (Raine syndrome), highlighting a crucial molecule in bone development. Am J Hum Genet, 2007, 81: 906-912

[60]

Tagliabracci VS, Engel JL, Wen J et al Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science, 2012, 336: 1150-1153

[61]

Ishikawa HO, Xu A, Ogura E, Manning G, Irvine KD. The Raine syndrome protein FAM20C is a Golgi kinase that phosphorylates bio-mineralization proteins. PLoS One, 2012, 7: e42988

[62]

Tagliabracci VS, Engel JL, Wiley SE et al Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci USA, 2014, 111: 5520-5525

[63]

Gong Y, Slee RB, Fukai N et al LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell, 2001, 107: 513-523

[64]

Kato M, Patel MS, Levasseur R et al Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol, 2002, 157: 303-314

[65]

Holmen SL, Giambernardi TA, Zylstra CR et al Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J Bone Miner Res, 2004, 19: 2033-2040

[66]

Li X, Ominsky MS, Niu QT et al Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res, 2008, 23: 860-869

[67]

Kramer I, Loots GG, Studer A, Keller H, Kneissel M. Parathyroid hormone (PTH)-induced bone gain is blunted in SOST overexpressing and deficient mice. J Bone Miner Res, 2010, 25: 178-189

[68]

Sawakami K, Robling AG, Ai M et al The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem, 2006, 281: 23698-23711

[69]

Arantes HP, Barros ER, Kunii I, Bilezikian JP, Lazaretti-Castro M. Teriparatide increases bone mineral density in a man with osteoporosis pseudoglioma. J Bone Miner Res, 2011, 26: 2823-2826

[70]

Cui Y, Niziolek PJ, MacDonald BT et al Lrp5 functions in bone to regulate bone mass. Nat Med, 2011, 17: 684-691

[71]

Yadav VK, Ryu JH, Suda N et al Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell, 2008, 135: 825-837

[72]

Xu Q, Wang Y, Dabdoub A et al Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell, 2004, 116: 883-895

[73]

Ke J, Harikumar KG, Erice C et al Structure and function of Norrin in assembly and activation of a Frizzled 4-Lrp5/6 complex. Genes Dev, 2013, 27: 2305-2319

[74]

Lobov IB, Rao S, Carroll TJ et al WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature, 2005, 437: 417-421

[75]

Xia CH, Yablonka-Reuveni Z, Gong X. LRP5 is required for vascular development in deeper layers of the retina. PloS One, 2010, 5: e11676

[76]

Paes KT, Wang E, Henze K et al Frizzled 4 is required for retinal angiogenesis and maintenance of the blood–retina barrier. Invest Ophthalmol Vis Sci, 2011, 52: 6452-6461

[77]

Marin I. The Parkinson disease gene LRRK2: evolutionary and structural insights. Mol Biol Evol, 2006, 23: 2423-2433

[78]

Baptista MA, Dave KD, Sheth NP et al A strategy for the generation, characterization and distribution of animal models by The Michael J. Fox Foundation for Parkinson’s Research. Dis Model Mech, 2013, 6: 1316-1324

[79]

Kim BJ, Koh JM, Lee SY et al Plasma sphingosine 1-phosphate levels and the risk of vertebral fracture in postmenopausal women. J Clin Endocrinol Metab, 2012, 97: 3807-3814

[80]

Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci USA, 2008, 105: 20764-20769

[81]

Bagdanoff JT, Donoviel MS, Nouraldeen A et al Inhibition of sphingosine-1-phosphate lyase for the treatment of autoimmune disorders. J Med Chem, 2009, 52: 3941-3953

[82]

Bagdanoff JT, Donoviel MS, Nouraldeen A et al Inhibition of sphingosine 1-phosphate lyase for the treatment of rheumatoid arthritis: discovery of (E)-1-(4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)-1H-imidazol-2-yl)ethanone oxime (LX2931) and (1R,2S,3R)-1-(2-(isoxazol-3-yl)-1H-imidazol-4-yl)butane-1,2,3,4-tetraol (LX2932). J Med Chem, 2010, 53: 8650-8662

[83]

Kesavan C, Mohan S, Brommage R, Wergedal J. Wnt16 is an important regulator of bone size and the periosteal bone formation response to mechanical loading. J Bone Miner Res, 2013, 28 Suppl 1 S100

[84]

Skrtic SM et al WNT16 is a novel osteoblast-derived paracrine regulator of osteoclastogenesis, cortical bone mass and fracture susceptibility. J Bone Miner Res, 2013 S39

[85]

Motyl KJ, Raetz M, Tekalur SA, Schwartz RC, McCabe LR. CCAAT/enhancer binding protein beta-deficiency enhances type 1 diabetic bone phenotype by increasing marrow adiposity and bone resorption. Am J Physiol Regul Integr Comp Physiol, 2011, 300: R1250-R1260

[86]

Staiger J, Lueben MJ, Berrigan D et al C/EBPbeta regulates body composition, energy balance-related hormones and tumor growth. Carcinogenesis, 2009, 30: 832-840

[87]

Tominaga H, Maeda S, Hayashi M et al CCAAT/enhancer-binding protein beta promotes osteoblast differentiation by enhancing Runx2 activity with ATF4. Mol Biol Cell, 2008, 19: 5373-5386

[88]

Zanotti S, Stadmeyer L, Smerdel-Ramoya A, Durant D, Canalis E. Misexpression of CCAAT/enhancer binding protein beta causes osteopenia. J Endocrinol, 2009, 201: 263-274

[89]

Morello R, Bertin TK, Chen Y et al CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell, 2006, 127: 291-304

[90]

Baldridge D, Lennington J, Weis M et al Generalized connective tissue disease in Crtap–/– mouse. PLoS One, 2010, 5: e10560

[91]

Weber G, Rabbiosi S, Zamproni I, Fugazzola L. Genetic defects of hydrogen peroxide generation in the thyroid gland. J Endocrinol Invest, 2013, 36: 261-266

[92]

Johnson KR, Marden CC, Ward-Bailey P, Gagnon LH, Bronson RT, Donahue LR. Congenital hypothyroidism, dwarfism, and hearing impairment caused by a missense mutation in the mouse dual oxidase 2 gene, Duox2. Mol Endocrinol, 2007, 21: 1593-1602

[93]

Grasberger H, de Deken X, Mayo OB et al Mice deficient in dual oxidase maturation factors are severely hypothyroid. Mol Endocrinol, 2012, 26: 481-492

[94]

Xing W, Govoni KE, Donahue LR et al Genetic evidence that thyroid hormone is indispensable for prepubertal insulin-like growth factor-I expression and bone acquisition in mice. J Bone Miner Res, 2012, 27: 1067-1079

[95]

Donko A, Ruisanchez E, Orient A et al Urothelial cells produce hydrogen peroxide through the activation of Duox1. Free Radic Biol Med, 2010, 49: 2040-2048

[96]

Mackenzie NC, Zhu D, Milne EM et al Altered bone development and an increase in FGF-23 expression in Enpp1(–/–) mice. PloS One, 2012, 7: e32177

[97]

Koshizuka Y, Ikegawa S, Sano M, Nakamura K, Nakamura Y. Isolation of novel mouse genes associated with ectopic ossification by differential display method using ttw, a mouse model for ectopic ossification. Cytogenet Cell Genet, 2001, 94: 163-168

[98]

Babij P, Roudier M, Graves T et al New variants in the Enpp1 and Ptpn6 genes cause low BMD, crystal-related arthropathy, and vascular calcification. J Bone Miner Res, 2009, 24: 1552-1564

[99]

Li Q, Guo H, Chou DW, Berndt A, Sundberg JP, Uitto J. Mutant Enpp1asj mice as a model for generalized arterial calcification of infancy. Dis Model Mech, 2013, 6: 1227-1235

[100]

Martin A, David V, Quarles LD. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev, 2012, 92: 131-155

[101]

Bhattacharyya N, Chong WH, Gafni RI, Collins MT. Fibroblast growth factor 23: state of the field and future directions. Trends Endocrinol Metab, 2012, 23: 610-618

[102]

Yamashita T, Yoshitake H, Tsuji K, Kawaguchi N, Nabeshima Y, Noda M. Retardation in bone resorption after bone marrow ablation in klotho mutant mice. Endocrinology, 2000, 141: 438-445

[103]

Yuan Q, Sato T, Densmore M et al Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho–/– mice. PLoS Genet, 2012, 8: e1002726

[104]

Ellwanger K, Saito H, Clément-Lacroix P et al Targeted disruption of the Wnt regulator Kremen induces limb defects and high bone density. Mol Cell Biol, 2008, 28: 4875-4882

[105]

Schulze J, Seitz S, Saito H et al Negative regulation of bone formation by the transmembrane Wnt antagonist Kremen-2. PLoS One, 2010, 5: e10309

[106]

Zhou Z, Xie J, Lee D et al Neogenin regulation of BMP-induced canonical Smad signaling and endochondral bone formation. Dev Cell, 2010, 19: 90-102

[107]

Contie S, Voorzanger-Rousselot N, Litvin J et al Development of a new ELISA for serum periostin: evaluation of growth-related changes and bisphosphonate treatment in mice. Calcif Tissue Int, 2010, 87: 341-350

[108]

Horiuchi K, Amizuka N, Takeshita S et al Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res, 1999, 14: 1239-1249

[109]

Bonnet N, Standley KN, Bianchi EN et al The matricellular protein periostin is required for sost inhibition and the anabolic response to mechanical loading and physical activity. J Biol Chem, 2009, 284: 35939-35950

[110]

Rios H, Koushik SV, Wang H et al Periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Mol Cell Biol, 2005, 25: 11131-11144

[111]

Bonnet N, Gineyts E, Ammann P, Conway SJ, Garnero P, Ferrari S. Periostin deficiency increases bone damage and impairs injury response to fatigue loading in adult mice. PLoS One, 2013, 8: e78347

[112]

Fukada T, Civic N, Furuichi T et al The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS One, 2008, 3: e3642

[113]

Giunta C, Elçioglu NH, Albrecht B et al Spondylocheiro dysplastic form of the Ehlers–Danlos syndrome—an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am J Hum Genet, 2008, 82: 1290-1305

[114]

Shimada T, Kakitani M, Yamazaki Y et al Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest, 2004, 113: 561-568

[115]

Chalhoub N, Benachenhou N, Rajapurohitam V et al Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med, 2003, 9: 399-406

[116]

Pata M, Heraud C, Vacher J. OSTM1 bone defect reveals an intercellular hematopoietic crosstalk. J Biol Chem, 2008, 283: 30522-30530

[117]

Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature, 2006, 440: 220-223

[118]

Chusho H, Tamura N, Ogawa Y et al Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci USA, 2001, 98: 4016-4021

[119]

Kondo E, Yasoda A, Tsuji T et al Skeletal analysis of the long bone abnormality (lbab/lbab) mouse, a novel chondrodysplastic C-type natriuretic peptide mutant. Calcif Tissue Int, 2012, 90: 307-318

[120]

Tsuji T, Kunieda T. A loss-of-function mutation in natriuretic peptide receptor 2 (Npr2) gene is responsible for disproportionate dwarfism in cn/cn mouse. J Biol Chem, 2005, 280: 14288-14292

[121]

Sogawa C, Tsuji T, Shinkai Y, Katayama K, Kunieda T. Short-limbed dwarfism: slw is a new allele of Npr2 causing chondrodysplasia. J Hered, 2007, 98: 575-580

[122]

Bartels CF, Bükülmez H, Padayatti P et al Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am J Hum Genet, 2004, 75: 27-34

[123]

Miura K, Namba N, Fujiwara M et al An overgrowth disorder associated with excessive production of cGMP due to a gain-of-function mutation of the natriuretic peptide receptor 2 gene. PLoS One, 2012, 7: e42180

[124]

Dauphinee SM, Eva MM, Yuki KE et al Characterization of two ENU-induced mutations affecting mouse skeletal morphology. G3 (Bethesda), 2013, 3: 1753-1758

[125]

Moffatt P, Thomas G, Sellin K et al Osteocrin is a specific ligand of the natriuretic peptide clearance receptor that modulates bone growth. J Biol Chem, 2007, 282: 36454-36462

[126]

Soriano P, Montgomery C, Geske R, Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell, 1991, 64: 693-702

[127]

Kubota T, Michigami T, Sakaguchi N et al Lrp6 hypomorphic mutation affects bone mass through bone resorption in mice and impairs interaction with Mesd. J Bone Miner Res, 2008, 23: 1661-1671

[128]

Mani A, Radhakrishnan J, Wang H et al LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science, 2007, 315: 1278-1282

[129]

Babij P, Zhao W, Small C et al High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res, 2003, 18: 960-974

[130]

Boyden LM, Mao J, Belsky J et al High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med, 2002, 346: 1513-1521

[131]

MacDonald BT, Joiner DM, Oyserman SM et al Bone mass is inversely proportional to Dkk1 levels in mice. Bone, 2007, 41: 331-339

[132]

Morvan F, Boulukos K, Clément-Lacroix P et al Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res, 2006, 21: 934-945

[133]

Morse A, Frank C, Kelly NH et al. Sclerostin null and dickkopf-1 null mice show an increased response to mechanical loading. Proc Orthop Res Soc Annu Meet 2014; Poster Number 0567.

[134]

McDonald M, Morse M, Baldock P et al Homozygous deletion of Dickkopf1 results in a high bone mass phenotype. J Bone Miner Res, 2010, 25 Suppl 1 S23-S24

[135]

Li J, Sarosi I, Cattley RC et al Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone, 2006, 39: 754-766

[136]

Fulciniti M, Tassone P, Hideshima T et al Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood, 2009, 114: 371-379

[137]

Glantschnig H, Hampton RA, Lu P et al Generation and selection of novel fully human monoclonal antibodies that neutralize Dickkopf-1 (DKK1) inhibitory function in vitro and increase bone mass in vivo. J Biol Chem, 2010, 285: 40135-40147

[138]

Glantschnig H, Scott K, Hampton R et al A rate-limiting role for Dickkopf-1 in bone formation and the remediation of bone loss in mouse and primate models of postmenopausal osteoporosis by an experimental therapeutic antibody. J Pharmacol Exp Ther, 2011, 338: 568-578

[139]

Ke HZ, Richards WG, Li X, Ominsky MS. Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev, 2012, 33: 747-783

[140]

Pozzi S, Fulciniti M, Yan H et al In vivo and in vitro effects of a novel anti-Dkk1 neutralizing antibody in multiple myeloma. Bone, 2013, 53: 487-496

[141]

Zhou F, Meng S, Song H, Claret FX. Dickkopf-1 is a key regulator of myeloma bone disease: opportunities and challenges for therapeutic intervention. Blood Rev, 2013, 27: 261-267

[142]

Fan W et al Differential impact of Dkk1 neutralizing antibodies on Wnt signaling and bone mineral density. J Bone Miner Res, 2011, 26 Suppl 1 S117

[143]

Li X, Grisanti M, Fan W et al Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J Bone Miner Res, 2011, 26: 2610-2621

[144]

Mukhopadhyay M, Gorivodsky M, Shtrom S et al Dkk2 plays an essential role in the corneal fate of the ocular surface epithelium. Development, 2006, 133: 2149-2154

[145]

Gage PJ, Qian M, Wu D, Rosenberg KI. The canonical Wnt signaling antagonist DKK2 is an essential effector of PITX2 function during normal eye development. Dev Biol, 2008, 317: 310-324

[146]

Li X, Liu P, Liu W et al Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet, 2005, 37: 945-952

[147]

Barrantes Idel B, Montero-Pedrazuela A, Guadaño-Ferraz A et al Generation and characterization of dickkopf3 mutant mice. Mol Cell Biol, 2006, 26: 2317-2326

[148]

Ouchi N, Higuchi A, Ohashi K et al Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science, 2010, 329: 454-457

[149]

Mori H, Prestwich TC, Reid MA et al Secreted frizzled-related protein 5 suppresses adipocyte mitochondrial metabolism through WNT inhibition. J Clin Invest, 2012, 122: 2405-2416

[150]

Cox S, Smith L, Bogani D, Cheeseman M, Siggers P, Greenfield A. Sexually dimorphic expression of secreted frizzled-related (SFRP) genes in the developing mouse Mullerian duct. Mol Reprod Dev, 2006, 73: 1008-1016

[151]

Satoh W, Gotoh T, Tsunematsu Y, Aizawa S, Shimono A. Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis. Development, 2006, 133: 989-999

[152]

Morello R, Bertin TK, Schlaubitz S et al Brachy-syndactyly caused by loss of Sfrp2 function. J Cell Physiol, 2008, 217: 127-137

[153]

Yao W, Cheng Z, Shahnazari M, Dai W, Johnson ML, Lane NE. Overexpression of secreted frizzled-related protein 1 inhibits bone formation and attenuates parathyroid hormone bone anabolic effects. J Bone Miner Res, 2010, 25: 190-199

[154]

Bodine PV, Zhao W, Kharode YP et al The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol Endocrinol, 2004, 18: 1222-1237

[155]

Bodine PV, Seestaller-Wehr L, Kharode YP, Bex FJ, Komm BS. Bone anabolic effects of parathyroid hormone are blunted by deletion of the Wnt antagonist secreted frizzled-related protein-1. J Cell Physiol, 2007, 210: 352-357

[156]

Joesting MS, Cheever TR, Volzing KG et al Secreted frizzled related protein 1 is a paracrine modulator of epithelial branching morphogenesis, proliferation, and secretory gene expression in the prostate. Dev Biol, 2008, 317: 161-173

[157]

Gauger KJ, Bassa LM, Henchey EM et al Mice deficient in sfrp1 exhibit increased adiposity, dysregulated glucose metabolism, and enhanced macrophage infiltration. PloS One, 2013, 8: e78320

[158]

Lories RJ, Peeters J, Bakker A et al Articular cartilage and biomechanical properties of the long bones in Frzb-knockout mice. Arthritis Rheum, 2007, 56: 4095-4103

[159]

Baker-Lepain JC, Lynch JA, Parimi N et al Variant alleles of the Wnt antagonist FRZB are determinants of hip shape and modify the relationship between hip shape and osteoarthritis. Arthritis Rheum, 2012, 64: 1457-1465

[160]

Saito H, Wissmann C, Suzuki H et al Deletion of the Wnt signaling antagonist Secreted frizzled related protein 4 (sFRP4) in mice induces opposite bone formation phenotypes in trabecular and cortical bone. J Bone Miner Res, 2008, 64 Suppl 1 S3

[161]

Kao R, Louie A, Lu WD, Nissenson R. Differential regulation of cortical and trabecular bone by Secreted frizzled-related protein 4 (Sfrp4). J Bone Miner Res, 2010, 25 Suppl 1 S425

[162]

Saito H et al sFrp4 differentially regulates trabecular and cortical bone mass via canonical Wnt and Ror2-BMP-sclerostin signaling, respectively. J Bone Miner Res, 2011, 26 Suppl 1 S50

[163]

Kansara M, Tsang M, Kodjabachian L et al Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest, 2009, 119: 837-851

[164]

Schaniel C, Sirabella D, Qiu J, Niu X, Lemischka IR, Moore KA. Wnt-inhibitory factor 1 dysregulation of the bone marrow niche exhausts hematopoietic stem cells. Blood, 2011, 118: 2420-2429

[165]

Cawthorn WP, Bree AJ, Yao Y et al Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a beta-catenin-dependent mechanism. Bone, 2012, 50: 477-489

[166]

Mak W, Shao X, Dunstan CR, Seibel MJ, Zhou H. Biphasic glucocorticoid-dependent regulation of Wnt expression and its inhibitors in mature osteoblastic cells. Calcif Tissue Int, 2009, 85: 538-545

[167]

Wend P, Wend K, Krum SA, Miranda-Carboni GA. The role of WNT10B in physiology and disease. Acta Physiol (Oxf), 2012, 204: 34-51

[168]

Stevens JR, Miranda-Carboni GA, Singer MA, Brugger SM, Lyons KM, Lane TF. Wnt10b deficiency results in age-dependent loss of bone mass and progressive reduction of mesenchymal progenitor cells. J Bone Miner Res, 2010, 25: 2138-2147

[169]

Bennett CN, Longo KA, Wright WS et al Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA, 2005, 102: 3324-3329

[170]

Bennett CN, Ouyang H, Ma YL et al Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J Bone Miner Res, 2007, 22: 1924-1932

[171]

Terauchi M, Li JY, Bedi B et al T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab, 2009, 10: 229-240

[172]

Kukita T, Wada N, Kukita A et al RANKL-induced DC-STAMP is essential for osteoclastogenesis. J Exp Med, 2004, 200: 941-946

[173]

Yagi M, Miyamoto T, Sawatani Y et al DC-STAMP is essential for cell–cell fusion in osteoclasts and foreign body giant cells. J Exp Med, 2005, 202: 345-351

[174]

Miyamoto T. Regulators of osteoclast differentiation and cell–cell fusion. Keio J Med, 2011, 60: 101-105

[175]

Kollmann K, Pestka JM, Kühn SC et al Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II. EMBO Mol Med, 2013, 5: 1871-1886

[176]

Gelfman CM, Vogel P, Issa TM et al Mice lacking alpha/beta subunits of GlcNAc-1-phosphotransferase exhibit growth retardation, retinal degeneration, and secretory cell lesions. Invest Ophthalmol Vis Sci, 2007, 48: 5221-5228

[177]

Vogel P, Payne BJ, Read R et al Comparative pathology of murine mucolipidosis types II and IIIC. Vet Pathol, 2009, 46: 313-324

[178]

Colledge WH. Transgenic mouse models to study Gpr54/kisspeptin physiology. Peptides, 2009, 30: 34-41

[179]

Dungan Lemko HM, Elias CF. Kiss of the mutant mouse: how genetically altered mice advanced our understanding of kisspeptin’s role in reproductive physiology. Endocrinology, 2012, 153: 5119-5129

[180]

Brommage R, Qian N, Vogel P et al Mice failing to undergo puberty due to targeted inactivation of the GPR54 gene exhibit alterations in body composition and reduced bone mass. J Bone Miner Res, 2004, 19 Suppl 1 S93

[181]

Hamrick MW, Samaddar T, Pennington C, McCormick J. Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise. J Bone Miner Res, 2006, 21: 477-483

[182]

Elkasrawy MN, Hamrick MW. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact, 2010, 10: 56-63

[183]

Mitchell AD, Wall RJ. In vivo evaluation of changes in body composition of transgenic mice expressing the myostatin pro domain using dual energy X-ray absorptiometry. Growth Dev Aging, 2007, 70: 25-37

[184]

Inoue K, Matsuda K, Itoh M et al Osteopenia and male-specific sudden cardiac death in mice lacking a zinc transporter gene, Znt5. Hum Mol Genet, 2002, 11: 1775-1784

[185]

Dacquin R, Davey RA, Laplace C et al Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J Cell Biol, 2004, 164: 509-514

[186]

Davey RA, Turner AG, McManus JF et al Calcitonin receptor plays a physiological role to protect against hypercalcemia in mice. J Bone Miner Res, 2008, 23: 1182-1193

[187]

Gazzerro E, Smerdel-Ramoya A, Zanotti S et al Conditional deletion of gremlin causes a transient increase in bone formation and bone mass. J Biol Chem, 2007, 282: 31549-31557

[188]

Canalis E, Parker K, Zanotti S. Gremlin1 is required for skeletal development and postnatal skeletal homeostasis. J Cell Physiol, 2012, 227: 269-277

[189]

Cheung CL, Lau KS, Sham PC, Tan KC, Kung AW. Genetic variants in GREM2 are associated with bone mineral density in a southern Chinese population. J Clin Endocrinol Metab, 2013, 98: E1557-E1561

[190]

Paternoster L, Lorentzon M, Lehtimäki T et al Genetic determinants of trabecular and cortical volumetric bone mineral densities and bone microstructure. PLoS Genet, 2013, 9: e1003247

[191]

Zuniga E, Rippen M, Alexander C, Schilling TF, Crump JG. Gremlin 2 regulates distinct roles of BMP and Endothelin 1 signaling in dorsoventral patterning of the facial skeleton. Development, 2011, 138: 5147-5156

[192]

Vogel P, Liu J, Platt KA et al. Malformation of incisor teeth in Grem2–/– mice. Vet Pathol 2014; [Epub ahead of print]

[193]

Poli V, Balena R, Fattori E et al Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J, 1994, 13: 1189-1196

[194]

Dai J, Lin D, Zhang J et al Chronic alcohol ingestion induces osteoclastogenesis and bone loss through IL-6 in mice. J Clin Invest, 2000, 106: 887-895

[195]

Jilka RL, Hangoc G, Girasole G et al Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science, 1992, 257: 88-91

[196]

Kimble RB, Bain S, Pacifici R. The functional block of TNF but not of IL-6 prevents bone loss in ovariectomized mice. J Bone Miner Res, 1997, 12: 935-941

[197]

O’Brien CA, Jilka RL, Fu Q, Stewart S, Weinstein RS, Manolagas SC. IL-6 is not required for parathyroid hormone stimulation of RANKL expression, osteoclast formation, and bone loss in mice. Am J Physiol Endocrinol Metab, 2005, 289: E784-E793

[198]

del Fattore A, Cappariello A, Capulli M et al An experimental therapy to improve skeletal growth and prevent bone loss in a mouse model overexpressing IL-6. Osteoporos Int, 2014, 25: 681-692

[199]

Grey A, Mitnick MA, Masiukiewicz U et al A role for interleukin-6 in parathyroid hormone-induced bone resorption in vivo. Endocrinology, 1999, 140: 4683-4690

[200]

Xu J, Song P, Nakamura S et al Deletion of the chloride transporter slc26a7 causes distal renal tubular acidosis and impairs gastric acid secretion. J Biol Chem, 2009, 284: 29470-29479

[201]

Spitzweg C, Morris JC. Genetics and phenomics of hypothyroidism and goiter due to NIS mutations. Mol Cell Endocrinol, 2010, 322: 56-63

[202]

Everett LA, Belyantseva IA, Noben-Trauth K et al Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet, 2001, 10: 153-161

[203]

Kim KX, Sanneman JD, Kim HM et al Slc26a7 chloride channel activity and localization in mouse Reissner’s membrane epithelium. PLoS One, 2014, 9: e97191

[204]

Khadeer MA, Sahu SN, Bai G, Abdulla S, Gupta A. Expression of the zinc transporter ZIP1 in osteoclasts. Bone, 2005, 37: 296-304

[205]

Kambe T, Geiser J, Lahner B, Salt DE, Andrews GK. Slc39a1 to 3 (subfamily II) Zip genes in mice have unique cell-specific functions during adaptation to zinc deficiency. Am J Physiol Regul Integr Comp Physiol, 2008, 294: R1474-R1481

[206]

Gilmour DT, Lyon GJ, Carlton MB et al Mice deficient for the secreted glycoprotein SPARC/osteonectin/BM40 develop normally but show severe age-onset cataract formation and disruption of the lens. EMBO J, 1998, 17: 1860-1870

[207]

Norose K, Clark JI, Syed NA et al SPARC deficiency leads to early-onset cataractogenesis. Invest Ophthalmol Vis Sci, 1998, 39: 2674-2680

[208]

Bradshaw AD, Graves DC, Motamed K, Sage EH. SPARC-null mice exhibit increased adiposity without significant differences in overall body weight. Proc Natl Acad Sci USA, 2003, 100: 6045-6050

[209]

Gruber HE, Sage EH, Norton HJ et al Targeted deletion of the SPARC gene accelerates disc degeneration in the aging mouse. J Histochem Cytochem, 2005, 53: 1131-1138

[210]

Delany AM, Amling M, Priemel M et al Osteopenia and decreased bone formation in osteonectin-deficient mice. J Clin Invest, 2000, 105: 1325

[211]

Boskey AL, Moore DJ, Amling M, Canalis E, Delany AM. Infrared analysis of the mineral and matrix in bones of osteonectin-null mice and their wildtype controls. J Bone Miner Res, 2003, 18: 1005-1011

[212]

Mansergh FC, Wells T, Elford C et al Osteopenia in Sparc (osteonectin)-deficient mice: characterization of phenotypic determinants of femoral strength and changes in gene expression. Physiol Genomics, 2007, 32: 64-73

[213]

Barros NM, Hoac B, Neves RL et al Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia. J Bone Miner Res, 2013, 28: 688-699

[214]

Ishijima M, Rittling SR, Yamashita T et al Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. J Exp Med, 2001, 193: 399-404

[215]

Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD. Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int, 2002, 71: 145-154

[216]

Ono N, Nakashima K, Rittling SR et al Osteopontin negatively regulates parathyroid hormone receptor signaling in osteoblasts. J Biol Chem, 2008, 283: 19400-19409

[217]

Yoshitake H, Rittling SR, Denhardt DT, Noda M. Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci USA, 1999, 96: 8156-8160

[218]

Harmey D, Johnson KA, Zelken J et al Elevated skeletal osteopontin levels contribute to the hypophosphatasia phenotype in Akp2(–/–) mice. J Bone Miner Res, 2006, 21: 1377-1386

[219]

Malaval L, Wade-Guéye NM, Boudiffa M et al Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. J Exp Med, 2008, 205: 1145-1153

[220]

Thurner PJ, Chen CG, Ionova-Martin S et al Osteopontin deficiency increases bone fragility but preserves bone mass. Bone, 2010, 46: 1564-1573

[221]

Novack DV, Faccio R. Osteoclast motility: putting the brakes on bone resorption. Ageing Res Rev, 2011, 10: 54-61

[222]

Sakai D, Tong HS, Minkin C. Osteoclast molecular phenotyping by random cDNA sequencing. Bone, 1995, 17: 111-119

[223]

Shuang F, Sun Y, Yang HH et al Destrin deletion enhances the bone loss in hindlimb suspended mice. Eur J Appl Physiol, 2013, 113: 403-410

[224]

Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell, 2002, 108: 233-246

[225]

Blangy A, Touaitahuata H, Cres G, Pawlak G. Cofilin activation during podosome belt formation in osteoclasts. PLoS One, 2012, 7: e45909

[226]

Mizuno K. Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell Signal, 2013, 25: 457-469

[227]

Meng Y, Zhang Y, Tregoubov V et al Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron, 2002, 35: 121-133

[228]

Kawano T, Zhu M, Troiano N et al LIM kinase 1 deficient mice have reduced bone mass. Bone, 2013, 52: 70-82

[229]

Collette NM, Yee CS, Murugesh D et al Sost and its paralog Sostdc1 coordinate digit number in a Gli3-dependent manner. Dev Biol, 2013, 383: 90-105

[230]

Ellies DL, Economou A, Viviano B et al Wise regulates bone deposition through genetic interactions with Lrp5. PLoS One, 2014, 9: e96257

[231]

Person AD, Beiraghi S, Sieben CM et al WNT5A mutations in patients with autosomal dominant Robinow syndrome. Dev Dyn, 2010, 239: 327-337

[232]

Yamaguchi TP, Bradley A, McMahon AP, Jones S. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development, 1999, 126: 1211-1223

[233]

Lin M, Li L, Liu C et al Wnt5a regulates growth, patterning, and odontoblast differentiation of developing mouse tooth. Dev Dyn, 2011, 240: 432-440

[234]

Yang Y, Topol L, Lee H, Wu J. Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development, 2003, 130: 1003-1015

[235]

Maeda K, Kobayashi Y, Udagawa N et al Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat Med, 2012, 18: 405-412

[236]

Agalliu D, Takada S, Agalliu I, McMahon AP, Jessell TM. Motor neurons with axial muscle projections specified by Wnt4/5 signaling. Neuron, 2009, 61: 708-720

[237]

DeWitt MR, Chen P, Aschner M. Manganese efflux in Parkinsonism: insights from newly characterized SLC30A10 mutations. Biochem Biophys Res Commun, 2013, 432: 1-4

[238]

Alam I, Gray AK, Chu K et al Generation of the first autosomal dominant osteopetrosis type II (ADO2) disease models. Bone, 2014, 59: 66-75

[239]

Rajan I, Read R, Small DL, Perrard J, Vogel P. An alternative splicing variant in Clcn7–/– mice prevents osteopetrosis but not neural and retinal degeneration. Vet Pathol, 2011, 48: 663-675

[240]

Kornak U, Kasper D, Bösl MR et al Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell, 2001, 104: 205-215

[241]

Neutzsky-Wulff AV, Karsdal MA, Henriksen K. Characterization of the bone phenotype in ClC-7-deficient mice. Calcif Tissue Int, 2008, 83: 425-437

[242]

Vega RB, Matsuda K, Oh J et al Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell, 2004, 119: 555-566

[243]

Arnold MA, Kim Y, Czubryt MP et al MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell, 2007, 12: 377-389

[244]

Rajan I, Savelieva KV, Ye GL et al Loss of the putative catalytic domain of HDAC4 leads to reduced thermal nociception and seizures while allowing normal bone development. PloS One, 2009, 4: e6612

[245]

van Wesenbeeck L, Odgren PR, Coxon FP et al Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest, 2007, 117: 919-930

[246]

del Fattore A, Fornari R, Van Wesenbeeck L et al A new heterozygous mutation (R714C) of the osteopetrosis gene, pleckstrin homolog domain containing family M (with run domain) member 1 (PLEKHM1), impairs vesicular acidification and increases TRACP secretion in osteoclasts. J Bone Miner Res, 2008, 23: 380-391

[247]

Vogel P, Read RW, Hansen GM et al Congenital hydrocephalus in genetically engineered mice. Vet Pathol, 2012, 49: 166-181

[248]

Ueda Y, Yamaguchi R, Ikawa M et al PGAP1 knock-out mice show otocephaly and male infertility. J Biol Chem, 2007, 282: 30373-30380

[249]

McKean DM, Niswander L. Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly. Biol Open, 2012, 1: 874-883

[250]

Park J, Kang SI, Lee SY et al Tumor suppressor ras association domain family 5 (RASSF5/NORE1) mediates death receptor ligand-induced apoptosis. J Biol Chem, 2010, 285: 35029-35038

[251]

Kondo Y, Inai Y, Sato Y et al Senescence marker protein 30 functions as gluconolactonase in L-ascorbic acid biosynthesis, and its knockout mice are prone to scurvy. Proc Natl Acad Sci USA, 2006, 103: 5723-5728

[252]

Maeda N, Hagihara H, Nakata Y et al Aortic wall damage in mice unable to synthesize ascorbic acid. Proc Natl Acad Sci USA, 2000, 97: 841-846

[253]

Kawai T, Nishikimi M, Ozawa T, Yagi K. A missense mutation of L-gulono-gamma-lactone oxidase causes the inability of scurvy-prone osteogenic disorder rats to synthesize L-ascorbic acid. J Biol Chem, 1992, 267: 21973-21976

[254]

Beamer WG, Rosen CJ, Bronson RT et al Spontaneous fracture (sfx): a mouse genetic model of defective peripubertal bone formation. Bone, 2000, 27: 619-626

[255]

Mohan S, Kapoor A, Singgih A et al Spontaneous fractures in the mouse mutant sfx are caused by deletion of the gulonolactone oxidase gene, causing vitamin C deficiency. J Bone Miner Res, 2005, 20: 1597-1610

[256]

Gabbay KH, Bohren KM, Morello R, Bertin T, Liu J, Vogel P. Ascorbate synthesis pathway: dual role of ascorbate in bone homeostasis. J Biol Chem, 2010, 285: 19510-19520

[257]

Opsahl Vital S, Gaucher C, Bardet C et al Tooth dentin defects reflect genetic disorders affecting bone mineralization. Bone, 2012, 50: 989-997

[258]

Foster BL, Ramnitz MS, Gafni RI et al Rare bone diseases and their dental, oral, and craniofacial manifestations. J Dent Res, 2014, 93: 7S-19S

[259]

Al-Douri SM, Johnson DR. The development of the teeth of the microphthalmic (mi/mi) mouse. J Anat, 1987, 153: 139-149

[260]

Ma D, Zhang R, Sun Y et al A novel role of periostin in postnatal tooth formation and mineralization. J Biol Chem, 2011, 286: 4302-4309

[261]

Kassai Y, Munne P, Hotta Y et al Regulation of mammalian tooth cusp patterning by ectodin. Science, 2005, 309: 2067-2070

[262]

Ahn Y, Sanderson BW, Klein OD, Krumlauf R. Inhibition of Wnt signaling by Wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning. Development, 2010, 137: 3221-3231

[263]

Miyata A, Baba O, Oda T, Ishikawa I, Takano Y. Diverse effects of c-src deficiency on molar tooth development and eruption in mice. Arch Histol Cytol, 2007, 70: 63-78

[264]

Savelieva KV, Zhao S, Pogorelov VM et al Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PloS One, 2008, 3: e3301

[265]

Walther DJ, Peter JU, Bashammakh S et al Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science, 2003, 299: 76

[266]

Liu Q, Yang Q, Sun W et al Discovery and characterization of novel tryptophan hydroxylase inhibitors that selectively inhibit serotonin synthesis in the gastrointestinal tract. J Pharmacol Exp Ther, 2008, 325: 47-55

[267]

Yadav VK, Oury F, Suda N et al A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell, 2009, 138: 976-989

[268]

Shi ZC, Devasagayaraj A, Gu K et al Modulation of peripheral serotonin levels by novel tryptophan hydroxylase inhibitors for the potential treatment of functional gastrointestinal disorders. J Med Chem, 2008, 51: 3684-3687

[269]

Jin H, Cianchetta G, Devasagayaraj A et al Substituted 3-(4-(1,3,5-triazin-2-yl)-phenyl)-2-aminopropanoic acids as novel tryptophan hydroxylase inhibitors. Bioorg Med Chem Lett, 2009, 19: 5229-5232

[270]

Cianchetta G, Stouch T, Yu W et al Mechanism of inhibition of novel tryptophan hydroxylase inhibitors revealed by co-crystal structures and kinetic analysis. Curr Chem Genomics, 2010, 4: 19-26

[271]

Brown PM, Drossman DA, Wood AJ et al The tryptophan hydroxylase inhibitor LX1031 shows clinical benefit in patients with nonconstipating irritable bowel syndrome. Gastroenterology, 2011, 141: 507-516

[272]

Brommage R, Smith DD, Liu J, Yu W, Yang QM, Powell DR. Genetic disruption of brain serotonin content in mice produces leanness with hyperphagia and elevated physical activity but minimal skeletal changes. F1000Posters, 2014, 5: 1029

[273]

Wu J, Glimcher LH, Aliprantis AO. HCO3-/Cl- anion exchanger SLC4A2 is required for proper osteoclast differentiation and function. Proc Natl Acad Sci USA, 2008, 105: 16934-16939

[274]

Jansen ID, Mardones P, Lecanda F et al Ae2(a,b)-deficient mice exhibit osteopetrosis of long bones but not of calvaria. FASEB J, 2009, 23: 3470-3481

[275]

Cortes VA, Curtis DE, Sukumaran S et al Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy. Cell Metab, 2009, 9: 165-176

[276]

Vogel P, Read R, Hansen G et al Pathology of congenital generalized lipodystrophy in Agpat2–/– mice. Vet Pathol, 2011, 48: 642-654

[277]

Settembre C, Annunziata I, Spampanato C et al Systemic inflammation and neurodegeneration in a mouse model of multiple sulfatase deficiency. Proc Natl Acad Sci USA, 2007, 104: 4506-4511

[278]

Settembre C, Arteaga-Solis E, McKee M et al Proteoglycan desulfation determines the efficiency of chondrocyte autophagy and the extent of FGF signaling during endochondral ossification. Genes Dev, 2008, 22: 2645-2650

[279]

Kim JS, Ryoo ZY, Chun JS. Cytokine-like 1 (Cytl1) regulates the chondrogenesis of mesenchymal cells. J Biol Chem, 2007, 282: 29359-29367

[280]

Jeon J, Oh H, Lee G et al Cytokine-like 1 knock-out mice (Cytl1–/–) show normal cartilage and bone development but exhibit augmented osteoarthritic cartilage destruction. J Biol Chem, 2011, 286: 27206-27213

[281]

Doetschman T. Influence of genetic background on genetically engineered mouse phenotypes. Methods Mol Biol, 2009, 530: 423-433

[282]

Matthaei KI. Identification of therapeutic drug targets through genetically manipulated mice: are we getting it right? Pharmacol Ther, 2009, 123: 32-36

[283]

Keane TM, Goodstadt L, Danecek P et al Mouse genomic variation and its effect on phenotypes and gene regulation. Nature, 2011, 477: 289-294

[284]

Hofmann WE, Liu X, Bearden CM, Harper ME, Kozak LP. Effects of genetic background on thermoregulation and fatty acid-induced uncoupling of mitochondria in UCP1-deficient mice. J Biol Chem, 2001, 276: 12460-12465

[285]

Qiu J, Ogus S, Mounzih K, Ewart-Toland A, Chehab FF. Leptin-deficient mice backcrossed to the BALB/cJ genetic background have reduced adiposity, enhanced fertility, normal body temperature, and severe diabetes. Endocrinology, 2001, 142: 3421-3425

[286]

Toye AA, Lippiat JD, Proks P et al A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice. Diabetologia, 2005, 48: 675-686

[287]

Freeman HC, Hugill A, Dear NT, Ashcroft FM, Cox RD. Deletion of nicotinamide nucleotide transhydrogenase: a new quantitive trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes, 2006, 55: 2153-2156

[288]

Scudamore CL. Integrating pathology into human disease modelling--how to eat the elephant. Dis Model Mech, 2014, 7: 495-497

[289]

Adissu HA, Estabel J, Sunter D et al Histopathology reveals correlative and unique phenotypes in a high-throughput mouse phenotyping screen. Dis Model Mech, 2014, 7: 515-524

[290]

Prinz F, Schlange T, Asadullah K. Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov, 2011, 10: 712

[291]

Begley CG, Ellis LM. Drug development: Raise standards for preclinical cancer research. Nature, 2012, 483: 531-533

[292]

Collins FS, Tabak LA. Policy: NIH plans to enhance reproducibility. Nature, 2014, 505: 612-613

[293]

Boskey AL, van der Meulen MC, Wright TM. Guidelines for describing mouse skeletal phenotype. J Orthop Res, 2003, 21: 1-5

[294]

Manolagas SC, Kronenberg HM. Reproducibility of results in pre-clinical studies: a perspective from the bone field. J Bone Miner Res, 2014, 29: 2131-2140

[295]

Brommage R, Jeter-Jones S, Xiong WC, Champ R, Liu J. Mouse femoral neck architecture determined by microCT reflects skeletal architecture observed at other bone sites. J Bone Miner Res, 2013, 28 Suppl 1 S347-S348

[296]

Malloy PJ, Feldman D. The role of vitamin D receptor mutations in the development of alopecia. Mol Cell Endocrinol, 2011, 347: 90-96

[297]

Demay MB, MacDonald PN, Skorija K, Dowd DR, Cianferotti L, Cox M. Role of the vitamin D receptor in hair follicle biology. J Steroid Biochem Mol Biol, 2007, 103: 344-346

[298]

Barbaric I, Miller G, Dear TN. Appearances can be deceiving: phenotypes of knockout mice. Brief Funct Genomic Proteomic, 2007, 6: 91-103

[299]

Nagase S, Shimamune K, Shumiya S. Albumin-deficient rat mutant. Science, 1979, 205: 590-591

[300]

Kutuzova GD, Akhter S, Christakos S, Vanhooke J, Kimmel-Jehan C, Deluca HF. Calbindin D(9k) knockout mice are indistinguishable from wild-type mice in phenotype and serum calcium level. Proc Natl Acad Sci USA, 2006, 103: 12377-12381

[301]

Lee GS, Lee KY, Choi KC et al Phenotype of a calbindin-D9k gene knockout is compensated for by the induction of other calcium transporter genes in a mouse model. J Bone Miner Res, 2007, 22: 1968-1978

[302]

Akhter S, Kutuzova GD, Christakos S, DeLuca HF. Calbindin D9k is not required for 1,25-dihydroxyvitamin D3-mediated Ca2+ absorption in small intestine. Arch Biochem Biophys, 2007, 460: 227-232

[303]

Kutuzova GD, Sundersingh F, Vaughan J et al TRPV6 is not required for 1alpha,25-dihydroxyvitamin D3-induced intestinal calcium absorption in vivo. Proc Natl Acad Sci USA, 2008, 105: 19655-19659

[304]

Yngvadottir B, Xue Y, Searle S et al A genome-wide survey of the prevalence and evolutionary forces acting on human nonsense SNPs. Am J Hum Genet, 2009, 84: 224-234

[305]

MacArthur DG, Balasubramanian S, Frankish A et al A systematic survey of loss-of-function variants in human protein-coding genes. Science, 2012, 335: 823-828

[306]

Lim ET, Würtz P, Havulinna AS et al Distribution and medical impact of loss-of-function variants in the finnish founder population. PLoS Genet, 2014, 10: e1004494

[307]

Maurin AC, Jousse C, Averous J et al The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores. Cell Metab, 2005, 1: 273-277

[308]

Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab, 2009, 9: 203-209

[309]

Ward PP, Mendoza-Meneses M, Cunningham GA, Conneely OM. Iron status in mice carrying a targeted disruption of lactoferrin. Mol Cell Biol, 2003, 23: 178-185

[310]

Ye Q, Zheng Y, Fan S et al Lactoferrin deficiency promotes colitis-associated colorectal dysplasia in mice. PloS One, 2014, 9: e103298

[311]

Safadi FF, Thornton P, Magiera H et al Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein. J Clin Invest, 1999, 103: 239-251

[312]

Zella LA, Shevde NK, Hollis BW, Cooke NE, Pike JW. Vitamin D-binding protein influences total circulating levels of 1,25-dihydroxyvitamin D3 but does not directly modulate the bioactive levels of the hormone in vivo. Endocrinology, 2008, 149: 3656-3667

[313]

Booth FW, Laye MJ. Lack of adequate appreciation of physical exercise’s complexities can pre-empt appropriate design and interpretation in scientific discovery. J Physiol, 2009, 587: 5527-5539

[314]

Adams D, Baldock R, Bhattacharya S et al Bloomsbury report on mouse embryo phenotyping: recommendations from the IMPC workshop on embryonic lethal screening. Dis Model Mech, 2013, 6: 571-579

[315]

Mohun T, Adams DJ, Baldock R et al Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice. Dis Model Mech, 2013, 6: 562-566

[316]

Kitsios GD, Tangri N, Castaldi PJ, Ioannidis JP. Laboratory mouse models for the human genome-wide associations. PLoS One, 2010, 5: e13782

[317]

Georgi B, Voight BF, Bucan M. From mouse to human: evolutionary genomics analysis of human orthologs of essential genes. PLoS Genet, 2013, 9: e1003484

[318]

Turgeon B, Meloche S. Interpreting neonatal lethal phenotypes in mouse mutants: insights into gene function and human diseases. Physiol Rev, 2009, 89: 1-26

[319]

Grimm D. Mouse genetics. A mouse for every gene. Science, 2006, 312: 1862-1866

[320]

Austin CP, Battey JF, Bradley A et al The knockout mouse project. Nat Genet, 2004, 36: 921-924

[321]

Donahue LR, Hrabe de Angelis M, Hagn M et al Centralized mouse repositories. Mamm Genome, 2012, 23: 559-571

[322]

Smith CM, Finger JH, Kadin JA, Richardson JE, Ringwald M. The gene expression database for mouse development (GXD): Putting developmental expression information at your fingertips. Dev Dyn, 2014, 243: 1176-1186

[323]

Matthaei KI. Genetically manipulated mice: a powerful tool with unsuspected caveats. J Physiol, 2007, 582: 481-488

[324]

Heffner CS, Herbert Pratt C, Babiuk RP et al Supporting conditional mouse mutagenesis with a comprehensive cre characterization resource. Nat Commun, 2012, 3: 1218

[325]

Liu Y, Strecker S, Wang L et al Osterix-cre labeled progenitor cells contribute to the formation and maintenance of the bone marrow stroma. PLoS One, 2013, 8: e71318

[326]

Chen J, Shi Y, Regan J, Karuppaiah K, Ornitz DM, Long F et al Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice. PLoS One, 2014, 9: e85161

[327]

Brandon EP, Idzerda RL, McKnight GS. Knockouts. Targeting the mouse genome: a compendium of knockouts (Part I). Curr Biol, 1995, 5: 625-634

[328]

Kettleborough RN, Busch-Nentwich EM, Harvey SA et al A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature, 2013, 496: 494-497

[329]

The C. elegans Deletion Mutant Consortium Large-scale screening for targeted knockouts in the Caenorhabditis elegans genome. G3 (Bethesda), 2012, 2: 1415-1425

[330]

Giaever G, Nislow C. The yeast deletion collection: a decade of functional genomics. Genetics, 2014, 197: 451-465

[331]

Laulederkind SJ, Hayman GT, Wang SJ et al The Rat Genome Database 2013—data, tools and users. Brief Bioinform, 2013, 14: 520-526

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/