Photothermal lanthanide nanomaterials: From fundamentals to theranostic applications

Zhuo Li , Jiacheng Gong , Shan Lu , Xingjun Li , Xiaobo Gu , Jin Xu , Jawairia Umar Khan , Dayong Jin , Xueyuan Chen

BMEMat ›› 2024, Vol. 2 ›› Issue (4) : e12088

PDF
BMEMat ›› 2024, Vol. 2 ›› Issue (4) : e12088 DOI: 10.1002/bmm2.12088
REVIEW

Photothermal lanthanide nanomaterials: From fundamentals to theranostic applications

Author information +
History +
PDF

Abstract

Photothermal lanthanide nanomaterials with unique photophysical properties have been innovatively explored for diagnostics and non-invasive therapies, and hold great promise for precision theranostics. In this review, we start from the basic principles of excited-state dynamics and provide a thorough comprehension of the main pathways for photothermal conversion in lanthanide nanocrystals. Aspects influencing the photothermal effect such as lanthanide-doping concentration, particle size, and crystal structure have been fully discussed. Hybrid strategies for the design of efficient lanthanide-based photothermal agents, including dye sensitization to break the absorption limit and semiconductor combination to add cross-relaxation pathways, have also been summarized. Furthermore, we highlight the cutting-edge applications of photothermal lanthanide nanoplatforms with optical diagnosis and temperature feedback in photothermia-associated theranostics. Lastly, the current challenges and future efforts for clinical applications are proposed. This review is expected to offer a better understanding of photothermal mechanisms and inspire efforts for designing versatile lanthanide theranostic nanoplatforms.

Keywords

lanthanide nanomaterials / optical imaging / photothermal mechanism / photothermal therapy / temperature feedback / theranostics

Cite this article

Download citation ▾
Zhuo Li, Jiacheng Gong, Shan Lu, Xingjun Li, Xiaobo Gu, Jin Xu, Jawairia Umar Khan, Dayong Jin, Xueyuan Chen. Photothermal lanthanide nanomaterials: From fundamentals to theranostic applications. BMEMat, 2024, 2(4): e12088 DOI:10.1002/bmm2.12088

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. He, D. Di, X. Chu, X. Liu, Z. Wang, J. Lu, S. Wang, Q. Zhao, J. Controlled Release 2023, 363, 180.

[2]

S. Duan, Y. Hu, Y. Zhao, K. Tang, Z. Zhang, Z. Liu, Y. Wang, H. Guo, Y. Miao, H. Du, D. Yang, S. Li, J. Zhang, RSC Adv. 2023, 13, 1444.

[3]

R. Malekzadeh, T. Mortezazadeh, W. K. Abdulsahib, B. Babaye abdollahi, M. R. Hamblin, B. Mansoori, F. Alsaikhan, B. Zeng, Environ. Res. 2023, 236, 116526.

[4]

B. Wang, Y. Xu, D. Shao, L. Li, Y. Ma, Y. Li, J. Zhu, X. Shi, W. Li, Front. Bioeng. Biotechnol. 2022, 10, 1047598.

[5]

S. Shen, J. Qiu, D. Huo, Y. Xia, Small 2023, 20, 2305426.

[6]

C. Li, Y. Cheng, D. Li, Q. An, W. Zhang, Y. Zhang, Y. Fu, Int. J. Mol. Sci. 2022, 23, 7909.

[7]

X. Shi, Y. Tian, Y. Liu, Z. Xiong, S. Zhai, S. Chu, F. Gao, Front. Oncol. 2022, 12, 939365.

[8]

Y. Liu, P. Bhattarai, Z. Dai, X. Chen, Chem. Soc. Rev. 2019, 48, 2053.

[9]

C. Imashiro, H. Takeshita, T. Morikura, S. Miyata, K. Takemura, J. Komotori, Sci. Rep. 2021, 11, 21466.

[10]

F. H. Ghahremani, A. Sazgarnia, M. H Bahreyni-Toosi, O. Rajabi, A. Aledavood, Int. J. Hyperthermia 2011, 27, 625.

[11]

K. Ahmed, S. F. Zaidi Mati-ur-Rehman, R. Rehman, T. Kondo, J. Therm. Biol. 2020, 91, 102615.

[12]

J. R. Lepock, Int. J. Hyperthermia 2004, 20, 115.

[13]

J. R. Lepock, Int. J. Hyperthermia 2003, 19, 252.

[14]

P. Kaur, M. L. Aliru, A. S. Chadha, A. Asea, S. Krishnan, Int. J. Hyperthermia 2016, 32, 76.

[15]

H. S. Han, K. Y. Choi, Biomedicines 2021, 9, 305.

[16]

M. Xu, L. Li, Q. Hu, Biomater. Sci. 2021, 9, 1995.

[17]

Z. Li, S. Lu, X. Li, Z. Chen, X. Chen, Adv. Opt. Mater. 2023, 11, 2202386.

[18]

Y. Chen, Y. Gao, Y. Chen, L. Liu, A. Mo, Q. Peng, J. Controlled Release 2020, 328, 251.

[19]

Y. Wang, H.-M. Meng, Z. Li, Nanoscale 2019, 13, 8751.

[20]

A. M. Smith, M. C. Mancini, S. Nie, Nat. Nanotechnol. 2009, 4, 710.

[21]

Y. Wang, G. Liu, L. Sun, J. Xiao, J. Zhou, C. Yan, ACS Nano 2013, 7, 7200.

[22]

J. Song, X. Yang, Z. Yang, L. Lin, Y. Liu, Z. Zhou, Z. Shen, G. Yu, Y. Dai, O. Jacobson, J. Munasinghe, B. Yung, G.-J. Teng, X. Chen, ACS Nano 2017, 11, 6102.

[23]

D. Wang, D. Wang, A. Kuzmin, A. Pliss, W. Shao, J. Xia, J. Qu, P. N. Prasad, Adv. Opt. Mater. 2018, 6, 1701142.

[24]

Z. Li, S. Lu, W. Liu, T. Dai, J. Ke, X. Li, R. Li, Y. Zhang, Z. Chen, X. Chen, Angew. Chem., Int. Ed. 2021, 60, 19201.

[25]

C. Tan, X. Li, Z. Li, S. Lu, F. Wang, Y. Liu, F. Wen, R. Li, D. Tu, Z. Chen, X. Chen, Nano Today 2024, 54, 102089.

[26]

A. A. Ansari, A. K. Parchur, G. Chen, Coord. Chem. Rev. 2022, 457, 214423.

[27]

H. Suo, X. Zhao, Z. Zhang, Y. Wang, J. Sun, M. Jin, C. Guo, Laser Photonics Rev. 2020, 15, 2000319.

[28]

K. Zhao, J. Sun, F. Wang, A. Song, K. Liu, H. Zhang, ACS Appl. Bio Mater. 2020, 3, 3975.

[29]

L. Xu, J. Li, K. Lu, S. Wen, H. Chen, M. K. Shahzad, E. Zhao, H. Li, J. Ren, J. Zhang, L. Liu, ACS Appl. Nano Mater. 2020, 3, 2517.

[30]

S. Li, F. Li, N. Kong, J. Liu, X. Zhu, Mater 2023, 12, 2302276.

[31]

L. Wang, S. Han, C. Li, D. Tu, X. Chen, Acc. Mater. Res. 2023, 4, 193.

[32]

Y. Yang, D. Tu, Y. Zhang, P. Zhang, X. Chen, iScience 2021, 24, 102062.

[33]

S. Yu, D. Tu, W. Lian, J. Xu, X. Chen, Sci. China Mater. 2019, 62, 1071.

[34]

S. Lu, J. Ke, X. Li, D. Tu, X. Chen, Aggregate 2021, 2, e59.

[35]

W. T. Carnall, P. R. Fields, B. G. Wybourne, J. Chem. Phys. 1965, 42, 3797.

[36]

B. R. Judd, Phys. Rev. 1962, 127, 750.

[37]

G. S. Ofelt, J. Chem. Phys. 1962, 37, 511.

[38]

J. H. Van Vleck, J. Phys. Chem. 1937, 41, 67.

[39]

W. You, D. Tu, W. Zheng, P. Huang, X. Chen, J. Lumin. 2018, 201, 255.

[40]

M. J. Weber, Phys. Rev. B 1973, 8, 54.

[41]

K.-L. Wong, J.-C. G. Bünzli, P. A. Tanner, J. Lumin. 2020, 224, 117256.

[42]

M. H. V Werts, Sci. Prog. 2005, 88, 101.

[43]

F. Varsanyi, G. H. Dieke, Phys. Rev. Lett. 1961, 7, 442.

[44]

L. Gomes, L. C. Courrol, L. V. G. Tarelho, I. M. Ranieri, Phys. Rev. B 1995, 54, 3825.

[45]

P. A. Tanner, L. Zhou, C. Duan, K. L. Wong, Chem. Soc. Rev. 2018, 47, 5234.

[46]

F. Rabouw, P. Tim Prins, P. Villanueva-Delgado, M. Castelijns, R. Geitenbeek, A. Meijerink, ACS Nano 2018, 12, 4812.

[47]

Y. Haas, G. Stein, J. Phys. Chem. 1972, 76, 1093.

[48]

Z. Yu, W. Hu, H. Zhao, X. Miao, Y. Guan, W. Cai, Z. Zeng, Q. Fan, T. T. Y. Tan, Angew. Chem., Int. Ed. 2019, 58, 8536.

[49]

L. Ding, F. Ren, Z. Liu, Z. Jiang, B. Yun, Q. Sun, Z. Li, Bioconjugate Chem. 2019, 31, 340.

[50]

L. Marciniak, A. Pilch, S. Arabasz, D. Jin, A. Bednarkiewicz, Nanoscale 2017, 9, 8288.

[51]

U. Rocha, K. Upendra Kumar, C. Jacinto, J. Ramiro, A. J. Caamaño, J. García Solé, D. Jaque, Appl. Phys. Lett. 2014, 104, 053703.

[52]

E. Carrasco, B. del Rosal, F. Sanz-Rodríguez, Á. J. de la Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, D. Jaque, Adv. Funct. Mater. 2014, 25, 615.

[53]

U. Rocha, C. Jacinto, K. U. Kumar, F. J. López, D. Bravo, J. G. Solé, D. Jaque, J. Lumin. 2016, 175, 149.

[54]

E. C. Ximendes, U. Rocha, K. U. Kumar, C. Jacinto, D. Jaque, Appl. Phys. Lett. 2016, 108, 253103.

[55]

B. del Rosal, A. Pérez-Delgado, E. Carrasco, D. J. Jovanović, M. D. Dramićanin, G. Dražić, Á. J. de la Fuente, F. Sanz-Rodriguez, D. Jaque, Adv. Opt. Mater. 2016, 4, 782.

[56]

I. E. Kolesnikov, E. V. Golyeva, A. A. Kalinichev, M. A. Kurochkin, E. Lähderanta, M. D. Mikhailov, Sens. Actuators, B 2017, 243, 338.

[57]

J. Li, L. Xu, K. Lu, M. K. Shahzad, J. Ren, E. Zhao, H. Li, L. Liu, Biomed. Opt Express 2019, 10, 1935.

[58]

K. Lu, X. Sun, L. Xu, B. Jiang, J. Ren, J. J. Carvajal, E. Zhao, L. Liu, J. Zhang, J. Alloys Compd. 2020, 842, 155602.

[59]

L. Liu, K. Lu, L. Xu, D. Tang, C. Liu, M. K. Shahzad, D. Yan, F. Khan, E. Zhao, H. Li, Opt. Lett. 2019, 44, 711.

[60]

S. Balabhadra, M. L. Debasu, C. D. S. Brites, R. A. S. Ferreira, L. D. Carlos, Opt. Mater. 2018, 83, 1.

[61]

S. Sinha, K. Kumar, Opt. Mater. 2018, 75, 770.

[62]

A. Paściak, M. Misiak, K. Trejgis, K. Elżbieciak-Piecka, O. Bezkrovnyi, Ł. Marciniak, A. Bednarkiewicz, J. Alloys Compd. 2023, 934, 167900.

[63]

A. Paściak, R. Marin, L. Abiven, A. Pilch-Wróbel, M. Misiak, W. Xu, K. Prorok, O. Bezkrovnyi, Ł. Marciniak, C. Chanéac, F. Gazeau, R. Bazzi, S. Roux, B. Viana, V. P. Lehto, D. Jaque, A. Bednarkiewicz, ACS Appl. Mater. Interfaces 2022, 14, 33555.

[64]

D. Kang, H. S. Kim, S. Han, Y. Lee, Y.-P. Kim, D. Y. Lee, J. Lee, Nat. Commun. 2023, 14, 2755.

[65]

F. Huang, N. Bagheri, L. Wang, H. Ågren, J. Zhang, J. Widengren, H. Liu, J. Alloys Compd. 2023, 936, 168149.

[66]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, H. Xia, J. Colloid Interface Sci. 2014, 420, 27.

[67]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, H. Zhong, S. Fu, R. Hua, H. Xia, RSC Adv. 2014, 4, 47556.

[68]

S. Xiang, B. Chen, J. Zhang, X. Li, J. Sun, H. Zheng, Z. Wu, H. Zhong, H. Yu, H. Xia, Opt. Mater. Express 2014, 4, 1966.

[69]

H. Zheng, B. Chen, H. Yu, X. Li, J. Zhang, J. Sun, L. Tong, Z. Wu, H. Zhong, R. Hua, H. Xia, Sens. Actuators, B 2016, 234, 286.

[70]

L. Tong, X. Li, J. Zhang, S. Xu, J. Sun, H. Zheng, Y. Zhang, X. Zhang, R. Hua, H. Xia, B. Chen, Opt. Express 2017, 25, 16047.

[71]

Q. Shao, X. Li, P. Hua, G. Zhang, Y. Dong, J. Jiang, J. Colloid Interface Sci. 2017, 486, 121.

[72]

M. M. Leitão, D. de Melo-Diogo, C. G. Alves, R. Lima-Sousa, I. J. Correia, Adv. Healthcare Mater. 2020, 9, 1901665.

[73]

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, J. C. Hummelen, Nat. Photonics 2012, 6, 560.

[74]

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, P. J. Schuck, Nat. Photonics 2018, 12, 402.

[75]

G. Chen, J. Damasco, H. Qiu, W. Shao, T. Y. Ohulchanskyy, R. R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, P. N. Prasad, Nano Lett. 2015, 15, 7400.

[76]

B. Xue, D. Wang, L. Tu, D. Sun, P. Jing, Y. Chang, Y. Zhang, X. Liu, J. Zuo, J. Song, J. Qu, E. J. Meijer, H. Zhang, X. Kong, J. Phys. Chem. Lett. 2018, 9, 4625.

[77]

S. Han, R. Deng, Q. Gu, L. Ni, U. Huynh, J. Zhang, Z. Yi, B. Zhao, H. Tamura, A. Pershin, H. Xu, Z. Huang, S. Ahmad, M. Abdi-Jalebi, A. Sadhanala, M. L. Tang, A. Bakulin, D. Beljonne, X. Liu, A. Rao, Nature 2020, 587, 594.

[78]

P. Zhang, J. Ke, D. Tu, J. Li, Y. Pei, L. Wang, X. Shang, T. Guan, S. Lu, Z. Chen, X. Chen, Angew. Chem., Int. Ed. 2022, 61, e202112125.

[79]

J. Zhou, D. Jin, Nat. Photonics 2018, 12, 378.

[80]

J. Ke, S. Lu, X. Shang, Y. Liu, H. Guo, W. You, X. Li, J. Xu, R. Li, Z. Chen, X. Chen, Adv. Sci. 2019, 6, 1901874.

[81]

J. Ke, S. Lu, Z. Li, X. Shang, X. Li, R. Li, D. Tu, Z. Chen, X. Chen, Nano Res. 2020, 13, 1955.

[82]

D. Sun, Y. Huang, X. Zhang, J. Peng, J. Li, J. Ming, J. Wei, X. Chen, N. Zheng, J. Mater. Chem. B 2018, 6, 6969.

[83]

Z. Chu, T. Tian, Z. Tao, J. Yang, B. Chen, H. Chen, W. Wang, P. Yin, X. Xia, H. Wang, H. Qian, Bioact. Mater. 2022, 17, 71.

[84]

X. Yin, Y. Cheng, Y. Feng, W. R. Stiles, S. H. Park, H. Kang, H. S. Choi, Adv. Drug Delivery Rev. 2022, 189, 114483.

[85]

H. Wang, Z. Wei, Y. Zhao, S. Wang, L. Cao, F. Wang, K. Liu, Y. Sun, RSC Adv. 2023, 13, 27512.

[86]

K. Deng, D. Liu, Z. Wang, Z. Zhou, Q. Chen, J. Luo, Y. Zhang, Z. Hou, J. Lin, Pharmaceutics 2022, 14, 1217.

[87]

X. Wang, H. Li, F. Li, X. Han, G. Chen, Nanoscale 2019, 11, 22079.

[88]

D. Wang, B. Liu, Z. Quan, C. Li, Z. Hou, B. Xing, J. Lin, J. Mater. Chem. B 2017, 5, 2209.

[89]

Y. Liu, X. Zhu, Z. Wei, K. Wu, J. Zhang, F. G. Mutti, H. Zhang, F. F. Loeffler, J. Zhou, Angew. Chem., Int. Ed. 2023, 62, e202303570.

[90]

Z. Li, S. Lu, W. Liu, Z. Chen, Y. Huang, X. Li, J. Gong, X. Chen, ACS Nano 2024, 18, 11837.

[91]

S. Premcheska, M. Lederer, A. M. Kaczmarek, Chem. Commun. 2022, 58, 4288.

[92]

X. Sun, J. Sun, B. Dong, G. Huang, L. Zhang, W. Zhou, J. Lv, X. Zhang, M. Liu, L. Xu, X. Bai, W. Xu, Y. Yang, X. Song, H. Song, Biomaterials 2019, 201, 42.

[93]

G. López-Peña, K. Hamraoui, K. Horchani-Naifer, C. Gerke, D. H. Ortgies, E. Martín Rodríguez, G. Chen, D. Jaque, J. Rubio Retama, Phys. B (Amsterdam, Neth.) 2022, 631, 413652.

[94]

K. Maciejewska, A. Bednarkiewicz, L. Marciniak, Nanoscale Adv. 2021, 3, 4918.

[95]

S. Yu, J. Xu, X. Shang, W. Zheng, P. Huang, R. Li, D. Tu, X. Chen, Adv. Sci. 2020, 7, 2001589.

[96]

M. Jia, X. Chen, R. Sun, D. Wu, X. Li, Z. Shi, G. Chen, C. Shan, Nano Res. 2022, 16, 2949.

[97]

A. Bednarkiewicz, L. Marciniak, L. D. Carlos, D. Jaque, Nanoscale 2020, 12, 14405.

[98]

D. Jaque, F. Vetrone, Nanoscale 2012, 4, 4301.

[99]

H. Li, E. Heydari, Y. Li, H. Xu, S. Xu, L. Chen, G. Bai, Nanomaterials 2023, 13, 219.

[100]

A. A. Ansari, A. K. Parchur, N. D. Thorat, G. Chen, Coord. Chem. Rev. 2021, 440, 213971.

[101]

H. Dong, S. Du, X. Zheng, G. Lyv, L. Sun, L. Li, P. Zhang, C. Zhang, C. Yan, Chem. Rev. 2015, 115, 10725.

[102]

M. Lin, Y. Zhao, S. Wang, M. Liu, Z. Duan, Y. Chen, F. Li, F. Xu, T. Lu, Biotechnol. Adv. 2012, 30, 1551.

RIGHTS & PERMISSIONS

2024 The Authors. BMEMat published by John Wiley & Sons Australia, Ltd on behalf of Shandong University.

AI Summary AI Mindmap
PDF

251

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/