A simple approach to biophysical profiling of blood cells in extranodal NK/T cell lymphoma patients using deep learning-integrated image cytometry

Seongcheol Park , Sang Eun Yoon , Youngho Song , Changyu Tian , Changi Baek , Hyunji Cho , Won Seog Kim , Seok Jin Kim , Soo-Yeon Cho

BMEMat ›› 2025, Vol. 3 ›› Issue (2) : e12128

PDF
BMEMat ›› 2025, Vol. 3 ›› Issue (2) : e12128 DOI: 10.1002/bmm2.12128
RESEARCH ARTICLE

A simple approach to biophysical profiling of blood cells in extranodal NK/T cell lymphoma patients using deep learning-integrated image cytometry

Author information +
History +
PDF

Abstract

Extranodal NK/T cell lymphoma (ENKTL) poses significant challenges in efficient treatment processes due to its aggressive nature and high recurrence rates. There is a critical need to develop a robust statistical model to predict treatment efficacy by dynamically quantifying biomarkers tailored to various stages of lymphoma. Recent analytics such as sequencing and microbiome tests have only been utilized to understand lymphoma progression and treatment response in clinical settings. However, these methods are limited by their quantitative analysis capabilities, long turnaround times, and lack of single-cell resolution, which are essential for understanding the heterogeneous nature of lymphoma. In this study, we developed a deep learning-enhanced image cytometry (DLIC) to investigate biophysical heterogeneities in peripheral blood mononuclear cells (PBMCs) from newly diagnosed (ND) ENKTL patients. We established a substantial cohort of 23 ND ENKTL patients, categorizing them into interim of treatment (n = 21) and end of treatment (n = 19) stages along their serial treatment timelines. Using a basic optical microscope and a commercial microchip, we analyzed over 270,000 single PBMCs in high-throughput, profiling their size, eccentricity, and refractive index in a completely label-free and quantified manner through AI-based nanophotonic computation. We observed distinct heterogeneity variations in these three biophysical indicators across treatment stages and relapse statuses, revealing solid mechanistic correlations among the phenotypes. We established a three-dimensional single-cell distribution map for ENKTL patients and created a standard for quantifying the change in occupational volume. Leveraging this extensive database, DLIC offers on-site analytics in clinical settings, facilitating treatment assessment and prognosis prediction through label-free biophysical analysis of patient PBMCs, extracted directly without additional sample preparation.

Keywords

deep learning / ENKTL / image cytometry / lymphoma / single cell analysis

Cite this article

Download citation ▾
Seongcheol Park, Sang Eun Yoon, Youngho Song, Changyu Tian, Changi Baek, Hyunji Cho, Won Seog Kim, Seok Jin Kim, Soo-Yeon Cho. A simple approach to biophysical profiling of blood cells in extranodal NK/T cell lymphoma patients using deep learning-integrated image cytometry. BMEMat, 2025, 3(2): e12128 DOI:10.1002/bmm2.12128

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. Singh, S. Shaik, B. S. Negi, J. P. Rajguru, P. B. Patil, A. S. Parihar, U. Sharma, J. Family Med. Prim. Care 2020, 9, 1834.

[2]

S. M. Ansell, Mayo Clin. Proc. 2015, 90, 1152.

[3]

K. You, Q. Wang, M. S. Osman, D. Kim, Q. Li, C. Feng, L. Wang, K. Yang, BMEMat 2024, 2, e12067.

[4]

X. He, Y. Gao, Z. Li, H. Huang, Hematol. Oncol. 2023, 41, 221.

[5]

S. J. Kim, S. E. Yoon, W. S. Kim, J. Hematol. Oncol. 2018, 11, 140.

[6]

A. Major, P. Porcu, B. M. Haverkos, Cancers 2023, 15, 1366.

[7]

E. Tse, C. P. Fox, A. Glover, S. E. Yoon, W. S. Kim, Y. L. Kwong, Semin. Hematol. 2022, 59, 198.

[8]

S. E. Yoon, S. J. Kim, W. S. Kim, Ann. Lymphoma 2021, 5, 17.

[9]

J. Shen, Y. Zhou, L. Yin, BMEMat 2024, e12112.

[10]

C. Wang, S. Wang, D. D. Kang, Y. Dong, BMEMat 2023, 1, e12039.

[11]

C. Wang, C. Wang, H. Liu, S. Zhao, J. Qiu, P. Li, Z. Liu, M. Sun, X. Shao, Y. Wang, X. Liang, L. Gao, C. Ma, W. Song, Y. Zhang, L. Han, Interdiscip. Med. 2024, 2, e20230030.

[12]

N. Albinger, J. Hartmann, E. Ullrich, Gene Ther. 2021, 28, 513.

[13]

H. Kim, Y. H. Ko, Life 2022, 12, 73.

[14]

F. Vega, C. Amador, A. Chadburn, E. D. Hsi, G. Slack, L. J. Medeiros, A. L. Feldman, Mod. Pathol. 2022, 35, 306.

[15]

J. Iqbal, G. Wright, C. Wang, A. Rosenwald, R. D. Gascoyne, D. D. Weisenburger, T. C. Greiner, L. Smith, S. Guo, R. A. Wilcox, B. T. Teh, S. T. Lim, S. Y. Tan, L. M. Rimsza, E. S. Jaffe, E. Campo, A. Martinez, J. Delabie, R. M. Braziel, J. R. Cook, R. R. Tubbs, G. Ott, E. Geissinger, P. Gaulard, P. P. Piccaluga, S. A. Pileri, W. Y. Au, S. Nakamura, M. Seto, F. Berger, L. de Leval, J. M. Connors, J. Armitage, J. Vose, W. C. Chan, L. M. Staudt, Blood 2014, 123, 2915.

[16]

N. Oishi, A. Satou, M. Miyaoka, I. Kawashima, T. Segawa, K. Miyake, K. Mochizuki, K. Kirito, A. L. Feldman, N. Nakamura, T. Kondo, Blood Adv. 2023, 7, 178.

[17]

A. Di Napoli, De Cecco, L. P. P. Piccaluga, M. Navari, V. Cancila, C. Cippitelli, G. Pepe, G. Lopez, F. Monardo, A. Bianchi, E. S. G. D'Amore, U. Gianelli, F. Facchetti, E. Berti, G. Bhagat, Mod. Pathol. 2019, 32, 216.

[18]

Y. Huang, A. de Reyniès, L. de Leval, B. Ghazi, N. Martin-Garcia, M. Travert, J. Bosq, J. Brière, B. Petit, E. Thomas, P. Coppo, T. Marafioti, J.-F. Emile, M.-H. Delfau-Larue, C. Schmitt, P. Gaulard, Blood 2010, 115, 1226.

[19]

T. C. Diss, L. Pan, Cancer Surv. 1997, 30, 21.

[20]

J. J. Kim, H. Y. Kim, Z. Choi, S. Y. Hwang, H. Jeong, J. R. Choi, S. E. Yoon, W. S. Kim, S. H. Kim, H. J. Kim, S. Y. Shin, S. T. Lee, S. J. Kim, Front. Oncol. 2023, 13, 1109715.

[21]

E. M. Lauer, J. Mutter, F. Scherer, Leukemia 2022, 36, 2151.

[22]

L. Ventura, A. Serrano, B. Ferrer Lores, R. Hernani, A. R. Vasile Tudorache, A. I. Teruel, A. Saus Carreres, A. Ortiz Algarra, I. Arroyo Martin, J. C. Hernandez Boluda, J. L. Pinana Sanchez, A. Perez, A. Benzaquen, C. Solano, M. J. Terol Castera, Blood 2023, 142, 7153.

[23]

N. Gebauer, A. Künstner, J. Ketzer, H. M. Witte, T. Rausch, V. Benes, J. Zimmermann, J. Gebauer, H. Merz, V. Bernard, L. Harder, K. Ratjen, S. Gesk, W. Peter, Y. Busch, P. Trojok, N. von Bubnoff, H. Biersack, H. Busch, A. C. Feller, Blood Cancer J. 2021, 11, 102.

[24]

J. Q. Lim, D. Huang, T. Tang, D. Tan, Y. Laurensia, R.-J. Peng, E. K. Y. Wong, D. M. Z. Cheah, B. K. H. Chia, J. Iqbal, N. F. Grigoropoulos, M.-L. Nairismägi, C. C. Y. Ng, V. Rajasegaran, H. Hong, S. J. Kim, J. Cho, E. Tse, B. Mow, Q.-C. Cai, L.-M. Poon, Q.-q. Cai, J. Tan, J. Y. Chan, J. X. Lim, Y. T. Goh, C. Phipps, O. Rötzschke, C. L. Cheng, J. C. H. Ha, L. P. Khoo, Y. S. M. Loh, R. Au-Yeung, T. S.-Y. Chan, Y.-L. Kwong, W. Hwang, W. S. Kim, J.-X. Bei, T. Lin, C. K. Ong, S. T. Lim, Leukemia 2020, 34, 3413.

[25]

J. Radke, N. Ishaque, R. Koll, Z. Gu, E. Schumann, L. Sieverling, S. Uhrig, D. Hübschmann, U. H. Toprak, C. López, X. P. Hostench, S. Borgoni, D. Juraeva, F. Pritsch, N. Paramasivam, G. P. Balasubramanian, M. Schlesner, S. Sahay, M. Weniger, D. Pehl, H. Radbruch, A. Osterloh, A. Korfel, M. Misch, J. Onken, K. Faust, P. Vajkoczy, D. Moskopp, Y. Wang, A. Jödicke, L. Trümper, I. Anagnostopoulos, D. Lenze, R. Küppers, M. Hummel, C. A. Schmitt, O. D. Wiestler, S. Wolf, A. Unterberg, R. Eils, C. Herold-Mende, B. Brors, I. M.-S. Consortium, R. Siebert, S. Wiemann, F. L. Heppner, Nat. Commun. 2022, 13, 2558.

[26]

Z.-F. Xu, L. Yuan, Y. Zhang, W. Zhang, C. Wei, W. Wang, D. Zhao, D. Zhou, J. Li, Hematol. Rep. 2024, 16, 63.

[27]

S. E. Yoon, W. Kang, J. Cho, J. Hyeon, S. J. Kim, W. S. Kim, Blood 2023, 142, 5728.

[28]

R. M. Amini, G. Enblad, P. Hollander, S. Laszlo, E. Eriksson, K. Ayoola Gustafsson, A. Loskog, I. Thorn, BMC Cancer 2019, 19, 316.

[29]

M. Juweid, J. Ponto, J. Wooldridge, B. Link, T. Witzig, G. Wiseman, G. Weiner, Blood 2005, 106, 2823.

[30]

J. Wolf, U. Kapp, H. Bohlen, M. Kornacker, C. Schoch, B. Stahl, S. Mucke, C. von Kalle, C. Fonatsch, H. E. Schaefer, M. L. Hansmann, V. Diehl, Blood 1996, 87, 3418.

[31]

J. Gala de Pablo, M. Lindley, K. Hiramatsu, K. Goda, Acc. Chem. Res. 2021, 54, 2132.

[32]

A. Paliouras, G. S. Markopoulos, S. Tsampalas, S. Mantziou, I. Giannakis, D. Baltogiannis, G. K. Glantzounis, G. A. Alexiou, E. Lampri, N. Sofikitis, G. Vartholomatos, Cancers 2022, 14, 5440.

[33]

Y. Feng, Z. Cheng, H. Chai, W. He, L. Huang, W. Wang, Lab Chip 2022, 22, 240.

[34]

T. T. Nguyen, A. T. V. Do, N. T. Nguyen, T. Q. Truong, A. T. Ton, Cureus 2022, 14, e21766.

[35]

L. A. Gallion, Improving the Accessibility of Chemical Cytometry Assays for the Investigation of Sphingosine Kinase Activity in Single Cells Ph.D., The University of North Carolina at Chapel Hill, United States -- North Carolina 2021.

[36]

L. Tan, M. Liu, L. Wang, G. Zhao, Y. Zhang, J. Hazard. Mater. 2024, 461, 132656.

[37]

M. K. Kjeldsen, M. Perez-Andres, A. Schmitz, P. Johansen, M. Boegsted, M. Nyegaard, M. Gaihede, A. Bukh, H. E. Johnsen, A. Orfao, K. Dybkaer, Am. J. Clin. Pathol. 2011, 136, 960.

[38]

S. Park, R. R. Ang, S. P. Duffy, J. Bazov, K. N. Chi, P. C. Black, H. Ma, PLoS One 2014, 9, e85264.

[39]

B. Shashni, S. Ariyasu, R. Takeda, T. Suzuki, S. Shiina, K. Akimoto, T. Maeda, N. Aikawa, R. Abe, T. Osaki, N. Itoh, S. Aoki, Biol. Pharm. Bull. 2018, 41, 487.

[40]

S. Y. Cho, X. Gong, V. B. Koman, M. Kuehne, S. J. Moon, M. Son, T. T. S. Lew, P. Gordiichuk, X. Jin, H. D. Sikes, M. S. Strano, Nat. Commun. 2021, 12, 3079.

[41]

C. Lou, H. Yang, Y. Hou, H. Huang, J. Qiu, C. Wang, Y. Sang, H. Liu, L. Han, Adv. Mater. 2024, 36, 2307051.

[42]

M. Kim, SPIE Rev. 2010, 1, 018005.

[43]

J. Yoon, Y. Jo, M.-h. Kim, K. Kim, S. Lee, S.-J. Kang, Y. Park, Sci. Rep. 2017, 7, 6654.

[44]

S. S. Butt, I. Fida, M. Fatima, M. S. Khan, S. Mustafa, M. N. Khan, I. Ahmad, Lasers Med. Sci. 2023, 38, 241.

[45]

Y. Song, C. Tian, Y. Lee, M. Yoon, S. E. Yoon, S. Y. Cho, ACS Meas. Sci. Au 2023, 3, 393.

[46]

S.-Y. Cho, V. B. Koman, X. Gong, S. J. Moon, P. Gordiichuk, M. S. Strano, ACS Nano 2021, 15, 13683.

[47]

X. Li, A. Ling, T. G. Kellgren, M. Lundholm, A. Löfgren-Burström, C. Zingmark, M. Rutegård, I. Ljuslinder, R. Palmqvist, S. Edin, Cancers 2020, 12, 3440.

[48]

M. Simiele, A. D'Avolio, L. Baietto, M. Siccardi, M. Sciandra, S. Agati, J. Cusato, S. Bonora, G. Di Perri, Antimicrob. Agents Chemother. 2011, 55, 2976.

[49]

I. Bager Christensen, L. Ribas, M. Mosshammer, M. L. Abrahamsen, M. Kühl, S. Larsen, F. Dela, L. Gillberg, Mitochondrion 2024, 77, 101890.

[50]

R. K. Johnson, B. L. Overlee, J. A. Sagen, C. L. Howe, Sci. Rep. 2022, 12, 19920.

[51]

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, V. Backman, J. Comput. Theor. Nanosci. 2009, 6, 1979.

[52]

S. Lee, L. Li, Z. Wang, J. Opt. 2014, 16, 015704.

[53]

G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, Y. Kwon, T. Xie, K. Michael, J. Fang, C. Wong, Y. Zeng, D. Montes, Z. Wang, C. Fati, J. Nadar, P. Skalski, A. Hogan, M. Strobel, M. Jain, L. Mammana, Xylieong, ultralytics/yolov5: v6.2 - YOLOv5 Classification Models, Apple M1, Reproducibility, ClearML and Deci.ai Integrations, Zenodo 2022.

[54]

J. Redmon, S. Divvala, R. Girshick, A. Farhadi, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas June 2016.

[55]

W. Haynes, in Encyclopedia of Systems Biology (Eds: W. Dubitzky, O. Wolkenhauer, K.-H. Cho, H. Yokota), Springer, New York, USA 2013.

[56]

S. Natarajan, S. R. Lipsitz, G. M. Fitzmaurice, D. Sinha, J. G. Ibrahim, J. Haas, W. Gellad, J. Roy. Stat. Soc: Ser. C, Appl. Stat. 2012, 61, 653.

[57]

Y. Li, X. Ge, F. Peng, W. Li, J. J. Li, (Preprint) bioRxiv: 2022.06.07.494963, submitted: Jun 2022.

[58]

M. P. Menon, S. Pittaluga, E. S. Jaffe, Cancer J. 2012, 18, 411.

[59]

D. Vrabac, A. Smit, R. Rojansky, Y. Natkunam, R. H. Advani, A. Y. Ng, S. Fernandez-Pol, P. Rajpurkar, Sci. Data 2021, 8, 135.

[60]

C. Marini, V. Cossu, M. Bauckneht, S. Carta, F. Lanfranchi, F. D'Amico, S. Ravera, A. M. Orengo, C. Ghiggi, F. Ballerini, P. Durando, S. Chiesa, A. Miceli, M. I. Donegani, S. Morbelli, S. Bruno, G. Sambuceti, Antioxidants 2022, 11, 762.

[61]

M. Hayashi, P. Zhu, G. McCarty, C. F. Meyer, C. A. Pratilas, A. Levin, C. D. Morris, C. M. Albert, K. W. Jackson, C. M. Tang, D. M. Loeb, Oncotarget 2017, 8, 78965.

[62]

Q. Li, K. Rycaj, X. Chen, D. G. Tang, Semin. Cancer Biol. 2015, 35, 191.

[63]

T. A. Mulder, M. L. Andersson, L. Pena-Perez, K. Heimersson, I. Xagoraris, B. E. Wahlin, R. Mansson, L. Hansson, G. Rassidakis, M. Palma, Hemasphere 2022, 6, e794.

[64]

K. J. Hiam-Galvez, B. M. Allen, M. H. Spitzer, Nat. Rev. Cancer 2021, 21, 345.

[65]

M. M. Saber, Vaccines 2023, 11, 1474.

[66]

B. D. Cheson, R. I. Fisher, S. F. Barrington, F. Cavalli, L. H. Schwartz, E. Zucca, T. A. Lister, J. Clin. Oncol. 2014, 32, 3059.

[67]

W. Munakata, T. Terauchi, D. Maruyama, H. Nagai, Jpn. J. Clin. Oncol. 2019, 49, 895.

[68]

S. Han, Y. Lee, J. Kim, S. Y. Cho, ACS Sens. 2023, 8, 1676.

RIGHTS & PERMISSIONS

2024 The Author(s). BMEMat published by John Wiley & Sons Australia, Ltd on behalf of Shandong University.

AI Summary AI Mindmap
PDF

15

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/