Self-supervised denoising for medical imaging enhancement

Guoxun Zhang , Yuanyuan Wei , Ho-Pui Ho

BMEMat ›› 2025, Vol. 3 ›› Issue (3) : e70018

PDF
BMEMat ›› 2025, Vol. 3 ›› Issue (3) : e70018 DOI: 10.1002/bmm2.70018
PERSPECTIVE

Self-supervised denoising for medical imaging enhancement

Author information +
History +
PDF

Abstract

Self-supervised denoising has emerged as a promising approach for enhancing the quality of medical imaging, particularly in modalities such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and optical microscopy. Traditional supervised methods often require large datasets of paired noisy and clean images, which are challenging to acquire in clinical practice. In contrast, self-supervised strategies exploit the inherent redundancy and structure within the data itself, enabling effective noise reduction without the need for explicitly labeled training pairs. This Perspective synthesizes recent advances in self-supervised denoising techniques, outlining their underlying principles, algorithmic innovations, and practical applications across different imaging modalities. In MRI, these methods have been shown to improve contrast and detail resolution, while in CT, they contribute to reducing radiation dose by allowing lower signal acquisitions without compromising image quality. In optical microscopy, self-supervised denoising facilitates extracting high-fidelity cellular information from inherently low-light environments. Furthermore, these techniques have also proven effective in imaging of biomedical materials, such as tissue engineering scaffolds, drug delivery systems, and implants, improving the evaluation of their interactions with biological tissues. Collectively, the integration of these advanced denoising frameworks holds significant promise for improving diagnostic accuracy, streamlining clinical workflows, and ultimately enhancing patient outcomes.

Keywords

clinical imaging / computational image analysis / deep learning / optical microscopy / self-supervised denoising

Cite this article

Download citation ▾
Guoxun Zhang, Yuanyuan Wei, Ho-Pui Ho. Self-supervised denoising for medical imaging enhancement. BMEMat, 2025, 3(3): e70018 DOI:10.1002/bmm2.70018

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. Ardila, A. P. Kiraly, S. Bharadwaj, B. Choi, J. J. Reicher, L. Peng, D. Tse, M. Etemadi, W. Ye, G. Corrado, D. P. Naidich, S. Shetty, Nat. Med. 2019, 25, 954.

[2]

Y. Zhao, Y. Ding, V. Lau, C. Man, S. Su, L. Xiao, A. T. L. Leong, E. X. Wu, Science 2024, 384, eadm7168.

[3]

D. A. Feinberg, A. J. S. Beckett, A. T. Vu, J. Stockmann, L. Huber, S. Ma, S. Ahn, K. Setsompop, X. Cao, S. Park, C. Liu, L. L. Wald, J. R. Polimeni, A. Mareyam, B. Gruber, R. Stirnberg, C. Liao, E. Yacoub, M. Davids, P. Bell, E. Rummert, M. Koehler, A. Potthast, I. Gonzalez-Insua, S. Stocker, S. Gunamony, P. Dietz, Nat. Methods 2023, 20, 2048.

[4]

Y. R. Wang, K. Yang, Y. Wen, P. Wang, Y. Hu, Y. Lai, Y. Wang, K. Zhao, S. Tang, A. Zhang, H. Zhan, M. Lu, X. Chen, S. Yang, Z. Dong, Y. Wang, H. Liu, L. Zhao, L. Huang, Y. Li, L. Wu, Z. Chen, Y. Luo, D. Liu, P. Zhao, K. Lin, J. C. Wu, S. Zhao, Nat. Med. 2024, 30, 1471.

[5]

M. Salim, Y. Liu, M. Sorkhei, D. Ntoula, T. Foukakis, I. Fredriksson, Y. Wang, M. Eklund, H. Azizpour, K. Smith, F. Strand, Nat. Med. 2024, 30, 2623.

[6]

S. J. Hollister, R. A. Levy, T.-M. Chu, J. W. Halloran, S. E. Feinberg, S. J. Hollister, R. A. Levy, T.-M. Chu, J. W. Halloran, S. E. Feinberg, Int. J. Oral. Maxillofac. Surg. 2000, 29, 67.

[7]

G. Pyka, G. Kerckhofs, J. Schrooten, M. Wevers, Mater. Charact. 2014, 87, 104.

[8]

S. J. Hollister, Nat. Mater. 2005, 4, 518.

[9]

M. Vielreicher, S. Schürmann, R. Detsch, M. A. Schmidt, A. Buttgereit, A. Boccaccini, O. Friedrich, J. R. Soc. Interface 2013, 10, 20130263.

[10]

S. S. Blemker, D. S. Asakawa, G. E. Gold, S. L. Delp, J. Magn. Reson. Imaging 2007, 25, 441.

[11]

J. Espiritu, M. Meier, J. M. Seitz, Bioact. Mater. 2021, 6, 4360.

[12]

M. D. Mantle, Curr. Opin. Colloid Interface Sci. 2013, 18, 214.

[13]

G. Mikhaylov, U. Mikac, A. A. Magaeva, V. I. Itin, E. P. Naiden, I. Psakhye, L. Babes, T. Reinheckel, C. Peters, R. Zeiser, M. Bogyo, V. Turk, S. G. Psakhye, B. Turk, O. Vasiljeva, Nat. Nanotechnol. 2011, 6, 594.

[14]

Y. Wang, D. F. Wertheim, A. S. Jones, A. G. A. Coombes, Eur. J. Pharm. Biopharm. 2010, 74, 41.

[15]

U. Granados, D. Fuster, J. M. Pericas, J. L. Llopis, S. Ninot, E. Quintana, M. Almela, C. Pari, J. M. Tolosana, C. Falces, A. Moreno, F. Pons, F. Lomẽna, J. M. Miro, J. Nucl. Med. 2016, 57, 1726.

[16]

S. Nazarian, R. Beinart, H. R. Halperin, Circ. Arrhythm. Electrophysiol. 2013, 6, 419.

[17]

Y. Wu, X. Han, Y. Su, M. Glidewell, J. S. Daniels, J. Liu, T. Sengupta, I. Rey-Suarez, R. Fischer, A. Patel, C. Combs, J. Sun, X. Wu, R. Christensen, C. Smith, L. Bao, Y. Sun, L. H. Duncan, J. Chen, Y. Pommier, Y. B. Shi, E. Murphy, S. Roy, A. Upadhyaya, D. Colón-Ramos, P. La Riviere, H. Shroff, Nature 2021, 600, 279.

[18]

X. Han, Y. Su, H. White, K. M. O’Neill, N. Y. Morgan, R. Christensen, D. Potarazu, H. D. Vishwasrao, S. Xu, Y. Sun, S. Y. Huang, M. W. Moyle, Q. Dai, Y. Pommier, E. Giniger, D. R. Albrecht, R. Probst, H. Shroff, Lab Chip 2021, 21, 1549.

[19]

W. B. Asher, P. Geggier, M. D. Holsey, G. T. Gilmore, A. K. Pati, J. Meszaros, D. S. Terry, S. Mathiasen, M. J. Kaliszewski, M. D. McCauley, A. Govindaraju, Z. Zhou, K. G. Harikumar, K. Jaqaman, L. J. Miller, A. W. Smith, S. C. Blanchard, J. A. Javitch, Nat. Methods 2021, 18, 397.

[20]

T. K. Kerppola, Annu. Rev. Biophys. 2008, 37, 465.

[21]

M. Fritzsche, G. Charras, Nat. Protoc. 2015, 10, 660.

[22]

G. H. Liu, J. Qu, K. Suzuki, E. Nivet, M. Li, N. Montserrat, F. Yi, X. Xu, S. Ruiz, W. Zhang, U. Wagner, A. Kim, B. Ren, Y. Li, A. Goebl, J. Kim, R. D. Soligalla, I. Dubova, J. Thompson, J. Y. Iii, C. R. Esteban, I. Sancho-Martinez, J. C. I. Belmonte, Nature 2012, 491, 603.

[23]

A. Buades, B. Coll, J. M. Morel, in Proc. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, IEEE, San Diego 2005, p. 60.

[24]

K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, IEEE Trans. Image Process. 2007, 16, 2080.

[25]

S. Gu, L. Zhang, W. Zuo, X. Feng, in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Ohio, June 2014.

[26]

J. Xu, L. Zhang, D. Zhang, X. Feng, in Proc. IEEE International Conference on Computer Vision, Venice, October 2017.

[27]

X. Xie, Y. Wu, H. Ni, C. He, Pattern Recognit. 2024, 148, 110176.

[28]

Z. Zhu, A. Rehman, X. Cao, C. Liao, Y. J. Lee, M. Ohliger, H. Xue, Y. Yang, arXiv: 2404.19167, v1, unpublished: Apr 2024.

[29]

K. Zhang, Y. Li, J. Liang, J. Cao, Y. Zhang, H. Tang, D. P. Fan, R. Timofte, L. Van Gool, Machine Intelligence Res. 2023, 20, 822.

[30]

J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, T. Aila, arXiv:1803.04189, v3, unpublished: Mar 2018.

[31]

A. Krull, T.-O. Buchholz, F. Jug, in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, June 2019.

[32]

Y. Quan, M. Chen, T. Pang, H. Ji, in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, June 2020.

[33]

T. Huang, S. Li, X. Jia, H. Lu, J. Liu, in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Nashville, June 2021.

[34]

M. Lyu, L. Mei, S. Huang, S. Liu, Y. Li, K. Yang, Y. Liu, Y. Dong, L. Dong, E. X. Wu, Sci. Data 2023, 10, 264.

[35]

B. Mandracchia, X. Hua, C. Guo, J. Son, T. Urner, S. Jia, Nat. Commun. 2020, 11, 94.

[36]

X. Li, G. Zhang, J. Wu, Y. Zhang, Z. Zhao, X. Lin, H. Qiao, H. Xie, H. Wang, L. Fang, Q. Dai, Nat. Methods 2021, 18, 1395.

[37]

X. Li, Y. Li, Y. Zhou, J. Wu, Z. Zhao, J. Fan, F. Deng, Z. Wu, G. Xiao, J. He, Y. Zhang, G. Zhang, X. Hu, X. Chen, Y. Zhang, H. Qiao, H. Xie, Y. Li, H. Wang, L. Fang, Q. Dai, Nat. Biotechnol. 2022, 41, 282.

[38]

G. Zhang, X. Li, Y. Zhang, X. Han, X. Li, J. Yu, B. Liu, J. Wu, L. Yu, Q. Dai, Nat. Methods 2023, 20, 1957.

[39]

Y. Zhou, M. A. Chia, S. K. Wagner, M. S. Ayhan, D. J. Williamson, R. R. Struyven, T. Liu, M. Xu, M. G. Lozano, P. Woodward-Court, Y. Kihara, N. Allen, J. E. J. Gallacher, T. Littlejohns, T. Aslam, P. Bishop, G. Black, P. Sergouniotis, D. Atan, A. D. Dick, C. Williams, S. Barman, J. H. Barrett, S. Mackie, T. Braithwaite, R. O. Carare, S. Ennis, J. Gibson, A. J. Lotery, J. Self, U. Chakravarthy, R. E. Hogg, E. Paterson, J. Woodside, T. Peto, G. Mckay, B. Mcguinness, P. J. Foster, K. Balaskas, A. P. Khawaja, N. Pontikos, J. S. Rahi, G. Lascaratos, P. J. Patel, M. Chan, S. Y. L. Chua, A. Day, P. Desai, C. Egan, M. Fruttiger, D. F. Garway-Heath, A. Hardcastle, S. P. T. Khaw, T. Moore, S. Sivaprasad, N. Strouthidis, D. Thomas, A. Tufail, A. C. Viswanathan, B. Dhillon, T. Macgillivray, C. Sudlow, V. Vitart, A. Doney, E. Trucco, J. A. Guggeinheim, J. E. Morgan, C. J. Hammond, K. Williams, P. Hysi, S. P. Harding, Y. Zheng, R. Luben, P. Luthert, Z. Sun, M. McKibbin, E. O’Sullivan, R. Oram, M. Weedon, C. G. Owen, A. R. Rudnicka, N. Sattar, D. Steel, I. Stratton, R. Tapp, M. M. Yates, A. Petzold, S. Madhusudhan, A. Altmann, A. Y. Lee, E. J. Topol, A. K. Denniston, D. C. Alexander, P. A. Keane, Nature 2023, 622, 156.

[40]

Z. Gao, G. Zhang, H. Liang, J. Liu, L. Ma, T. Wang, Y. Guo, Y. Chen, Z. Yan, X. Chen, Y. Guo, J. He, F. Xu, T. Y. Wong, Q. Dai, medRxiv: 2025.01.13.25320295, posted: Jan 2025.

[41]

G. Zhang, Z. Gao, C. Duan, J. Liu, Y. Lizhu, Y. Liu, Q. Chen, L. Wang, K. Fei, T. Wang, Y. Chen, Y. Guo, Y. Guo, X. Lou, Q. Dai, medRxiv: 2025.01.09.25320293, posted: Jan 2025.

RIGHTS & PERMISSIONS

2025 The Author(s). BMEMat published by John Wiley & Sons Australia, Ltd on behalf of Shandong University.

AI Summary AI Mindmap
PDF

37

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/