3D-cultured BMSC exosomes improve cerebral ischemia/reperfusion injury-induced neuronal apoptosis by regulating the microglia polarization
Yuming Li , Hao Shang , Qiong Zhang , Xianyong Yin , Zihao Liu , Yuqing Fang , Kyubae Lee , Huayang Zhao , Zhihai Wang , Hongbo Zhao , Xiaofeng Wang , Shengjie Li , Shan Wang , Tao Xin
BMEMat ›› 2025, Vol. 3 ›› Issue (2) : e70000
3D-cultured BMSC exosomes improve cerebral ischemia/reperfusion injury-induced neuronal apoptosis by regulating the microglia polarization
Microglial activation is a key driver of neuroinflammation following cerebral ischemic reperfusion injury (CIRI). Exosomes (Exo) derived from bone marrow mesenchymal stem cells (BMSCs) can regulate microglia, causing a transition from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, thereby reducing neuronal apoptosis in post-reperfusion injuries. However, the generation of superior-quality exosomes remains a significant hurdle in this field. We performed three-dimensional (3D) cultivation of BMSCs using a gelatin methacryloyl (GelMA) hydrogel and collected the released exosomes. We conducted experiments using lipopolysaccharide (LPS)-induced BV2 cells, oxygen-glucose deprivation/reoxygenation (OGD/R)- induced HT22 cells, and CIRI mice to verify the effects of 3D-cultured exosomes in regulating microglial activation and alleviating neuronal apoptosis. Based on the cellular and animal experiments, we successfully demonstrated the remarkable efficacy of exosomes derived from 3D-cultured BMSC using a GelMA hydrogel in the context of CIRI. These exosomes effectively mitigated the conversion of microglia to the inflammatory phenotype and facilitated their transition to the anti-inflammatory phenotype, thereby reducing aseptic inflammatory reactions and neuronal apoptosis. This study demonstrated the effectiveness of GelMA-based 3D-cultured exosomes in treating CIRI and introduced innovative concepts and opportunities for addressing this condition with clinical applications.
3D culture / CIRI / exosome / microglia / stem cell
| [1] |
GBD 2016 Causes of Death Collaborators, Lancet 2017, 390, 1151. |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
2025 The Author(s). BMEMat published by John Wiley & Sons Australia, Ltd on behalf of Shandong University.
/
| 〈 |
|
〉 |