Machine learning integrated graphene oxide-based diagnostics, drug delivery, analytical approaches to empower cancer diagnosis
Suparna Das , Hirak Mazumdar , Kamil Reza Khondakar , Ajeet Kaushik
BMEMat ›› 2025, Vol. 3 ›› Issue (1) : e12117
Machine learning integrated graphene oxide-based diagnostics, drug delivery, analytical approaches to empower cancer diagnosis
Machine learning (ML) and nanotechnology interfacing are exploring opportunities for cancer treatment strategies. To improve cancer therapy, this article investigates the synergistic combination of Graphene Oxide (GO)-based devices with ML techniques. The production techniques and functionalization tactics used to modify the physicochemical characteristics of GO for specific drug delivery are explained at the outset of the investigation. GO is a great option for treating cancer because of its natural biocompatibility and capacity to absorb medicinal chemicals. Then, complicated biological data are analyzed using ML algorithms, which make it possible to identify the best medicine formulations and individualized treatment plans depending on each patient's particular characteristics. The study also looks at optimizing and predicting the interactions between GO carriers and cancer cells using ML. Predictive modeling helps ensure effective payload release and therapeutic efficacy in the design of customized drug delivery systems. Furthermore, tracking treatment outcomes in real time is made possible by ML algorithms, which permit adaptive modifications to therapy regimens. By optimizing medication doses and delivery settings, the combination of ML and GO in cancer therapy not only decreases adverse effects but also enhances treatment accuracy.
artificial intelligence / cancer / diagnosis / graphene oxide / machine learning / real-time monitoring / sensing
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
|
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
|
| [157] |
|
| [158] |
SkinVision | Skin Cancer Melanoma Detection App | SkinVision, https://www.skinvision.com/ (accessed: June 2024). |
| [159] |
|
| [160] |
|
| [161] |
PathAI | Pathology Transformed, https://www.pathai.com (accessed: June 2024). |
| [162] |
Reliable AI for Cancer Detection & Diagnosis, https://paige.ai/diagnostic-ai/ (accessed: June 2024). |
| [163] |
ONCOLOGY, https://www.tempus.com/oncology/ (accessed: June 2024). |
| [164] |
|
| [165] |
|
| [166] |
AI-Powered Pathology is Transforming Cancer Care, https://proscia.com (accessed: June 2024). |
| [167] |
Software to Enhance Confidence in Prostate Cancer Diagnosis, https://info.paige.ai/prostate (accessed: June 2024). |
| [168] |
|
| [169] |
Testing Across the Continuum of Cancer, https://guardanthealth.com/products/tests-for-patients-with-early-and-advanced-stage-cancer/ (accessed: June 2024). |
| [170] |
|
| [171] |
|
| [172] |
|
| [173] |
|
| [174] |
|
| [175] |
|
| [176] |
|
| [177] |
|
| [178] |
|
| [179] |
|
| [180] |
|
| [181] |
|
| [182] |
|
| [183] |
|
| [184] |
|
| [185] |
|
| [186] |
|
| [187] |
|
| [188] |
|
| [189] |
|
| [190] |
|
| [191] |
|
| [192] |
|
| [193] |
|
| [194] |
|
| [195] |
|
2024 The Author(s). BMEMat published by John Wiley & Sons Australia, Ltd on behalf of Shandong University.
/
| 〈 |
|
〉 |