TGF-β signaling and the development of osteoarthritis

Jie Shen , Shan Li , Di Chen

Bone Research ›› 2014, Vol. 2 ›› Issue (1) : 14002

PDF
Bone Research ›› 2014, Vol. 2 ›› Issue (1) : 14002 DOI: 10.1038/boneres.2014.2
Article

TGF-β signaling and the development of osteoarthritis

Author information +
History +
PDF

Abstract

Osteoarthritis (OA) is a common joint degenerative disease affecting the whole joint structure, including articular cartilage, subchondral bone and synovial tissue. Although extensive work has been done in recent years to explore the molecular mechanism underlying this disease, the pathogenesis of OA is still poorly understood and currently, there is no effective disease-modifying treatment for OA. Recently, both in vitro and in vivo studies suggest that confirmed (TGF-β)/SMAD pathway plays a critical role during OA development. This short review will focus on the function and signaling mechanisms of TGF-β/SMAD pathway in articular chondrocytes, mesenchymal progenitor cells of subchondral bone and synovial lining cells during OA development.

Osteoarthritis: Pathway to therapy

A regulatory pathway that plays a role in the development of osteoarthritis should be a priority target for treatment, say researchers. Osteoarthritis (OA) causes pain and reduced mobility in millions of people worldwide but the mechanisms that trigger and accelerate the disease are poorly understood. Di Chen and co-workers at the University of Rochester and Rush University in the US, reviewed recent papers that link the regulatory pathway of the protein TGF-β (transforming growth factor β) to the development of OA. They confirmed that TGF-β increases the volume of cells in cartilage, promotes the differentiation of cells that can synthesize bone and strengthens linings within joints. The researchers identify genes related to TGF-β that could serve as targets for OA therapy, and urge further research into three other regulatory pathways that interact with TGF-β.

Cite this article

Download citation ▾
Jie Shen, Shan Li, Di Chen. TGF-β signaling and the development of osteoarthritis. Bone Research, 2014, 2(1): 14002 DOI:10.1038/boneres.2014.2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang M, Shen J, Jin H, Im HJ, Sandy J, Chen D. Recent progress in understanding molecular mechanisms of cartilage degeneration during osteoarthritis. Ann NY Acad Sci, 2011, 1240: 61-69

[2]

Felson DT. Clinical practice. Osteoarthritis of the knee. New Engl J Med, 2006, 354: 841-848

[3]

Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet, 2011, 377: 2115-2126

[4]

Anderson DD, Chubinskaya S, Guilak F et al Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J Orthop Res, 2011, 29: 802-809

[5]

van den Berg WB. Osteoarthritis year 2010 in review: pathomechanisms. Osteoarthr Cartilage, 2011, 19: 338-341

[6]

Yamada Y, Okuizumi H, Miyauchi A, Takagi Y, Ikeda K, Harada A. Association of transforming growth factor beta1 genotype with spinal osteophytosis in Japanese women. Arthritis Rheum, 2000, 43: 452-460

[7]

Lau HH, Ho AY, Luk KD, Kung AW. Transforming growth factor-beta1 gene polymorphisms and bone turnover, bone mineral density and fracture risk in southern Chinese women. Calcif Tissue Int, 2004, 74: 516-521

[8]

Kinoshita A, Saito T, Tomita H et al Domain-specific mutations in TGFB1 result in Camurati–Engelmann disease. Nat Genet, 2000, 26: 19-20

[9]

Whyte MP, Totty WG, Novack DV, Zhang X, Wenkert D, Mumm S. Camurati–Engelmann disease: unique variant featuring a novel mutation in TGFbeta1 encoding transforming growth factor beta 1 and a missense change in TNFSF11 encoding RANK ligand. J Bone Miner Res, 2011, 26: 920-933

[10]

Dequeker J, Aerssens J, Luyten FP. Osteoarthritis and osteoporosis: clinical and research evidence of inverse relationship. Aging Clinl Exp Res, 2003, 15: 426-439

[11]

Hunter DJ, Spector TD. The role of bone metabolism in osteoarthritis. Curr Rheum Rep, 2003, 5: 15-19

[12]

Kizawa H, Kou I, Iida A et al An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis. Nat Genet, 2005, 37: 138-144

[13]

Jiang Q, Shi D, Yi L et al Replication of the association of the aspartic acid repeat polymorphism in the asporin gene with knee-osteoarthritis susceptibility in Han Chinese. J Hum Genet, 2006, 51: 1068-1072

[14]

Mustafa Z, Dowling B, Chapman K, Sinsheimer JS, Carr A, Loughlin J. Investigating the aspartic acid (D) repeat of asporin as a risk factor for osteoarthritis in a UK Caucasian population. Arthritis Rheum, 2005, 52: 3502-3506

[15]

Song YQ, Cheung KM, Ho DW et al Association of the asporin D14 allele with lumbar-disc degeneration in Asians. Am J Hum Genet, 2008, 82: 744-747

[16]

Kaliakatsos M, Tzetis M, Kanavakis E et al Asporin and knee osteoarthritis in patients of Greek origin. Osteoarthr Cartilage, 2006, 14: 609-611

[17]

Valdes AM, Spector TD, Tamm A et al Genetic variation in the SMAD3 gene is associated with hip and knee osteoarthritis. Arthritis Rheum, 2010, 62: 2347-2352

[18]

van der Linde D, Verhagen HJ, Moelker A et al Aneurysm–osteoarthritis syndrome with visceral and iliac artery aneurysms. J Vasc Surg, 2013, 57: 96-102

[19]

Martens T, van Herzeele I, de Ryck F et al Multiple aneurysms in a patient with aneurysms-osteoarthritis syndrome. Ann Thorac Surg, 2013, 95: 332-335

[20]

van der Linde D, van de Laar IM, Bertoli-Avella AM et al Aggressive cardiovascular phenotype of aneurysms–osteoarthritis syndrome caused by pathogenic SMAD3 variants. J Am Coll Cardiol, 2012, 60: 397-403

[21]

van de Laar IM, Oldenburg RA, Pals G et al Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet, 2011, 43: 121-126

[22]

van de Laar IM, van der Linde D, Oei EH et al Phenotypic spectrum of the SMAD3-related aneurysms-osteoarthritis syndrome. J Med Genet, 2012, 49: 47-57

[23]

Kainulainen K, Karttunen L, Puhakka L, Sakai L, Peltonen L. Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. Nat Genet, 1994, 6: 64-69

[24]

Loeys BL, Schwarze U, Holm T et al Aneurysm syndromes caused by mutations in the TGF-beta receptor. New Engl J Med, 2006, 355: 788-798

[25]

Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta, 2008, 1782: 197-228

[26]

van der Kraan PM, Blaney Davidson EN, Blom A, van den Berg WB. TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis: modulation and integration of signaling pathways through receptor-Smads. Osteoarthr Cartilage, 2009, 17: 1539-1545

[27]

Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells, 2002, 7: 1191-1204

[28]

Blaney Davidson EN, Remst DF, Vitters EL et al Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J Immunol, 2009, 182: 7937-7945

[29]

Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J, 2002, 21: 1743-1753

[30]

Goumans MJ, Valdimarsdottir G, Itoh S et al Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol Cell, 2003, 12: 817-828

[31]

Finnson KW, Parker WL, ten Dijke P, Thorikay M, Philip A. ALK1 opposes ALK5/Smad3 signaling and expression of extracellular matrix components in human chondrocytes. J Bone Miner Res, 2008, 23: 896-906

[32]

Xiao YT, Xiang LX, Shao JZ. Bone morphogenetic protein. Biochem Bioph Res Commun, 2007, 362: 550-553

[33]

ten Dijke P, Arthur HM. Extracellular control of TGFbeta signalling in vascular development and disease. Nature reviews. Mol Cell Biol, 2007, 8: 857-869

[34]

Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL. Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol, 2003, 5: 410-421

[35]

Chen YG. Endocytic regulation of TGF-beta signaling. Cell Res, 2009, 19: 58-70

[36]

Wu Q, Huang JH, Sampson ER et al Smurf2 induces degradation of GSK-3beta and upregulates beta-catenin in chondrocytes: a potential mechanism for Smurf2-induced degeneration of articular cartilage. Exp Cell Res, 2009, 315: 2386-2398

[37]

Wu Q, Chen D, Zuscik MJ, O’Keefe RJ, Rosier RN. Overexpression of Smurf2 stimulates endochondral ossification through upregulation of beta-catenin. J Bone Miner Res, 2008, 23: 552-563

[38]

Wu Q, Kim KO, Sampson ER et al Induction of an osteoarthritis-like phenotype and degradation of phosphorylated Smad3 by Smurf2 in transgenic mice. Arthritis Rheum, 2008, 58: 3132-3144

[39]

Song JJ, Aswad R, Kanaan RA et al Connective tissue growth factor (CTGF) acts as a downstream mediator of TGF-beta1 to induce mesenchymal cell condensation. J Cell Physiol, 2007, 210: 398-410

[40]

Tuli R, Tuli S, Nandi S et al Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem, 2003, 278: 41227-41236

[41]

Leonard CM, Fuld HM, Frenz DA, Downie SA, Massague J, Newman SA. Role of transforming growth factor-beta in chondrogenic pattern formation in the embryonic limb: stimulation of mesenchymal condensation and fibronectin gene expression by exogenenous TGF-beta and evidence for endogenous TGF-beta-like activity. Dev Biol, 1991, 145: 99-109

[42]

Kulyk WM, Rodgers BJ, Greer K, Kosher RA. Promotion of embryonic chick limb cartilage differentiation by transforming growth factor-beta. Dev Biol, 1989, 135: 424-430

[43]

van der Kraan PM, van den Berg WB. Osteophytes: relevance and biology. Osteoarthr Cartilage, 2007, 15: 237-244

[44]

Blom AB, van Lent PL, Holthuysen AE et al Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthr Cartilage, 2004, 12: 627-635

[45]

Buckwalter JA, Mankin HJ. Articular cartilage. J Bone Joint Surg Am, 1997, 79: 600-632

[46]

Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect, 2005, 54: 465-480

[47]

Buckwalter JA, Brown TD. Joint injury, repair, and remodeling: roles in post-traumatic osteoarthritis. Clin Orthop Relat Res, 2004, 423: 7-16

[48]

Brandt KD, Dieppe P, Radin E. Etiopathogenesis of osteoarthritis. Med Clin North Am, 2009, 93: 1-24

[49]

Pullig O, Weseloh G, Ronneberger D, Kakonen S, Swoboda B. Chondrocyte differentiation in human osteoarthritis: expression of osteocalcin in normal and osteoarthritic cartilage and bone. Calcif Tissue Int, 2000, 63: 230-240

[50]

van den Berg WB. Pathophysiology of osteoarthritis. Joint Bone Spine, 2000, 67: 555-556

[51]

Shen J, Li J, Wang B et al Deletion of the Type II TGF-beta receptor gene in articular chondrocytes leads to a progressive OA-like phenotype in mice. Arthritis Rheum, 2013, 65: 3107-3119

[52]

Serra R, Johnson M, Filvaroff EH et al Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J Cell Biol, 1997, 139: 541-552

[53]

Yang X, Chen L, Xu X, Li C, Huang C, Deng CX. TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol, 2001, 153: 35-46

[54]

Blaney Davidson EN, Scharstuhl A, Vitters EL, van der Kraan PM, van den Berg WB. Reduced transforming growth factor-beta signaling in cartilage of old mice: role in impaired repair capacity. Arthritis Res Ther, 2005, 7: R1338-R13347

[55]

Blaney Davidson EN, van der Kraan PM, van den Berg WB. TGF-beta and osteoarthritis. Osteoarthr Cartilage, 2007, 15: 597-604

[56]

Dunker N, Krieglstein K. Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis. Eur J Biochem/FEBS, 2000, 267: 6982-6988

[57]

Chen M, Lichtler AC, Sheu TJ et al Generation of a transgenic mouse model with chondrocyte-specific and tamoxifen-inducible expression of Cre recombinase. Genesis, 2007, 45: 44-50

[58]

Zhu M, Chen M, Lichtler AC, O’Keefe RJ, Chen D. Tamoxifen-inducible Cre-recombination in articular chondrocytes of adult Col2a1-CreER(T2) transgenic mice. Osteoarthr Cartilage, 2008, 16: 129-130

[59]

Little CB, Barai A, Burkhardt D et al Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum, 2009, 60: 3723-3733

[60]

Wang M, Sampson ER, Jin H et al MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Res Ther, 2013, 15: R5

[61]

Blaney Davidson EN, Vitters EL, van Beuningen HM, van de Loo FA, van den Berg WB, van der Kraan PM. Resemblance of osteophytes in experimental osteoarthritis to transforming growth factor beta-induced osteophytes: limited role of bone morphogenetic protein in early osteoarthritic osteophyte formation. Arthritis Rheum, 2007, 56: 4065-4073

[62]

Bakker AC, van de Loo FA, van Beuningen HM et al Overexpression of active TGF-beta-1 in the murine knee joint: evidence for synovial-layer-dependent chondro-osteophyte formation. Osteoarthr Cartilage, 2001, 9: 128-136

[63]

Kronenberg HM. Developmental regulation of the growth plate. Nature, 2003, 423: 332-336

[64]

van Beuningen HM, van der Kraan PM, Arntz OJ, van den Berg WB. Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint. Lab Invest, 1994, 71: 279-290

[65]

van Beuningen HM, Glansbeek HL, van der Kraan PM, van den Berg WB. Differential effects of local application of BMP-2 or TGF-beta 1 on both articular cartilage composition and osteophyte formation. Osteoarthr Cartilage, 1998, 6: 306-317

[66]

van Beuningen HM, Glansbeek HL, van der Kraan PM, van den Berg WB. Osteoarthritis-like changes in the murine knee joint resulting from intra-articular transforming growth factor-beta injections. Osteoarthr Cartilage, 2000, 8: 25-33

[67]

Scharstuhl A, Glansbeek HL, van Beuningen HM, Vitters EL, van der Kraan PM, van den Berg WB. Inhibition of endogenous TGF-beta during experimental osteoarthritis prevents osteophyte formation and impairs cartilage repair. J Immunol, 2002, 169: 507-514

[68]

Zhen G, Wen C, Jia X et al Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med, 2013, 19: 704-712

[69]

Tang Y, Wu X, Lei W et al TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med, 2009, 15: 757-765

[70]

Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone, 2012, 51: 249-257

[71]

Fan J, Varshney RR, Ren L, Cai D, Wang DA. Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Erng Part B Rev, 2009, 15: 75-86

[72]

Hui AY, McCarty WJ, Masuda K, Firestein GS, Sah RL. A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley interdisciplinary reviews. Syst Biol Med, 2012, 4: 15-37

[73]

Rhee DK, Marcelino J, Baker M et al The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest, 2005, 115: 622-631

[74]

Oehler S, Neureiter D, Meyer-Scholten C, Aigner T. Subtyping of osteoarthritic synoviopathy. Clin Exp Rheumatol, 2002, 20: 633-640

[75]

Ayral X, Pickering EH, Woodworth TG, Mackillop N, Dougados M. Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis—results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthr Cartilage, 2005, 13: 361-367

[76]

Scharstuhl A, Vitters EL, van der Kraan PM, van den Berg WB. Reduction of osteophyte formation and synovial thickening by adenoviral overexpression of transforming growth factor beta/bone morphogenetic protein inhibitors during experimental osteoarthritis. Arthritis Rheum, 2003, 48: 3442-3451

[77]

Blaney Davidson EN, Vitters EL, van den Berg WB, van der Kraan PM. TGF beta-induced cartilage repair is maintained but fibrosis is blocked in the presence of Smad7. Arthritis Res Ther, 2006, 8: R65

[78]

Mirando AJ, Liu Z, Moore T et al RBP-Jkappa-dependent Notch signaling is required for murine articular cartilage and joint maintenance. Arthritis Rheum, 2013, 65: 2623-2633

[79]

Lin AC, Seeto BL, Bartoszko JM et al Modulating hedgehog signaling can attenuate the severity of osteoarthritis. Nat Med, 2009, 15: 1421-1425

[80]

Wang M, Tang D, Shu B et al Conditional activation of beta-catenin signaling in mice leads to severe defects in intervertebral disc tissue. Arthritis Rheum, 2012, 64: 2611-2623

[81]

Goldring MB, Marcu KB. Epigenomic and microRNA-mediated regulation in cartilage development, homeostasis, and osteoarthritis. Trends Mol Med, 2012, 18: 109-118

[82]

Miyaki S, Sato T, Inoue A et al MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev, 2010, 24: 1173-1185

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/