Blood clot inspired pore-gradient nanofiber sponge with “outer filtration” and “inner adsorption” bifunction for rapid stop of uncontrolled hemorrhage

Fujin Zhou , Yong Yang , Yixuan Li , Ruolin Cao , Zheng Chen , Zhi Wang , Naiwen Tan , Lei Tian , Botao Song

BMEMat ›› 2025, Vol. 3 ›› Issue (3) : e70002

PDF
BMEMat ›› 2025, Vol. 3 ›› Issue (3) : e70002 DOI: 10.1002/bmm2.70002
RESEARCH ARTICLE

Blood clot inspired pore-gradient nanofiber sponge with “outer filtration” and “inner adsorption” bifunction for rapid stop of uncontrolled hemorrhage

Author information +
History +
PDF

Abstract

Effectively controlling deep non-compressible bleeding remains a major challenge. In this study, by mimicking nanofiber structure and netting blood cells function of fibrin network in blood clots, we develop a novel bioinspired quaternized chitosan nanofiber sponge with distinct blood cells filtration and blood plasma absorption bifunction for rapid hemostasis. The quaternized chitosan nanofiber sponge possesses a unique gradient pore structure with small pores on the outer surface and large pores in the inner part. The outer small pores effectively capture blood cells with a filtration efficiency as high as 91.7%, while the inner large pores endow with an ultrahigh liquid absorption capacity (93 g/g), surpassing previously reported literature records. The quaternized chitosan nanofiber sponge demonstrates a hemostasis time 2.5 times faster than that of the commercial gelatin® hemostatic sponge when treating the rat liver defect bleeding (noncompressible hemorrhage model). When applied to the rabbit arterial injury bleeding (lethal arterial hemorrhage model), the bioinspired nanofiber sponge achieves bleeding control within only 61.6 s, while both commercial gelatin® hemostatic sponge and commercial collagen® hemostatic sponge fail to stop bleeding even after 240 s. This bioinspired nanofiber sponge derived from the physiological coagulation process may hold great potential for pre-hospital and battlefield first aid.

Keywords

blood clot inspired / nanofiber sponge / pore structure control / quaternized chitosan / uncontrolled hemorrhage

Cite this article

Download citation ▾
Fujin Zhou, Yong Yang, Yixuan Li, Ruolin Cao, Zheng Chen, Zhi Wang, Naiwen Tan, Lei Tian, Botao Song. Blood clot inspired pore-gradient nanofiber sponge with “outer filtration” and “inner adsorption” bifunction for rapid stop of uncontrolled hemorrhage. BMEMat, 2025, 3(3): e70002 DOI:10.1002/bmm2.70002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. M. Behrens, M. J. Sikorski, P. Kofinas, J. Biomed. Mater. Res., Part A 2014, 102, 4182.

[2]

Y. Peng, Y. Zhuang, Y. Liu, H. Le, D. Li, M. Zhang, K. Liu, Y. Zhang, J. Zuo, J. Ding, Exploration 2023, 3, 20210043.

[3]

A. C. Beekley, J. A. Sebesta, L. H. Blackbourne, G. S. Herbert, D. S. Kauvar, D. G. Baer, T. J. Walters, P. S. Mullenix, J. B. Holcomb, J. Trauma: Inj. Infect. Crit. Care 2008, 64, 28.

[4]

B. J. Eastridge, R. L. Mabry, P. Seguin, J. Cantrell, T. Tops, P. Uribe, O. Mallett, T. Zubko, L. Oetjen-Gerdes, T. E. Rasmussen, F. K. Butler, R. S. Kotwal, J. B. Holcomb, C. Wade, H. Champion, M. Lawnick, L. Moores, L. H. Blackbourne, J. Trauma Acute Care Surg. 2012, 73, S431.

[5]

D. S. Kauvar, C. E. Wade, Crit. Care 2005, 9, 1.

[6]

K. J. Kalkwarf, S. A. Drake, Y. Yang, C. Thetford, L. Myers, M. Brock, D. A. Wolf, D. Persse, C. E. Wade, J. B. Holcomb, J. Trauma Acute Care Surg. 2020, 89, 716.

[7]

B. S. Kheirabadi, I. B. Terrazas, N. Miranda, J. S. Estep, B. T. Corona, J. F. Kragh, , M. A. Dubick, J. Trauma Acute Care Surg. 2014, 77, S101.

[8]

L. Jamal, A. Saini, K. Quencer, I. Altun, H. Albadawi, A. Khurana, S. Naidu, I. Patel, S. Alzubaidi, R. Oklu, Ann. Transl. Med 2021, 9, 1192.

[9]

W. Fang, L. Yang, L. Hong, Q. Hu, Carbohydr. Polym. 2021, 271, 118428.

[10]

Y. Hong, F. Zhou, Y. Hua, X. Zhang, C. Ni, D. Pan, Y. Zhang, D. Jiang, L. Yang, Q. Lin, Y. Zou, D. Yu, D. E. Arnot, X. Zou, L. Zhu, S. Zhang, H. Ouyang, Nat. Commun. 2019, 10, 2060.

[11]

C. Zheng, J. Liu, Q. Bai, Y. Quan, Z. Li, W. Chen, Q. Gao, Y. Zhang, T. Lu, Mater. Des. 2022, 223, 111116.

[12]

C. Zheng, Q. Bai, W. Wu, K. Han, Q. Zeng, K. Dong, Y. Zhang, T. Lu, Int. J. Biol. Macromol. 2021, 79, 507.

[13]

H. T. Beaman, E. Shepherd, J. Satalin, S. Blair, H. Ramcharran, S. Serinelli, L. Gitto, K. S. Dong, D. Fikhman, G. Nieman, S. G. Schauer, M. B. B. Monroe, Acta Biomater. 2022, 137, 112.

[14]

Y. Fang, Y. Xu, Z. Wang, W. Zhou, L. Yan, X. Fan, H. Liu, Chem. Eng. J. 2020, 388, 124169.

[15]

X. Zhao, B. Guo, H. Wu, Y. Liang, P. X. Ma, Nat. Commun. 2018, 9, 2784.

[16]

S. Baghdasarian, B. Saleh, A. Baidya, H. Kim, M. Ghovvati, E. S. Sani, R. Haghniaz, S. Madhu, M. Kanelli, I. Noshadi, N. Annabi, Mater. Today Bio 2022, 13, 100199.

[17]

D. A. Hickman, C. L. Pawlowski, U. D. S. Sekhon, J. Marks, A. S. Gupta, Adv. Mater. 2017, 30, 1700529.

[18]

R. Dong, H. Zhang, B. Guo, Natl. Sci. Rev. 2022, 9, 1870269.

[19]

B. Bhattacharjee, R. Mukherjee, J. Haldar, ACS Biomater. Sci. Eng. 2020, 8, 3596.

[20]

Y. Du, Y. Bai, S. Lang, D. Xing, L. Ma, K. Li, J. Peng, X. Li, G. Liu, Biomacromolecules 2023, 24, 5313.

[21]

J. Chen, Z. Huang, X. Wu, D. Xia, Z. Chen, D. Wang, C. Liang, J. Li, Biomed. Mater. 2023, 18, 035012.

[22]

J.-Y. Liu, Y. Li, Y. Hu, G. Cheng, E. Ye, C. Shen, F.-J. Xu, Mater. Sci. Eng., C 2018, 83, 160.

[23]

X. Fan, Y. Li, N. Li, G. Wan, M. A. Ali, K. Tang, Int. J. Biol. Macromol. 2020, 164, 2769.

[24]

L. Wang, Y. Zhong, C. Qian, D. Yang, J. Nie, G. Ma, Acta Biomater. 2020, 114, 193.

[25]

Y. He, J. Wang, Y. Si, X. Wang, H. Deng, Z. Sheng, Y. Li, J. Liu, J. Zhao, Int. J. Biol. Macromol. 2021, 178, 296.

[26]

P. Li, L. Cao, F. Sang, B. Zhang, Z. Meng, L. Pan, J. Hao, X. Yang, Z. Ma, C. Shi, Biomater. Adv. 2022, 134, 112698.

[27]

S. Lv, M. Cai, F. Leng, X. Jiang, Carbohydr. Polym. 2022, 288, 119369.

[28]

W. Zheng, Z. Zhang, Y. Li, L. Wang, F. Fu, H. Diao, X. Liu, Chem. Eng. J. 2022, 447, 137482.

[29]

C. Lv, X. Zhou, P. Wang, J. Li, Z. Wu, Z. Jiao, M. Guo, Z. Wang, Y. Wang, L. Wang, P. Zhang, Composites, Part B 2022, 247, 110263.

[30]

Y. Huang, X. Zhao, Z. Zhang, Y. Liang, Z. Yin, B. Chen, L. Bai, Y. Han, B. Guo, Chem. Mater. 2020, 32, 6595.

[31]

S. Jiang, S. Liu, S. Lau, J. Li, J. Mater. Chem. B 2022, 10, 7239.

[32]

K. Broos, H. B. Feys, S. F. De Meyer, K. Vanhoorelbeke, H. Deckmyn, Blood Rev. 2011, 25, 155.

[33]

S. Pourshahrestani, N. A. Kadri, E. Zeimaran, M. R. Towler, Biomater. Sci. 2019, 7, 31.

[34]

X. Lu, Y. Si, S. Zhang, J. Yu, B. Ding, Adv. Funct. Mater. 2021, 31, 2103117.

[35]

Y. Si, L. Wang, X. Wang, N. Tang, J. Yu, B. Ding, Adv. Mater. 2017, 29, 1700339.

[36]

J. Xue, T. Wu, Y. Dai, Y. Xia, Chem. Rev. 2019, 119, 5298.

[37]

K. Zhang, M. A. Bhutto, L. Wang, K. Wang, J. Liu, W. Li, W. Cui, Q. Fu, Adv. Fiber Mater. 2023, 5, 662.

[38]

X. Fu, J. Wang, D. Qian, Z. Chen, L. Chen, W. Cui, Y. Wang, Adv. Fiber Mater. 2022, 5, 979.

[39]

X. Fu, J. Wang, D. Qian, L. Xi, L. Chen, Y. Du, W. Cui, Y. Wang, Adv. Fiber Mater. 2023, 5, 1773.

[40]

M. A. Khan, M. Mujahid, Int. J. Biol. Macromol. 2019, 124, 138.

[41]

M. Yin, Y. Wang, Y. Zhang, X. Ren, Y. Qiu, T.-S. Huang, Carbohydr. Polym. 2020, 232, 115823.

[42]

S. Guo, Y. Ren, R. Chang, Y. He, D. Zhang, F. Guan, M. Yao, ACS Appl. Mater. Interfaces 2022, 14, 34455.

[43]

E. Yang, W. Hou, K. Liu, H. Yang, W. Wei, H. Kang, H. Dai, Carbohydr. Polym. 2022, 291, 119631.

[44]

X. Xie, Y. Zhou, H. Bi, K. Yin, S. Wan, L. Sun, Sci. Rep. 2013, 3, 2117.

[45]

Z.-X. Peng, L. Wang, L. Du, S.-R. Guo, X.-Q. Wang, T.-T. Tang, Carbohydr. Polym. 2010, 81, 275.

[46]

Y. Liang, X. Zhao, T. Hu, B. Chen, Z. Yin, P. X. Ma, B. Guo, Small 2019, 15, 1900046.

[47]

L. Wang, Y. Wu, B. Guo, P. X. Ma, ACS Nano 2015, 9, 9167.

[48]

S.-Y. Ong, J. Wu, S. M. Moochhala, M.-H. Tan, J. Lu, Biomaterials 2008, 29, 4323.

[49]

M. S. Lord, B. Cheng, S. J. McCarthy, M. Jung, J. M. Whitelock, Biomaterials 2011, 32, 6655.

[50]

D. Gopinath, M. R. Ahmed, K. Gomathi, K. Chitra, P. K. Sehgal, R. Jayakumar, Biomaterials 2004, 25, 1911.

[51]

R. J. Vos, B. P. Van Putte, G. T. L. Kloppenburg, J. Hosp. Infect. 2018, 100, 411.

[52]

W. Y. Cheah, P.-L. Show, I. S. Ng, G.-Y. Lin, C.-Y. Chiu, Y.-K. Chang, Int. J. Biol. Macromol. 2019, 126, 569.

[53]

E. Oyervides-Muñoz, E. Pollet, G. Ulrich, G. de Jesús Sosa-Santillán, L. Avérous, Carbohydr. Polym. 2017, 157, 1922.

[54]

B. Guo, R. Dong, Y. Liang, M. Li, Nat. Rev. Chem 2021, 5, 773.

[55]

B. B. Hsu, W. Conway, C. M. Tschabrunn, M. Mehta, M. B. Perez-Cuevas, S. Zhang, P. T. Hammond, ACS Nano 2015, 9, 9394.

[56]

R. V. Shevchenko, M. Eeman, B. Rowshanravan, I. U. Allan, I. N. Savina, M. Illsley, M. Salmon, S. L. James, S. V. Mikhalovsky, S. E. James, Acta Biomater. 2014, 10, 3156.

[57]

W. Li, Y. Yin, H. Zhou, Y. Fan, Y. Yang, Q. Gao, P. Li, G. Gao, J. Li, Cyborg Bionic Syst. 2024, 5, 0101.

[58]

Y. Zhao, Z. Zhang, Z. Pan, Y. Liu, Exploration 2021, 1, 20210089.

[59]

J. L. Daristotle, L. W. Lau, M. Erdi, J. Hunter, A. Djoum, P. Srinivasan, X. Wu, M. Basu, O. B. Ayyub, A. D. Sandler, P. Kofinas, Bioeng. Transl. Med. 2019, 5, 10149.

[60]

T. Zhang, S. Sheng, W. Cai, H. Yang, J. Li, L. Niu, W. Chen, X. Zhang, Q. Zhou, C. Gao, Z. Li, Y. Zhang, G. Wang, H. Shen, H. Zhang, Y. Hu, Z. Yin, X. Chen, Y. Liu, J. Cui, J. Su, Bioact. Mater. 2024, 42, 257.

RIGHTS & PERMISSIONS

2025 The Author(s). BMEMat published by John Wiley & Sons Australia, Ltd on behalf of Shandong University.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/