Automatic metabolism modulator for glycolytic intervention-induced cascade cancer therapy

Jiao Zheng , Jian Zhang , Tian Zhang , Yongcun Yan , Sai Bi

BMEMat ›› 2025, Vol. 3 ›› Issue (1) : e12125

PDF
BMEMat ›› 2025, Vol. 3 ›› Issue (1) : e12125 DOI: 10.1002/bmm2.12125
RESEARCH ARTICLE

Automatic metabolism modulator for glycolytic intervention-induced cascade cancer therapy

Author information +
History +
PDF

Abstract

Effective intervention in glycolytic metabolism is a promising way to inhibit tumor malignant invasion. However, the inherent hypoxia environment and unitary regulating model subsequently compromise its therapeutic efficacy. Herein, a facile way to design an automatic metabolism modulator (auto-MMOD) is developed by loading glucose oxidase (GOx) and DNA-templated silver nanoclusters (DNA-AgNCs) into a pH-responsive zeolitic imidazolate frameworks-8 (ZIF-8) nanocarrier, which can activate a cascaded metal ion-killing effect during GOx-regulated glycolysis metabolism. When the acidic lysosome microenvironment induces ZIF-8 decomposition, the released GOx can effectively consume glucose and generate H2O2, thus inhibiting Adenosine Triphosphate synthesis and accelerating tumor starvation. Moreover, the released Ag+ in response to H2O2 can disturb bioenergy metabolism to inhibit tumor proliferation, which further enhances the tumor-killing effect in hypoxic microenvironments. This study achieves effective tumor suppression in vitro and in vivo by integrating ion therapy into glycolysis intervention, which establish a promising strategy for nano-theranostics.

Keywords

cascade catalysis / glycolytic intervention / metabolic regulation / metal ion therapy / tumor inhibition

Cite this article

Download citation ▾
Jiao Zheng, Jian Zhang, Tian Zhang, Yongcun Yan, Sai Bi. Automatic metabolism modulator for glycolytic intervention-induced cascade cancer therapy. BMEMat, 2025, 3(1): e12125 DOI:10.1002/bmm2.12125

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. P. Hsu, D. M. Sabatini, Cell 2008, 134, 703.

[2]

F. Wang, X.-M. Qi, R. Wertz, M. Mortensen, C. Hagen, J. Evans, Y. Sheinin, M. James, P. Liu, S. Tsai, J. Thomas, A. Mackinnon, M. Dwinell, C. R. Myers, R. B. Bach, L. Fu, G. Chen, Cancer Res. 2020, 80, 3251.

[3]

X. Zhang, F. Luo, S. Luo, L. Li, X. Ren, J. Lin, Y. Liang, C. Ma, L. Ding, D. Zhang, T. Ye, Y. Lin, B. Jin, S. Gao, Q. Ye, Adv. Sci. 2022, 9, 2200705.

[4]

S. M. Sanderson, J. W. Locasale, Cell Metab. 2018, 28, 669.

[5]

J. Liu, R. van der Hoeven, W. E. Kattan, J. T. Chang, D. Montufar-Solis, W. Chen, M. Wong, Y. Zhou, C. B. Lebrilla, J. F. Hancock, Nat. Commun. 2023, 14, 465.

[6]

M. Ding, Y. Zhang, N. Yu, J. Zhou, L. Zhu, X. Wang, J. Li, Adv. Mater. 2023, 35, 2302508.

[7]

J. Wu, Y. Zhang, K. Jiang, X. Wang, N. T. Blum, J. Zhang, S. Jiang, J. Lin, P. Huang, Adv. Mater. 2022, 34, 2200062.

[8]

Y. Zhang, S. Jiang, J. Lin, P. Huang, Angew. Chem., Int. Ed. 2022, 61, e202208583.

[9]

Z. Lu, J. Gao, C. Fang, Y. Zhou, X. Li, G. Han, Adv. Sci. 2020, 7, 2001223.

[10]

J. Wan, X. Zhang, D. Tang, T. Liu, H. Xiao, Adv. Mater. 2023, 35, 2209799.

[11]

X. Meng, Z. Lu, Q. Lv, Y. Jiang, L. Zhang, Z. Wang, Acta Biomater. 2022, 145, 222.

[12]

Q. Yu, J. Zhou, J. Song, H. Zhou, B. Kang, H.-Y. Chen, J.-J. Xu, Small 2023, 19, 2206592.

[13]

Z. Xu, Q. Luo, Y. He, Y. He, X. Zhang, J. Wang, S. Ni, D. Gao, D. Wang, Adv. Funct. Mater. 2024, 34, 2314536.

[14]

N. Song, X. Fan, X. Guo, J. Tang, H. Li, R. Tao, F. Li, J. Li, D. Yang, C. Yao, P. Liu, Adv. Mater. 2024, 36, 2309534.

[15]

M. Vora, S. M. Pyonteck, T. Popovitchenko, T. L. Matlack, A. Prashar, N. S. Kane, J. Favate, P. Shah, C. Rongo, Nat. Commun. 2022, 13, 6168.

[16]

B. Lee, O. K. Park, L. Pan, K. Kim, T. Kang, H. Kim, N. Lee, S. H. Choi, T. Hyeon, Adv. Mater. 2023, 35, 2305512.

[17]

A. I. Robby, J.-H. Yang, E.-J. Jin, S. Y. Park, Adv. Funct. Mater. 2024, 34, 2402367.

[18]

S. Chen, B. Li, Y. Yue, Z. Li, L. Qiao, G. Qi, Y. Ping, B. Liu, Adv. Mater. 2024, 36, 2404296.

[19]

S. Wang, J. Huang, H. Zhu, J. Zhu, Z. Wang, Y. Xing, X. Xie, K. Cai, J. Zhang, Adv. Funct. Mater. 2023, 33, 2213151.

[20]

X. Xie, T. Sun, J. Xue, Z. Miao, X. Yan, W. Fang, Q. Li, R. Tang, Y. Lu, L. Tang, Z. Zha, T. He, Adv. Funct. Mater. 2020, 30, 2000511.

[21]

J. Bao, R. Liu, Z. Yu, Z. Cheng, B. Chang, Adv. Funct. Mater. 2024, 34, 2316646.

[22]

Y. Zhang, X. Fang, W. Huang, Q. Li, H. Jiang, C. Wang, H. Liu, Nano Lett. 2023, 23, 7750.

[23]

Y. Zhang, Z.-B. Qu, C. Jiang, Y. Liu, R. P. Narayanan, D. Williams, X. Zuo, L. Wang, H. Yan, H. Liu, C. Fan, J. Am. Chem. Soc. 2021, 143, 8639.

[24]

J. Zhu, T. Wen, S. Qu, Q. Li, B. Liu, W. Zhou, Small 2024, 20, 2307220.

[25]

T. Tanziela, S. Shaikh, F. U. Rehman, F. Semcheddine, H. Jiang, Z. Lu, X. Wang, Chem. Eng. J. 2022, 440, 135980.

[26]

Y. Sun, Y. Han, M. Wang, M. Ye, K. Wu, K. Zhang, Nano Res. 2024, 17, 7926.

[27]

Y. Ma, Z. Su, L. Zhou, L. He, Z. Hou, J. Zou, Y. Cai, D. Chang, J. Xie, C. Zhu, W. Fan, X. Chen, S. Ju, Adv. Mater. 2022, 34, 2107560.

[28]

J. Cui, F. Zhang, D. Yan, T. Han, L. Wang, D. Wang, B. Z. Tang, Adv. Mater. 2023, 35, 2302639.

[29]

F. Li, T. Chen, F. Wang, J. Chen, Y. Zhang, D. Song, N. Li, X.-H. Lin, L. Lin, J. Zhuang, ACS Appl. Mater. Interfaces 2022, 14, 21860.

[30]

Y. Zhang, L. Zhang, W. Wang, Q. Deng, M. Liu, Z. Zhu, H. Liu, J. Ren, X. Qu, Angew. Chem., Int. Ed. 2023, 62, e202306395.

[31]

B. Ding, H. Chen, J. Tan, Q. Meng, P. Zheng, P. a. Ma, J. Lin, Angew. Chem., Int. Ed. 2023, 62, e202215307.

[32]

Z. Qiao, J. Zhang, X. Hai, Y. Yan, W. Song, S. Bi, Biosens. Bioelectron. 2021, 176, 112898.

[33]

J. Wu, N. Li, Y. Yao, D. Tang, D. Yang, J. Ong'achwa Machuki, J. Li, Y. Yu, F. Gao, Anal. Chem. 2018, 90, 14368.

[34]

C. Tudisco, G. Zolubas, B. Seoane, H. R. Zafarani, M. Kazemzad, J. Gascon, P. L. Hagedoorn, L. Rassaei, RSC Adv. 2016, 6, 108051.

[35]

H. Wang, Y. Chen, H. Wang, X. Liu, X. Zhou, F. Wang, Angew. Chem., Int. Ed. 2019, 58, 7380.

[36]

G. Chen, X. Kou, S. Huang, L. Tong, Y. Shen, W. Zhu, F. Zhu, G. Ouyang, Angew. Chem., Int. Ed. 2020, 59, 2867.

[37]

D. Ge, M. Li, D. Wei, N. Zhu, Y. Wang, M. Li, Z. Zhang, H. Zhao, Chem. Eng. J. 2023, 469, 144067.

[38]

J. Liang, S. Gao, J. Liu, M. Y. B. Zulkifli, J. Xu, J. Scott, V. Chen, J. Shi, A. Rawal, K. Liang, Angew. Chem., Int. Ed. 2021, 60, 5421.

[39]

X. Liu, F. Wang, A. Niazov-Elkan, W. Guo, I. Willner, Nano Lett. 2013, 13, 309.

[40]

T. Li, L. Zhang, J. Ai, S. Dong, E. Wang, ACS Nano 2011, 5, 6334.

[41]

X. Zhang, X. Hu, H. Wu, L. Mu, Environ. Sci. Technol. 2021, 55, 15301.

[42]

Y. Zhang, X. Huang, L. Wang, C. Cao, H. Zhang, P. Wei, H. Ding, Y. Song, Z. Chen, J. Qian, S. Zhong, Z. Liu, M. Wang, W. Zhang, W. Jiang, J. Zeng, G. Yao, L. P. Wen, Biomaterials 2021, 271, 120720.

[43]

R. E. Lawrence, R. Zoncu, Nat. Cell Biol. 2019, 21, 133.

[44]

A. L. Wozniak, S. Griffin, D. Rowlands, M. Harris, M. Yi, S. M. Lemon, S. A. Weinman, PLoS Pathog. 2010, 6, e1001087.

[45]

C. Moreira, H. Oliveira, L. R. Pires, S. Simoes, M. A. Barbosa, A. P. Pego, Acta Biomater. 2009, 5, 2995.

[46]

Z. Liu, L. Zhang, T. Cui, M. Ma, J. Ren, X. Qu, Angew. Chem., Int. Ed. 2021, 60, 15436.

[47]

Y. Zhang, L. Yang, H. Wang, J. Huang, Y. Lin, S. Chen, X. Guan, M. Yi, S. Li, L. Zhang, Chem. Eng. J. 2021, 426, 131926.

[48]

C. Aguado, E. Perez-Jimenez, M. Lahuerta, E. Knecht, Methods Mol. Biol. 2016, 1449, 299.

[49]

A. Kawashima, A. Sato, M. Kawashima, K. Nitta, W. Yumura, N. Sugino, H. Nihei, Y. Natori, Kidney Int. 1998, 54, 275.

[50]

Y. Zhao, A. Wang, Y. Zou, N. Su, J. Loscalzo, Y. Yang, Nat. Protoc. 2016, 11, 1345.

[51]

X. Zhang, F. Luo, S. Luo, L. Li, X. Ren, J. Lin, Y. Liang, C. Ma, L. Ding, D. Zhang, T. Ye, Y. Lin, B. Jin, S. Gao, Q. Ye, Adv. Sci. 2022, 9, 2200705.

[52]

M. Han, E. A. Bushong, M. Segawa, A. Tiard, A. Wong, M. R. Brady, M. Momcilovic, D. M. Wolf, R. Zhang, A. Petcherski, M. Madany, S. Xu, J. T. Lee, M. V. Poyurovsky, K. Olszewski, T. Holloway, A. Gomez, M. S. John, S. M. Dubinett, C. M. Koehler, O. S. Shirihai, L. Stiles, A. Lisberg, S. Soatto, S. Sadeghi, M. H. Ellisman, D. B. Shackelford, Nature 2023, 615, 712.

[53]

J. Li, B. Zhang, X. Chang, J. Gan, W. Li, S. Niu, L. Kong, T. Wu, T. Zhang, M. Tang, Y. Xue, Environ. Pollut. 2020, 256, 113430.

[54]

F. Ntakibirora, C. Kanengele-Mukalay, C. Kails, M. Guivarch, Z. n. Kassengera, V. r. Kerrels, B. F. Cantinieaux, Blood 2004, 104, 2382.

[55]

S. Singh, A. Numan, M. Khalid, I. Bello, E. Panza, S. Cinti, Small 2023, 19, 2208209.

[56]

E. C. Cheung, K. H. Vousden, Nat. Rev. Cancer 2022, 22, 280.

[57]

S. J. Soenen, W. J. Parak, J. Rejman, B. Manshian, Chem. Rev. 2015, 115, 2109.

[58]

X. Qi, K. Liu, Q. Chen, Y. Deng, Adv. Funct. Mater. 2023, 34, 2307174.

[59]

J. Li, Q. Sun, C. Lu, H. Xiao, Z. Guo, D. Duan, Z. Zhang, T. Liu, Z. Liu, Nat. Commun. 2022, 13, 2143.

[60]

Y. Zhang, H. G. Kang, H. Z. Xu, H. Luo, M. Suzuki, Q. Lan, X. Chen, N. Komatsu, L. Zhao, Adv. Mater. 2023, 35, e2301479.

[61]

D. Duan, Y. Han, Z. Tu, H. Guo, Z. Zhang, Y. Shi, J. Li, Q. Sun, J. Chen, Z. Li, T. Liu, D. Cui, Z. Liu, CCS Chem. 2023, 5, 2589.

RIGHTS & PERMISSIONS

2024 The Author(s). BMEMat published by John Wiley & Sons Australia, Ltd on behalf of Shandong University.

AI Summary AI Mindmap
PDF

35

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/