Expertise-inspired artificial intelligence pipeline for clinically applicable reconstruction of tooth-centric radial planes: Development and multicenter validation

Zhuohong Gong , Gengbin Cai , Jiayang Zeng , Beichen Wen , Hengyi Liu , Jiahong Lin , Xiaofei Meng , Peisheng Zeng , Jiamin Shi , Rui Xie , Yang Yu , Yin Xiao , Mengru Shi , Ruixuan Wang , Zetao Chen

BMEMat ›› 2025, Vol. 3 ›› Issue (3) : e70010

PDF
BMEMat ›› 2025, Vol. 3 ›› Issue (3) : e70010 DOI: 10.1002/bmm2.70010
RESEARCH ARTICLE

Expertise-inspired artificial intelligence pipeline for clinically applicable reconstruction of tooth-centric radial planes: Development and multicenter validation

Author information +
History +
PDF

Abstract

Owing to the tooth-centered nature of most oral diseases, the tooth-centric radial plane of cone-beam computed tomography (CBCT) depicts the anatomical and pathological features along the long axis of the tooth, serving as a crucial imaging modality in the diagnosis, treatment planning, and prognosis of multiple oral diseases. However, reconstructing these standard planes from CBCT is labor-intensive, time-consuming, and error-prone due to anatomical variances and multi-center discrepancies. This study proposes an expertise-inspired artificial intelligence (AI) pipeline for the reconstruction of the tooth-centric radial plane. By emulating expert's workflow, this AI pipeline acquires the optimized maxillary and mandibular cross sections, segments the teeth for dental arch curve depiction, and reconstructs dental arch-defined tooth-centric radial planes. A total of 420 CBCT scans from two independent centers, comprising both healthy and diseased subjects, were collected for model development and validation. Teeth on the optimized cross sections were explicitly segmented even in the presence of various complex diseases, resulting in precise dental arch curve depictions. The AI-reconstructed tooth-centric radial planes for all teeth exhibited low angular and distance errors compared with the ground truth planes. In terms of clinical utility, the AI-reconstructed planes demonstrated high image quality, accurately represented anatomical and pathological features, and facilitated precise dental biometrics measurement by both clinicians and downstream AI diagnostic tools. The expertise-inspired AI pipeline showcases outstanding performance in reconstructing tooth-centric radial planes and offers significant clinical utility for intelligent oral health management with high interpretability, robustness and generalization capabilities.

Keywords

cone-beam CT / deep learning / oral and maxillofacial imaging / oral disease / tooth-centric radial plane

Cite this article

Download citation ▾
Zhuohong Gong, Gengbin Cai, Jiayang Zeng, Beichen Wen, Hengyi Liu, Jiahong Lin, Xiaofei Meng, Peisheng Zeng, Jiamin Shi, Rui Xie, Yang Yu, Yin Xiao, Mengru Shi, Ruixuan Wang, Zetao Chen. Expertise-inspired artificial intelligence pipeline for clinically applicable reconstruction of tooth-centric radial planes: Development and multicenter validation. BMEMat, 2025, 3(3): e70010 DOI:10.1002/bmm2.70010

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. A. Peres, L. M. D. Macpherson, R. J. Weyant, B. Daly, R. Venturelli, M. R. Mathur, S. Listl, R. K. Celeste, C. C. Guarnizo-Herreño, C. Kearns, H. Benzian, P. Allison, R. G. Watt, Lancet 2019, 394, 249.

[2]

N. Jain, U. Dutt, I. Radenkov, S. Jain, Oral Dis. 2024, 30, 73.

[3]

T. Kaasalainen, M. Ekholm, T. Siiskonen, M. Kortesniemi, Phys. Medica 2021, 88, 193.

[4]

D. M. Rodrigues, H. Gluckman, C. C. Pontes, A. L. Januário, R. L. Petersen, J. R. de Moraes, E. P. Barboza, Odontology 2024, 112, 988.

[5]

D. F. Kinane, P. G. Stathopoulou, P. N. Papapanou, Nat. Rev. Dis. Primers 2017, 3, 17038.

[6]

H. Gluckman, C. C. Pontes, J. Du Toit, J. Prosthet. Dent 2018, 120, 50.

[7]

M. Shi, X. Wang, P. Zeng, H. Liu, Z. Gong, Y. Lin, Z. Li, Z. Chen, Z. Chen, BMC Oral Health 2021, 21, 494.

[8]

M. Bae, J. W. Park, N. Kim, Comput. Methods Programs Biomed. 2019, 172, 95.

[9]

Z. Cui, Y. Fang, L. Mei, B. Zhang, B. Yu, J. Liu, C. Jiang, Y. Sun, L. Ma, J. Huang, Y. Liu, Y. Zhao, C. Lian, Z. Ding, M. Zhu, D. Shen, Nat. Commun. 2022, 13, 2096.

[10]

T. Shan, F. R. Tay, L. Gu, J. Dent. Res. 2021, 100, 232.

[11]

X. Yang, Y. Huang, R. Huang, H. Dou, R. Li, J. Qian, X. Huang, W. Shi, C. Chen, Y. Zhang, H. Wang, Y. Xiong, D. Ni, Med. Image Anal. 2021, 72, 102119.

[12]

K. Blansit, T. Retson, E. Masutani, N. Bahrami, A. Hsiao, Radiol. Artif. Intell. 2019, 1, e180069.

[13]

D. Wei, Y. Huang, D. Lu, Y. Li, Y. Zheng, Med. Phys. 2024, 51, 1832.

[14]

S. H. Kang, K. Jeon, S. H. Kang, S. H. Lee, Sci. Rep. 2021, 11, 17509.

[15]

Y. Yang, Y. Cairang, T. Jiang, J. Zhou, L. Zhang, B. Qi, S. Ma, L. Tang, D. Xu, L. Bu, R. Bu, X. Jing, H. Wang, Z. Zhou, C. Zhao, B. Luo, L. Liu, J. Guo, Y. Nima, G. Hua, Z. Wa, Y. Zhang, G. Zhou, W. Jiang, C. Wang, Y. De, X. Yu, Z. Cheng, Z. Han, F. Liu, J. Dou, H. Feng, C. Wu, R. Wang, J. Hu, Q. Yang, Y. Luo, J. Wu, H. Fan, P. Liang, J. Yu, Lancet Digital Health 2023, 5, e503.

[16]

K. F. Hung, Q. Y. H. Ai, L. M. Wong, A. W. K. Yeung, D. T. S. Li, Y. Y. Leung, Diagnostics 2022, 13, 110.

[17]

M. Bae, J. W. Park, N. Kim, Comput. Biol. Med. 2021, 131, 104256.

[18]

L. A. V. Oliveira, M. B. H. Moran, M. D. B. Faria, L. F. Bastos, G. Giraldi, L. A. R. da Rosa, J. F. N. Neto, A. Conci, Med. Biol. Eng. Comput. 2022, 60, 3499.

[19]

J. Liu, J. Hao, H. Lin, W. Pan, J. Yang, Y. Feng, G. Wang, J. Li, Z. Jin, Z. Zhao, Z. Liu, Patterns 2023, 4, 100825.

[20]

X. Yang, H. Dou, R. Huang, W. Xue, Y. Huang, J. Qian, Y. Zhang, H. Luo, H. Guo, T. Wang, Y. Xiong, D. Ni, IEEE Trans. Med. Imaging 2021, 40, 1950.

[21]

Y. Wei, S. Liu, Z. Xiao, H. Zhao, J. Luo, X. Deng, L. Guo, Adv. Mater. 2020, 32, 1907067.

[22]

J. Lu, J. Deng, Y. Wei, X. Yang, H. Zhao, Q. Zhao, S. Liu, F. Li, Y. Li, X. Deng, L. Jiang, L. Guo, Nat. Commun. 2024, 15, 10182.

[23]

W. Tang, N. G. Fischer, X. Kong, T. Sang, Z. Ye, BMEMat 2024, 2, e12105.

[24]

H. Liu, J. Duan, P. Zeng, M. Shi, J. Zeng, S. Chen, Z. Gong, Z. Chen, J. Qin, Z. Chen, J. Dent. Res. 2024, 103, 378.

[25]

M. Shi, Z. Gong, P. Zeng, D. Xiang, G. Cai, H. Liu, S. Chen, R. Liu, Z. Chen, X. Zhang, Z. Chen, BME Front. 2024, 5, 0054.

[26]

F. Li, H. Zhang, H. Xu, S. Liu, L. Zhang, L. M. Ni, H. Y. Shum, presented at 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, June 2023.

[27]

Y. Qiao, W. Liu, B. Liang, P. Wang, H. Zhang, J. Yang, presented at 2023 IEEE Aerospace Conference, Big Sky, March 2023.

[28]

K. He, G. Gkioxari, P. Dollár, R. Girshick, presented at 2017 IEEE International Conference on Computer Vision (ICCV), Venice, October 2017.

[29]

Y. Lin, M. Shi, D. Xiang, P. Zeng, Z. Gong, H. Liu, Q. Liu, Z. Chen, J. Xia, Z. Chen, J. Periodontol. 2022, 93, 1951.

RIGHTS & PERMISSIONS

2025 The Author(s). BMEMat published by John Wiley & Sons Australia, Ltd on behalf of Shandong University.

AI Summary AI Mindmap
PDF

22

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/