Development of novel carbon-based biomedical platforms for intervention in xenotoxicant-induced Parkinson’s disease onset

Jyotish Kumar , Armando Varela-Ramirez , Mahesh Narayan

BMEMat ›› 2024, Vol. 2 ›› Issue (4) : e12072

PDF
BMEMat ›› 2024, Vol. 2 ›› Issue (4) : e12072 DOI: 10.1002/bmm2.12072
RESEARCH ARTICLE

Development of novel carbon-based biomedical platforms for intervention in xenotoxicant-induced Parkinson’s disease onset

Author information +
History +
PDF

Abstract

Chronic exposure to herbicides, weedicides, and pesticides is associated with the onset and progress of neurodegenerative disorders such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Amyotrophic Lateral Sclerosis (ALS). Here, we have investigated whether quinic- and chlorogenic-acidderived Carbon Quantum Dots (QACQDs and ChACQDs, respectively) protect against a (pesticide) paraquat-insult model of PD. Our results indicated that both types of CQDs intervened in the soluble-to-toxic transformation of the amyloid-forming model protein Hen Egg White Lysozyme (HEWL). Furthermore, QACQDs and ChACQDs demonstrated antioxidant activity while remaining biocompatible in a human neuroblastoma-derived cell line (SH-SY5Y) up to 5 mg/ml and protected the cell line from the environmental neurotoxicant (paraquat). Importantly, both CQDs were found to protect dopaminergic neuronal ablation in a paraquat model of Parkinson’s disease using the nematode C. elegans. Our results are significant because both plantderived organic acids cross the blood–brain barrier, making them attractive for developing CQD architectures. Furthermore, since the synthesis of these CQDs was performed using green chemistry methods from precursor acids that cross the BBB, these engineered bionanomaterial platforms are tantalizing candidates for preventing neurodegenerative disorders associated with exposure to environmental neurotoxicants.

Keywords

biomaterials / condensed matter / materials characterization / nanobiotechnology / soft matter

Cite this article

Download citation ▾
Jyotish Kumar, Armando Varela-Ramirez, Mahesh Narayan. Development of novel carbon-based biomedical platforms for intervention in xenotoxicant-induced Parkinson’s disease onset. BMEMat, 2024, 2(4): e12072 DOI:10.1002/bmm2.12072

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. C. Chan, J. Yepes, B. Q. Vega, Front. Cell. Neurosci. 2015, 9, 124.

[2]

R. H. Bromilow, Pest Manage. Sci. 2004, 60, 340.

[3]

P. M. Rappold, M. Cui, A. S. Chesser, J. Tibbett, C. Grima, L. Duan, K. Tieu, J. A. Javitch, Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 20766.

[4]

J. R. Richardson, Y. U. Quan, T. B. Sherer, J. T. Greenamyre, G. W. Miller, Toxicol. Sci. 2005, 88, 193.

[5]

S. K. Park, D. Kang, L. Beane-Freeman, A. Blair, J. A. Hoppin, D. P. Sandler, C. F. Lynch, C. Knott, J. Gwak, M. Alavanja, Int. J. Occup. Environ. Health 2009, 15, 274.

[6]

J. Chen, Y. Su, F. Lin, M. Iqbal, K. Mehmood, H. Zhang, D. Shi, Ecotoxicol. Environ. Saf. 2021, 224, 112711.

[7]

P. Kabiraj, J. E. Marin, A. Varela-Ramirez, M. Narayan, ACS Chem. Neurosci. 2016, 7, 1519.

[8]

P. Kabiraj, J. E. Marin, A. Varela-Ramirez, E. Zubia, M. Narayan, ACS Chem. Neurosci. 2014, 5, 1209.

[9]

G. Kwakye, R. McMinimy, M. Aschner, Neurochem. Res. 2017, 42, 1772.

[10]

R. S. Deshmukh, R. K. Chaudhary, I. Roy, Mol. Neurobiol. 2012, 45, 405.

[11]

J. Bové, D. Prou, C. Perier, S. Przedborski, NeuroRx 2005, 2, 484.

[12]

W. Dauer, S. Przedborski, Neuron 2003, 39, 889.

[13]

Y. Joh, W. Choi, Dev. Reprod. Toxicol. 2017, 21, 417.

[14]

F. Kamel, D. Umbach, R. Bedlack, M. Richards, M. Watson, M. Alavanja, D. Sandler, J. A. Hoppin, S. Schmidt, Neurotoxicology 2012, 33, 457.

[15]

P. Grandjean, M. Bellanger, Environ. Health 2017, 16, 123.

[16]

J. Voorhees, M. Remy, C. Erickson, L. Dutca, D. Brat, A. Pieper, npj. Aging Mech. Dis. 2019, 5, 1.

[17]

S. Hu, M. Hu, J. Liu, B. Zhang, Z. Zhang, F. Zhou, L. Wang, J. Dong, Neuropsychiatr. Dis. Treat. 2020, 16, 651.

[18]

O. Ehrenstein, C. Ling, X. Cui, M. Cockburn, A. Park, F. Yu, J. Wu, B. Ritz, BMJ 2019, 364, l962.

[19]

P. A. Lafon, Y. Wang, M. Arango-Lievano, J. Torrent, L. Salvador-Prince, M. Mansuy, N. Mestre-Francès, L. Givalois, J. Liu, J. V. Mercader, F. Jeanneteau, C. Desrumaux, V. Perrier, Environ. Health Perspect. 2020, 128, 17011.

[20]

B. L. Tang, Toxics 2020, 8, 21.

[21]

R. P. Mason, F. Leinisch, M. B. Kadiiska, J. Corbett, Mol. Neurobiol. 2016, 53, 2983.

[22]

V. N. Uversky, J. Li, A. L. Fink, FEBS Lett. 2001, 500, 105.

[23]

E. D. Guerrero, A. M Lopez-Velazquez, J. Ahlawat, M. Narayan, ACS Appl. Nano Mater. 2021, 4, 2423.

[24]

P. S. Spencer, Front. Neurol. 2019, 10, 754.

[25]

J. Kumar, S. A. Delgado, H. Sarma, M. Narayan, Environ. Res. 2023, 237, 116932.

[26]

W. Du, J. Guo, M. Gao, S. Hu, X. Dong, Y. Han, Y. Sun, S. Jiang, Sci. Rep. 2015, 5, 7992.

[27]

N. Loganayaki, P. Siddhuraju, S. Manian, J. Food Sci. Technol. 2011, 50, 687.

[28]

M. Prasanth, B. S. Sivamaruthi, C. Chaiyasut, T. Tencomnao, Nutrients 2019, 11, 474.

[29]

Y. Choi, C. Jung, S. Lee, J. Bae, W. Baek, M. Suh, S. Suh, C. W. Park, Life Sci. 2001, 70, 603.

[30]

N. Mohamed, F. Larroquette, L. Beitel, E. Fon, T. Durcan, J. Parkinson’s Dis. 2019, 9, 265.

[31]

A. Krahn, C. Wells, D. Drewry, L. Beitel, T. Durcan, A. Axtman, ACS Chem. Neurosci. 2020, 11, 1871.

[32]

B. De, N. Karak, RSC Adv. 2013, 3, 8286.

[33]

C. Li, C. Ou, C. Huang, W. Wu, Y. Chen, T. Lin, Y. Lee, C. W. Wang, C. C. Shih, H. C. Zhou, W. F. Tzeng, T. J. Chiou, S. T. Chu, J. Cang, H. T. Chang, J. Mater. Chem. B 2013, 2, 4564.

[34]

A. Sachdev, P. Gopinath, Analyst 2015, 140, 4260.

[35]

S. Anmei, Z. Qingmei, C. Yuye, W. Yilin, Anal. Chim. Acta 2018, 1023, 115.

[36]

K. Tripathi, A. Sonker, S. Sonkar, S. Sarkar, RSC Adv. 2014, 4, 30100.

[37]

G. Kandasamy, C-Journal Carbon Res. 2019, 5, 24.

[38]

X. Han, Z. Jing, W. Wu, B. Zou, Z. Peng, P. Ren, A. Wikramanayake, Z. Lu, R. M. Leblanc, Nanoscale 2017, 9, 12862.

[39]

M. Molaei, RSC Adv. 2019, 9, 6460.

[40]

Q. Xu, Y. Liu, C. Gao, J. Wei, H. Zhou, Y. Chen, Z. Xia, T. S. Sreeprasad, J. Mater. Chem. C 2015, 3, 9885.

[41]

S. Zhao, M. Lan, X. Zhu, H. Xue, T. W. Ng, X. Meng, W. Zhang, P. Wang, ACS Appl. Mater. Interfaces 2015, 7, 17054.

[42]

C. Q. Wei, X. Y. Li, S. L. Liu, P. Jiang, P. Jiang, F. J. Jiang, Y. Liu, ACS Appl. Bio Mater. 2019, 2, 4067.

[43]

L. Wang, S. Zhu, T. Lu, G. Zhang, J. Xu, Y. Song, Y. Li, L. Wang, B. Yang, F. Li, J. Mater. Chem. B 2016, 4, 4913.

[44]

L. Jung, P. Narayan, S. T. Sreenivasan, M. Narayan, Processes 2020, 8, 599.

[45]

L. Janus, J. Radwan, M. Piątkowski, D. Bogdal, Molecules 2020, 25, 736.

[46]

E. Seven, Y. Zhou, Y. Seven, G. Mitchell, R. Leblanc, Faseb. J. 2019, 33, 785.

[47]

G. Xu, S. Mahajan, I. Roy, K. Yong, Front. Pharmacol. 2013, 4, 140.

[48]

Y. Song, Y. Wu, H. Wang, S. Liu, L. Song, S. Li, M. Tan, Food Chem. 2019, 293, 387.

[49]

Y. Zhou, P. Liyanage, D. Devadoss, L. R. Guevara, L. Cheng, R. Graham, R. Leblanc, A. O Al-Youbi, A. S. Bashammakh, M. S El-Shahawi, Nanoscale 2019, 11, 22387.

[50]

D. Kim, J. M. Yoo, H. Hwang, J. Lee, S. Lee, S. Yun, M. Park, M. Lee, S. Choi, S. Kwon, S. Lee, S. Kwon, S. Kim, Y. Park, M. Kinoshita, Y. Lee, S. Shin, S. Paik, S. Lee, S. Lee, B. Hong, H. Ko, Nat. Nanotech 2018, 13, 812.

[51]

Y. Wang, Y. Meng, S. Wang, C. Li, W. Shi, J. Chen, J. Wang, R. Huang, Small 2015, 11, 3575.

[52]

G. Henriquez, J. Ahlawat, R. Fairman, M. Narayan, ACS Chem. Neurosci. 2022, 13, 2399.

[53]

J. Ahlawat, G. Henriquez, A. Varela-Ramirez, R. Fairman, M. Narayan, Biomater. Adv. 2022, 137, 212837.

[54]

J. Ahlawat, M. Narayan, ACS Sustainable Chem. Eng. 2022, 10, 4610.

[55]

S. A. O Santos, C. S. R. Freire, M. R. M. Domingues, A. J. D. Silvestre, C. P. Neto, J. Agric. Food Chem. 2011, 59, 9386.

[56]

W. Boerjan, J. Ralph, M. Baucher, Annu. Rev. Plant Biol. 2003, 54, 519.

[57]

J. Kumar, A. Karim, U. H. Sweety, H. Sarma, M. Nurunnabi, M. Narayan, ACS Appl. Bio Mater. 2023.

[58]

J. D. Sánchez-Martínez, A. Valdés, R. Gallego, Z. J. Suárez-Montenegro, M. Alarcón, E. Ibañez, G. Alvarez-Rivera, A. Cifuentes, Front. Nutr. 2022, 9, 924596.

[59]

S. F. Nabavi, S. Tejada, W. N. Setzer, O. Gortzi, A. Sureda, N. Braidy, M. Daglia, A. Manayi, S. M. Nabavi, Curr. Neuropharmacol. 2017, 15, 471.

[60]

S. Nakamura-Bencomo, D. A. Gutierrez, E. Robles-Escajeda, B. Iglesias-Figueroa, T. S. Siqueiros-Cendón, E. A. Espinoza-Sánchez, A. Varela-Ramirez, R. J. Aguilera, Q. Rascón-Cruz, Invest. New Drugs 2021, 39, 400.

[61]

J. Kumar, S. Basak, A. Kalkal, G. Packirisamy, Nano-Struct. Nano-Objects 2022, 31, 100886.

[62]

B. F Iglesias-Figueroa, T. S. Siqueiros-Cendón, D. A. Gutierrez, R. J. Aguilera, E. A. Espinoza-Sánchez, S. Arévalo-Gallegos, Q. Rascón-Cruz, Q. Rascón-Cruz, Apoptosis 2019, 24, 562.

RIGHTS & PERMISSIONS

2024 The Authors. BMEMat published by John Wiley & Sons Australia, Ltd on behalf of Shandong University.

AI Summary AI Mindmap
PDF

257

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/