Aminated graphene nanosheet stimulates the maturation of hiPSCs-derived cardiomyocytes in vitro and enhances their survival in vivo

Yin Xu , Xvdong Wang , Zihao Wang , Qi Chen , Donghui Zhang , Nianguo Dong , Jianglin Wang

BMEMat ›› 2025, Vol. 3 ›› Issue (3) : e70005

PDF
BMEMat ›› 2025, Vol. 3 ›› Issue (3) : e70005 DOI: 10.1002/bmm2.70005
RESEARCH ARTICLE

Aminated graphene nanosheet stimulates the maturation of hiPSCs-derived cardiomyocytes in vitro and enhances their survival in vivo

Author information +
History +
PDF

Abstract

Graphene-mediated niches with excellent electroconductibility, good flexibility and convenient modification play a central role in manipulating the cardiogenesis of stem cells. Herein, the graphene derivative matrix of aminated graphene (G-NH2) was synthesized as a substrate niche to modulate cardiac differentiation of human induced pluripotent stem cells (hiPSCs). The conductivity of G-NH2 matrix was close to that of native myocardium while the surface roughness of G-NH2 matrix was much low to present a suitable interface for the adhesion of hiPSCs. The G-NH2 matrix effectively elevated the maturation of hiPSCs-derived cardiomyocytes based on the evaluation of cardiomyocyte contraction, sarcomere patterns and length, and the content of NCAD (N-cadherin). The molecular mechanism of cardiomyocyte maturation was highly associated with the signaling pathway of PDGF-β. The mature cardiomyocytes derived from G-NH2 were transplanted into the groin of immunodeficient mice to reveal the better survival and rapid angiogenesis. More importantly, in situ injection into rat hearts of differentiated mature cardiomyocytes exhibited the better performance on residence, survival and proliferation. Consequently, we created an instructive stem cell niche of G-NH2 matrix that can electrically stimulate various cellular behaviors of hiPSCs in vitro, and the enhanced maturation of hiPSCs-cardiomyocytes manifests favorable activity and function in vivo.

Keywords

aminated graphene nanosheet / angiogenesis / cardiac differentiation / cardiomyocyte maturation / hiPSCs

Cite this article

Download citation ▾
Yin Xu, Xvdong Wang, Zihao Wang, Qi Chen, Donghui Zhang, Nianguo Dong, Jianglin Wang. Aminated graphene nanosheet stimulates the maturation of hiPSCs-derived cardiomyocytes in vitro and enhances their survival in vivo. BMEMat, 2025, 3(3): e70005 DOI:10.1002/bmm2.70005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Xin, E. N. Olson, R. Bassel-Duby, Nat. Rev. Mol. Cell Biol. 2013, 14, 529.

[2]

S. S. Lim, T. Vos, A. D. Flaxman, G. Danaei, K. Shibuya, Lancet 2012, 380, 2224.

[3]

E. Mooney, J. N. Mackle, D. J. P. Blond, E. O'Cearbhaill, G. Shaw, W. J. Blau, F. P. Barry, V. Barron, J. M. Murphy, Biomaterials 2012, 33, 6132.

[4]

Y. S. Choi, G. J. Dusting, S. Stubbs, S. Arunothayaraj, X. L. Han, P. Collas, W. A. Morrison, R. J. Dilley, J. Cell Mol. Med. 2010, 14, 878.

[5]

F. Ishikawa, H. Shimazu, L. D. Shultz, M. Fukata, R. Nakamura, B. Lyons, K. Shimoda, S. Shimoda, T. Kanemaru, K. I. Nakamura, H. Ito, Y. Kaji, A. C. F. Perry, M. Harada, FASEB J. 2006, 20, 950.

[6]

C. E. Murry, G. Keller, Cell 2008, 132, 661.

[7]

D. A. Robinton, G. Q. Daley, Nature 2012, 481, 295.

[8]

Y. Yoshida, S. Yamanaka, Circ. Res. 2017, 120, 1958.

[9]

A. J. Goel, M.-K. Rieder, H.-H. Arnold, G. L. Radice, R. S. Krauss, Cell Rep. 2017, 21, 2236.

[10]

K. Saha, Y. Mei, C. M. Reisterer, N. K. Pyzocha, J. Yang, J. Muffat, M. C. Davies, M. R. Alexander, R. Langer, D. G. Anderson, R. Jaenisch, Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 18714.

[11]

Y. Deng, S. C. Wei, L. Yang, W. Z. Yang, M. S. Dargusch, Z. G. Chen, Adv. Funct. Mater. 2018, 28, 1705546.

[12]

B. Valamehr, H. Tsutsui, C. M. Ho, H. Wu, Regener. Med. 2011, 6, 623.

[13]

P. Ghasemi-Dehkordi, M. Allahbakhshian-Farsani, N. Abdian, A. Mirzaeian, J. Saffari-Chaleshtori, F. Heybati, G. Mardani, A. Karimi-Taghanaki, A. Doosti, M. S. Jami, M. Abolhasani, M. Hashemzadeh-Chaleshtori, J. Cell Commun. Signaling 2015, 9, 233.

[14]

H. K. Kleinman, G. R. Martin, Semin. Cancer Biol. 2005, 15, 378.

[15]

K. Raniga, A. Nasir, N. T. N. Vo, R. Vaidyanathan, S. Dickerson, S. Hilcove, D. Mosqueira, G. R. Mirams, P. Clements, R. Hicks, A. Pointon, W. Stebbeds, J. Francis, C. Denning, Cell Stem Cell 2024, 31, 292.

[16]

T. U. Esser, A. Anspach, K. A. Muenzebrock, D. Kah, S. Schrüfer, J. Schenk, K. G. Heinze, D. W. Schubert, B. Fabry, F. B. Engel, Adv. Mater. 2023, 35, 2305911.

[17]

K. Ronaldson-Bouchard, S. P. Ma, K. Yeager, T. Chen, L. J. Song, D. Sirabella, K. Morikawa, D. Teles, M. Yazawa, G. Vunjak-Novakovic, Nature 2018, 556, 239.

[18]

S. D. Bird, P. A. Doevendans, M. A. van Rooijen, A. B. de la Riviere, R. J. Hassink, R. Passier, C. L. Mummery, Cardiovasc. Res. 2003, 58, 423.

[19]

L. Zwi, O. Caspi, G. Arbel, I. Huber, A. Gepstein, I. H. Park, L. Gepstein, Circulation 2009, 120, 1513.

[20]

Y. W. Chun, D. A. Balikov, T. K. Feaster, C. H. Williams, C. C. Sheng, J. B. Lee, T. C. Boire, M. D. Neely, L. M. Bellan, K. C. Ess, A. B. Bowman, H. J. Sung, C. C. Hong, Biomaterials 2015, 67, 52.

[21]

D. Zhang, I. Y. Shadrin, J. Lam, H. Q. Xian, H. R. Snodgrass, N. Bursac, Biomaterials 2013, 34, 5813.

[22]

J. Wang, C. Cui, H. Nan, Y. Yu, Y. Xiao, E. Poon, G. Yang, X. Wang, C. Wang, L. Li, K. R. Bohelee, X. Ma, X. Cheng, Z. Ni, M. Chen, ACS Appl. Mater. Interfaces 2017, 9, 25929.

[23]

Y. S. Zhang, A. Arneri, S. Bersini, S. R. Shin, K. Zhu, Z. Goli-Malekabadi, J. Aleman, C. Colosi, F. Busignani, V. Dell'Erba, C. Bishop, T. Shupe, D. Demarchi, M. Moretti, M. Rasponi, M. R. Dokmeci, A. Atala, A. Khademhosseini, Biomaterials 2016, 110, 45.

[24]

Y. W. Zhu, S. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Adv. Mater. 2010, 22, 3906.

[25]

J. H. Tsui, A. Leonard, N. D. Camp, J. T. Long, Z. Y. Nawas, R. Chavanachat, A. S. T. Smith, J. S. Choi, Z. Dong, E. H. Ahn, A. Wolf-Yadlin, C. E. Murry, N. J. Sniadecki, D.-H. Kim, Biomaterials 2021, 272, 120764.

[26]

G. Y. Chen, D. W. P. Pang, S. M. Hwang, H. Y. Tuan, Y. C. Hu, Biomaterials 2012, 33, 418.

[27]

J. Yoo, J. Kim, S. Baek, Y. Park, H. Im, J. Kim, Biomaterials 2014, 35, 8321.

[28]

G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 2008, 3, 270.

[29]

J. S. Zhou, J. Lian, L. Hou, J. C. Zhang, H. Y. Gou, M. R. Xia, Y. F. Zhao, T. A. Strobel, L. Tao, F. M. Gao, Nat. Commun. 2015, 6, 8503.

[30]

M. C. Zhang, Y. L. Wang, M. Q. Jian, C. Y. Wang, X. P. Liang, J. L. Niu, Y. Y. Zhang, Adv. Sci. 2019, 9, 1903048.

[31]

A. J. Ryan, C. J. Kearney, N. Shen, U. Khan, A. G. Kelly, C. Probst, E. Brauchle, S. Biccai, C. D. Garciarena, V. Vega-Mayoral, P. Loskill, S. W. Kerrigan, D. J. Kelly, K. Schenke-Layland, J. N. Coleman, F. J. O'Brien, Adv. Mater. 2018, 30, 1706442.

[32]

R. Beams, L. G. Cancado, L. Novotny, J. Phys.: Condens. Matter 2015, 27, 083002.

[33]

N. M. Wickramasinghe, D. Sachs, B. Shewale, D. M. Gonzalez, P. Dhanan-Krishnan, D. Torre, E. LaMarca, S. Raimo, R. Dariolli, M. N. Serasinghe, J. Mayourian, R. Sebra, K. Beaumont, S. Iyengar, D. L. French, A. Hansen, T. Eschenhagen, J. E. Chipuk, E. A. Sobie, A. Jacobs, S. Akbarian, H. Ischiropoulos, A. Ma'ayan, S. M. Houten, K. Costa, N. C. Dubois, Cell Stem Cell 2022, 29, 559.

[34]

M. Tiburcy, J. E. Hudson, P. Balfanz, S. Schlick, T. Meyer, M.-L. C. Liao, E. Levent, F. Raad, S. Zeidler, E. Wingender, J. Riegler, M. Wang, J. D. Gold, I. Kehat, E. Wettwer, U. Ravens, P. Dierickx, L. W. van Laake, M. J. Goumans, S. Khadjeh, K. Toischer, G. Hasenfuss, L. A. Couture, A. Unger, W. A. Linke, T. Araki, B. Neel, G. Keller, L. Gepstein, J. C. Wu, W.-H. Zimmermann, Circulation 2017, 135, 1832.

[35]

D. H. Zhang, I. Y. Shadrin, J. Lam, H. Q. Xian, H. R. Snodgrass, N. Bursac, Biomaterials 2013, 34, 5813.

[36]

H. Y. Liao, Y. Qi, Y. D. Ye, P. Yue, D. H. Zhang, Y. F. Li, Front. Cell Dev. Biol. 2021, 8, 625089.

[37]

E. W. Raines, T. F. Lane, M. L. Iruela-Arispe, R. Ross, E. H. Sage, Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 1281.

[38]

X.-L. Luo, Y. Jiang, Q. Li, X.-J. Yu, T. Ma, H. Cao, M.-X. Ke, P. Zhang, J.-L. Tan, Y.-S. Gong, L. Wang, L. Gao, H.-T. Yang, Adv. Sci. 2023.

[39]

N. Cao, Y. Huang, J. Zheng, C. I. Spencer, Y. Zhang, J.-D. Fu, B. Nie, M. Xie, M. Zhang, H. Wang, T. Ma, T. Xu, G. Shi, D. Srivastava, S. Ding, Science 2016, 352, 1216.

[40]

J. Veldhuizen, J. Cutts, D. A. Brafman, R. Q. Migrino, M. Nikkhah, Biomaterials 2020, 256, 120195.

[41]

N. Huebsch, B. Charrez, G. Neiman, B. Siemons, S. C. Boggess, S. Wall, V. Charwat, K. H. Jaeger, D. Cleres, A. Telle, F. T. Lee-Montiel, N. C. Jeffreys, N. Deveshwar, A. G. Edwards, J. Serrano, M. Snuderl, A. Stahl, A. Tveito, E. W. Miller, K. E. Healy, Nat. Biomed. Eng. 2022, 6, 372.

[42]

R. G. Rowe, G. Q. Daley, Nat. Rev. Genet. 2019, 20, 377.

[43]

T. C. McDevitt, Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 20852.

[44]

P. W. Burridge, E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, N. M. Mordwinkin, J. R. Plews, O. J. Abilez, B. Cui, J. D. Gold, J. C. Wu, Nat. Methods 2014, 11, 855.

[45]

A. J. S. Ribeiro, Y.-S. Ang, J.-D. Fu, R. N. Rivas, T. M. A. Mohamed, G. C. Higgs, D. Srivastava, B. L. Pruitt, Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 12705.

[46]

Z. Lin, D. Kireev, N. Liu, S. Gupta, J. LaPiano, S. N. Obaid, Z. Chen, D. Akinwande, I. R. Efimov, Adv. Mater. 2023, 35, 2212190.

[47]

L. Ou, X. Tan, S. Qiao, J. Wu, Y. Su, W. Xie, N. Jin, J. He, R. Luo, X. Lai, W. Liu, Y. Zhang, F. Zhao, J. Liu, Y. Kang, L. Shao, ACS Nano 2023, 17, 18669.

[48]

S. Barg, F. M. Perez, N. Ni, P. d. V. Pereira, R. C. Maher, E. Garcia-Tunon, S. Eslava, S. Agnoli, C. Mattevi, E. Saiz, Nat. Commun. 2014, 5, 4328.

[49]

J. Zhao, M. Tang, J. Cao, D. Ye, X. Guo, J. Xi, Y. Zhou, Y. Xia, J. Qiao, R. Chai, X. Yang, J. Kang, Adv. Sci. 2019, 6, 1802136.

[50]

S. Yuasa, Y. Itabashi, U. Koshimizu, T. Tanaka, K. Sugimura, M. Kinoshita, F. Hattori, S. Fukami, T. Shimazaki, H. Okano, S. Ogawa, K. Fukuda, Nat. Biotechnol. 2005, 23, 607.

[51]

M. S. Islam, A. Ciavattini, F. Petraglia, M. Castellucci, P. Ciarmela, Hum. Reprod. Update 2018, 24, 59.

[52]

K. Hosaka, Y. Yang, T. Seki, M. Nakamura, P. Andersson, P. Rouhi, X. Yang, L. Jensen, S. Lim, N. Feng, Y. Xue, X. Li, O. Larsson, T. Ohhashi, Y. Cao, Nat. Commun. 2013, 4, 2129.

[53]

M. Lee, J. Park, G. Choe, S. Lee, B. G. Kang, J. H. Jun, Y. Shin, M. C. Kim, Y. S. Kim, Y. Ahn, J. Y. Lee, ACS Nano 2023, 17, 12290.

[54]

H. Ryu, X. Wang, Z. Xie, J. Kim, Y. Liu, W. Bai, Z. Song, J. W. Song, Z. Zhao, J. Kim, Q. Yang, J. J. Xie, R. Keate, H. Wang, Y. Huang, I. R. Efimov, G. A. Ameer, J. A. Rogers, Adv. Sci. 2023, 10, 2303429.

[55]

M. K. Rabchinskii, S. A. Ryzhkov, D. A. Kirilenko, N. V. Ulin, M. V. Baidakova, V. V. Shnitov, S. I. Pavlov, R. G. Chumakov, D. Y. Stolyarova, N. A. Besedina, A. V. Shvidchenko, D. V. Potorochin, F. Roth, D. A. Smirnov, M. V. Gudkov, M. Brzhezinskaya, O. I. Lebedev, V. P. Melnikov, P. N. Brunkov, Sci. Rep. 2020, 10, 6902.

[56]

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, ACS Nano 2010, 4, 4806.

[57]

J. Zhou, T. Q. Han, H. M. Ma, T. Yan, X. H. Pang, Y. Y. Li, Q. Wei, Anal. Chim. Acta 2015, 889, 82.

[58]

N. Al-Aqtash, I. Vasiliev, J. Phys. Chem. C 2009, 113, 12970.

[59]

X. Huang, Z. Y. Yin, S. X. Wu, X. Y. Qi, Q. Y. He, Q. C. Zhang, Q. Y. Yan, F. Boey, H. Zhang, Small 2011, 7, 1876.

RIGHTS & PERMISSIONS

2025 The Author(s). BMEMat published by John Wiley & Sons Australia, Ltd on behalf of Shandong University.

AI Summary AI Mindmap
PDF

38

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/