Exoskeletons in the context of soldiers: Current status and future research trends

Xinmeng Ma , Lingfeng Lv , Weipeng Liu , Feng Niu , Haihang Wang , Haoyu Wang , Libin Zhao , Zihao Wang , Zhipu Wang

Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (3) : 100254 -100254.

PDF (5753KB)
Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (3) : 100254 -100254. DOI: 10.1016/j.birob.2025.100254
Review
research-article

Exoskeletons in the context of soldiers: Current status and future research trends

Author information +
History +
PDF (5753KB)

Abstract

Modern military drills and conventional training, performed under all-weather conditions, impose exacting challenges on soldiers. This has motivated the development of exoskeleton robot systems, leveraging advanced technology and material innovation. These systems have demonstrated their effectiveness at assisting movement, enhancing protection, promoting rehabilitation, and providing comprehensive support to soldiers. This groundbreaking technology not only reduces a soldier’s physical exertion significantly but also effectively diminishes the risk of injury during training, infusing new vitality into the enhancement of military capabilities. Different types of exoskeleton robots differ in their focus. Lower-limb exoskeleton robots are designed to increase the soldier’s endurance. Upper-limb exoskeleton robots enhance strength. This paper provides a detailed explanation of the key technologies of various types of exoskeleton robots, covering their mechanical design, electromechanical transmission structures, sensors, and actuation methods. It also explores the diverse application scenarios of exoskeleton robots in the military field, systematically introducing their development trajectory, milestone achievements, and the cutting-edge technologies currently employed, as well as the challenges faced. The conclusion offers a prospective discussion of future development pathways, anticipating the broad prospects for exoskeleton robots in the military domain.

Keywords

Exoskeleton robot / Machinery / Bionics / Hybrid / Assistive devices

Cite this article

Download citation ▾
Xinmeng Ma, Lingfeng Lv, Weipeng Liu, Feng Niu, Haihang Wang, Haoyu Wang, Libin Zhao, Zihao Wang, Zhipu Wang. Exoskeletons in the context of soldiers: Current status and future research trends. Biomimetic Intelligence and Robotics, 2025, 5(3): 100254-100254 DOI:10.1016/j.birob.2025.100254

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Xinmeng Ma: Conceptualization. Lingfeng Lv: Writing - orig-inal draft. Weipeng Liu: Validation. Feng Niu: Supervision. Hai-hang Wang: Project administration. Haoyu Wang: Writing - review & editing. Libin Zhao: Methodology. Zihao Wang: Writing - review & editing. Zhipu Wang: Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work is supported by the Natural Science Foundation of China (52405016), in part by the Postdoctoral Fellowship Program of CPSF (GZC20230660), the Natural Science Foundation of Hebei Province, China (A2023202049), and the S&T Program of Hebei (24464401D).

References

[1]

D.P. Ferris, G.S. Sawicki, M.A. Daley, A physiologist’s perspective on robotic exoskeletons for human locomotion, Int. J. Humanoid Robot. 4 (03) (2007) 507-528.

[2]

Majid Pakizeh, Ali Moradi, Toktam Ghassemi, Chemical extraction and modification of chitin and chitosan from shrimp shells, Eur. Polym. J. 159 (2021) 110709.

[3]

W. Chen, G. Li, N. Li, et al., Soft exoskeleton with fully actuated thumb movements for grasping assistance, IEEE Trans. Robot. 38 (4) (2022) 2194-2207.

[4]

J.D. Sanjuan, A.D. Castillo, M.A. Padilla, et al., Cable driven exoskeleton for upper-limb rehabilitation: A design review, Robot. Auton. Syst. 126 (2020) 103445.

[5]

C. Siviy, L.M. Baker, B.T. Quinlivan, et al., Opportunities and challenges in the development of exoskeletons for locomotor assistance, Nat. Biomed. Eng. 7 (4) (2023) 456-472.

[6]

T. Lenzi, M.C. Carrozza, S.K. Agrawal, Powered hip exoskeletons can reduce the user’s hip and ankle muscle activations during walking, IEEE Trans. Neural Syst. Rehabil. Eng. 21 (6) (2013) 938-948.

[7]

A.M. Dollar, H. Herr, Design of a quasi-passive knee exoskeleton to assist running, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Nice, France, 2008, 747754.

[8]

P.C. Kao, C.L. Lewis, D.P. Ferris, Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton, J. Biomech. 43 (2)(2010) 203-209.

[9]

Q.Z. Song, X.G. Wang, X. Wang, et al., Development of multi-joint exoskeleton-assisted robot and its key technology analysis: an overview, Bing. Xuebao/Acta Armament. 37 (1) (2016) 172-185.

[10]

Y. Mengüç, Y.L. Park, H. Pei, et al., Wearable soft sensing suit for human gait measurement, Int. J. Robot. Res. 33 (14) (2014) 1748-1764.

[11]

D.M.G. Preethichandra, L. Piyathilaka, J.H. Sul, et al., Passive and active exoskeleton solutions: Sensors, actuators, applications, and recent trends, Sensors 24 (21) (2024) 7095.

[12]

J. Zhang, P. Fiers, K.A. Witte, et al., Human-in-the-loop optimization of exoskeleton assistance during walking, Science 356 (6344) (2017) 1280-1284.

[13]

T. Yan, M. Cempini, C.M. Oddo, et al., Review of assistive strategies in powered lower-limb orthoses and exoskeletons, Robot. Auton. Syst. 64 (2015) 120-136.

[14]

R. Gopura, D.S.V. Bandara, K. Kiguchi, et al., Developments in hardware systems of active upper-limb exoskeleton robots: A review, Robot. Auton. Syst. 75 (2016) 203-220.

[15]

D. Shi, W. Zhang, W. Zhang, et al., A review on lower limb rehabilitation exoskeleton robots, Chin. J. Mech. Eng. 32 (1) (2019) 1-11.

[16]

A. Plaza, M. Hernandez, G. Puyuelo, et al., Lower-limb medical and rehabilitation exoskeletons: A review of the current designs, IEEE Rev. Biomed. Eng. 16 (2021) 278-291.

[17]

Y. Xiao, X. Ji, H. Wu, et al., Bionic knee joint structure and motion analysis of a lower extremity exoskeleton, in: 2020 4th International Conference on Robotics and Automation Sciences, ICRAS, IEEE, 2020, pp. 91-95.

[18]

A.B. Zoss, H. Kazerooni, A. Chu, Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX), IEEE/ASME Trans. Mechatronics 11 (2) (2006) 128-138.

[19]

M. Lee, Y. Kim, G.T. Kim, et al., Design and evaluation of AX-deminer forearm assistance for demining soldier, IEEE Access 11 (2023) 130743-130754.

[20]

Y. Miao, F. Gao, D. Pan, Mechanical design of a hybrid leg exoskeleton to augment load-carrying for walking, Int. J. Adv. Robot. Syst. 10 (11) (2013) 395.

[21]

V.A. Spirescu, C. Chircov, A.M. Grumezescu, et al., Inorganic nanoparticles and composite films for antimicrobial therapies, Int. J. Mol. Sci. 22 (9)(2021) 4595.

[22]

J. Mizrahi, Mechanical impedance and its relations to motor control, limb dynamics, and motion biomechanics, J. Med. Biol. Eng. 35 (1) (2015) 1-20.

[23]

H. Wang, S. Qu, Constitutive models of artificial muscles: a review, J. Zhejiang Univ.-Sci. A 17 (1) (2016) 22-36.

[24]

D.A. Neumann, E.R. Kelly, Kinesiology of the musculoskeletal system: foundations for rehabilitation, 2010.

[25]

M. Paterna, C. De Benedictis, C. Ferraresi, The research on soft pneumatic actuators in Italy: Design solutions and applications, Actuators 11 (2022) 328[EB/OL].

[26]

D. Shen, J. Wu, X. Wang, M. Tian, Design and analysis of a novel flat pneumatic artificial muscle, in: 2021 IEEE 8th International Conference on Industrial Engineering and Applications, ICIEA, IEEE, 2021, pp. 110-114.

[27]

C.P. Neu, J.J. Crisco, S.W. Wolfe, In vivo kinematic behavior of the radio-capitate joint during wrist flexion-extension and radio-ulnar deviation, J. Biomech. 34 (11) (2001) 1429-1438.

[28]

B.D. Ferris, J. Stanton, J. Zamora, Kinematics of the wrist: evidence for two types of movement, J. BoneJt. Surg. Br. Vol. 82 (2) (2000) 242-245.

[29]

J. Li, Q. Cao, M. Dong, et al., Compatibility evaluation of a 4-DOF ergonomic exoskeleton for upper limb rehabilitation, Mech. Mach. Theory 156 (2021) 104146.

[30]

Guo Qiyuan, Hu Zhigang, Fu Dongliao, Review of research on upper limb assisted exoskeletons, J. Mech. Transm. 47 (03) (2023) 141-155.

[31]

X. Wang, Q. Song, X. Wang, et al., Kinematics and dynamics analysis of a 3-DOF upper-limb exoskeleton with an internally rotated elbow joint, Appl. Sci. 8 (3) (2018) 464.

[32]

B. Le Tellier, T. Albouy, K. Lebel, Objective and subjective evaluation of a passive exoskeleton for upper limbs, 2021, Preprints 2021110512.

[33]

D. Park, S. Toxiri, G. Chini, et al., Shoulder-sidewinder (shoulder-side wearable industrial ergonomic robot): Design and evaluation of shoulder wearable robot with mechanisms to compensate for joint misalignment, IEEE Trans. Robot. 38 (3) (2021) 1460-1471.

[34]

C. Liu, C. Zhu, H. Liang, et al., Development of a light wearable exoskeleton for upper extremity augmentation, in: 2016 23rd International Confer-ence on Mechatronics and Machine Vision in Practice, M2VIP, IEEE, 2016, pp. 1-6.

[35]

C. Kirtley,CGA normative gait database, 2006, http://guardian.curtin.edu.au/cga/data/.

[36]

L. van Silfhout, A.J.F. Hosman, H. van de Meent, et al., Design recom-mendations for exoskeletons: Perspectives of individuals with spinal cord injury, J. Spinal Cord Med. 46 (2) (2023) 256-261.

[37]

A. Esquenaz, M. Talaty, A. Packel, et al., The rewalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury, Am. J. Phys. Med. Rehabil. 91 (11) (2012) 911-921.

[38]

Y. He, N. Li, C. Wang, et al., Development of a novel autonomous lower extremity exoskeleton robot for walking assistance, Front. Inf. Technol. Electron. Eng. 20 (3) (2019) 318-329.

[39]

M. Wehner, L. Paeky, C. Walsh, et al., Experimental characterization of components for active soft orthotics,in: Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), June (2012) 24-27, Rome, Italy, IEEE, New York, 2012, pp. 1586-1592.

[40]

K.M. Lee, D. Wang, Design analysis of a passive weight-support lower-extremity-exoskeleton with compliant knee-joint, in: 2015 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2015, pp. 5572-5577.

[41]

Val K. Tol, exoskeleton, Astamuse, Publication number, 2014-519932.

[42]

M.P. De Looze, T. Bosch, F. Krause, et al., Exoskeletons for industrial application and their potential effects on physical work load, Ergonomics 59 (5) (2016) 671-681.

[43]

G.S. Sawicki, O.N. Beck, I. Kang, et al., The exoskeleton expansion: improving walking and running economy, J. Neuroeng. Rehabil. 17 (2020) 1-9.

[44]

S. De Bock, J. Ghillebert, R. Govaerts, et al., Passive shoulder exoskeletons: More effective in the lab than in the field? IEEE Trans. Neural Syst. Rehabil. Eng. 29 (2020) 173-183.

[45]

M. Hunt, L. Everaert, M. Brown, et al., Effectiveness of robotic exoskele-tons for improving gait in children with cerebral palsy: A systematic review, Gait Posture 98 (2022) 343-354.

[46]

X. Chen, L. Liu, Z. An, et al., Clinical applications of wearable exoskeleton rehabilitation aids, Sci. Technol. Rev. 35 (2) (2017) 50-54.

[47]

M. Wehner, B. Quinlivan, P.M. Aubin, et al., A lightweight soft exosuit for gait assistance, in: 2013 IEEE International Conference on Robotics and Automation, IEEE, 2013, pp. 3362-3369.

[48]

J. Kou, Y. Wang, Z. Chen, et al., Gait planning and multimodal human-exoskeleton cooperative control based on central pattern generator, in: IEEE/ASME Transactions on Mechatronics, 2024.

[49]

S.H. Hyon, J. Morimoto, T. Matsubara, et al., XoR: Hybrid drive exoskeleton robot that can balance, in: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2011, pp. 3975-3981.

[50]

S.H. Hyon, T. Hayashi, A. Yagi, et al., A others design of hybrid drive exoskeleton robot XoR2, in: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2013, pp. 4642-4648.

[51]

S.N. Yu, H.D. Lee, S.H. Lee, et al., Design of an under-actuated exoskeleton system for walking assist while load carrying, Adv. Robot. 26 (5-6) (2012) 561-580.

[52]

Y. Miao, F. Gao, D. Pan, Mechanical design of a lower extremity ex-oskeleton with hybrid legs for power augmentation, in: International Conference on Intelligent Robotics and Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 132-142.

[53]

F. Martini, M.J. Timmons, R.B. Tallitsch, et al., Human Anatomy, Pearson/Benjamin Cummings, San Francisco, CA, 2006.

[54]

K.N. An, Kinematic analysis of human movement, Ann. Biomed. Eng 12 (1984) 585-597.

[55]

A.E. Engín, On the biomechanics of the shoulder complex, J. Biomech. 13 (7) (1980) 575-590.

[56]

M.B. Hong, G.T. Kim, Y.H. Yoon, ACE-ankle: A novel sensorized RCM (remote-center-of-motion) ankle mechanism for military purpose exoskeleton, Robotica 37 (12) (2019) 2209-2228.

[57]

C.J. Walsh, K. Endo, H. Herr, A quasi-passive leg exoskeleton for load-carrying augmentation, Int. J. Humanoid Robot. 4 (03) (2007) 487-506.

[58]

C.J. Walsh, D. Paluska, K. Pasch, et al., Development of a lightweight, un-deractuated exoskeleton for load-carrying augmentation,in:Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006, ICRA 2006, IEEE, 2006, pp. 3485-3491.

[59]

Li Long-fei, Zhu Ling-yun, Gou Xiang-feng, Design of the human-machine closed-chain lower-limb rehabilitation exoskeleton for human motion needs, J. Mach. Des. 38 (8) (2021) 53-60.

[60]

C. Amici, F. Ragni, M. Ghidoni, et al., Multi-sensor validation approach of an end-effector-based robot for the rehabilitation of the upper and lower limb, Electronics 9 (11) (2020) 1751.

[61]

C.H. Kuo, J.W. Chen, Y. Yang, et al., A differentiable dynamic model for musculoskeletal simulation and exoskeleton control, Biosensors 12 (5)(2022) 312.

[62]

Liming Sui, Lixun Zhang, Development of an actuated exoskeleton with pneumatic muscles for gait rehabilitation training, J. Harbin Eng. Univ. 32 (9) (2011) 1244-1248.

[63]

Xinwei Zhou, Research on the Lower Extremity Rehabilitation Exoskeleton System Deiven by Pneumatic Muscles, Zhejiang University, Hangzhou, 2018, pp. 1-70.

[64]

X. Tu, J. Huang, J. He,Leg hybrid rehabilitation based on hip-knee exoskeleton and ankle motion induced by FES, in:Proceedings of the 2016 International Conference on Advanced Robotics and Mechatronics (ICARM), August (2016) 18-20, Macou China, IEEE, New York, 2016, pp. 237-242.

[65]

L. Meng, T. Dongh, J. Hou, Soft exoskeleton robot facing to lower-limb rehabilitation: A narrative review, Chin. J. Sci. Instrum. 42 (4) (2021) 206-217.

[66]

P. Yuan, T. Wang, F. Ma, et al., Key technologies and prospects of individual combat exoskeleton,in: Proceedings of the Seventh Interation Conference on Intelligent Systems and Computing, vol. 214, 2014, pp. 305-316.

[67]

S. YoshiyukiI, S. Takeru, Exoskeletal cyborg-type robot, Sci. Robot. 3 (17)(2018) eaat3912.

[68]

N.L. Tagliamonte, S. Valentin, A. Sudano, et al., Switching assistance for exoskeletons during cyclic motions, Front. Neurorobotics 13 (2019) 41.

[69]

H. Hsu, I. Kang, Young A.J., Design and evaluation of a proportional myoelectric controller for hip exoskeletons during walking,in:Dy-namic Systems and Control Conference, American Society of Mechanical Engineers, 2018, p. 51890, V001T13A005.

[70]

J.Y. Zhou, H. Hu, T.F. Fan, et al., Analysis of individual soldiers’power assisted robot for soldiers’ physical strength enhancement, Fire Control. Command. Control. 47 (4) (2022) 96-103.

[71]

Jia-yong Zhou, Xin-min Mo, Ang Zhang, Analysis of exoskeleton assist robot research status and key technology, J. Ordnance Equip. Eng. 37 (10) (2016) 99-104.

[72]

Xie Xiangyu, Zhou Likun, Si Yuchang, Overview on development status and key technologies of military powered exoskeleton, Ordnance Ind. Autom. 41 (10) (2022) 14-20.

[73]

P.N. Smith, K.M. Refshauge, J.M. Scarvell, Development of the concepts of knee kinematics, Arch. Phys. Med. Rehabil. 84 (12) (2003) 1895-1902.

[74]

D.H. Moon, D. Kim, Y.D. Hong, Intention detection using physical sensors and electromyogram for a single leg knee exoskeleton, Sensors 19 (20)(2019) 4447.

[75]

E.S. Barjuei, M.M.G. Ardakani, D.G. Caldwell, et al., Optimal selection of motors and transmissions in back-support exoskeleton applications, IEEE Trans. Med. Robot. Bionics 2 (3) (2020) 320-330.

[76]

W. Huo, S. Mohammed, J.C. Moreno, et al., Lower limb wearable robots for assistance and rehabilitation: A state of the art, IEEE Syst. J. 10 (3)(2014) 1068-1081.

[77]

J. Wang, Z. Wu, Y. Li, et al., Large language models for robotics: Opportunities, challenges, and perspectives. arXiv 2024. arXiv preprint arXiv: 2401. 04334.

[78]

J.T. London, Kinematics of the elbow, JBJS 63 (4) (1981) 529-535.

[79]

Jiayong Zhou, Jing Wang, Xiaojing Meng, et al., Study on key technologies of integrated intelligent flexible exoskeleton combat system, J. Ordnance Equip. Eng. 38 (8) (2017) 36-40, 66.

[80]

G. Aguirre-Ollinger, H. Yu, Lower-limb exoskeleton with variable-structure series elastic actuators: Phase-synchronized force control for gait asymmetry correction, IEEE Trans. Robot. 37 (2021) 763-779.

[81]

O. Baser, H. Kizilhan, E. Kilic, Employing variable impedance (stiff-ness/damping) hybrid actuators on lower limb exoskeleton robots for stable and safe walking trajectory tracking, J. Mech. Sci. Technol. 34 (2020) 2597-2607.

[82]

B. Chen, X. Zhao, H. Ma, et al., Design and characterization of a magneto-rheological series elastic actuator for a lower extremity exoskeleton, Smart Mater. Struct. 26 (10) (2017) 105008.

[83]

J.E. Pratt, B.T. Krupp, Series elastic actuators for legged robots, in: Unmanned Ground Vehicle Technology VI. SPIE, vol. 5422, 2004, pp. 135-144.

[84]

T. Vo-Minh, T. Tjahjowidodo, H. Ramon, et al., A new approach to mod-eling hysteresis in a pneumatic artificial muscle using the maxwell-slip model, IEEE/ASME Trans. Mechatronics 16 (1) (2010) 177-186.

[85]

S. Toxiri, A.S. Koopman, M. Lazzaroni, et al., Rationale, implementa-tion and evaluation of assistive strategies for an active back-support exoskeleton, Front. Robot. AI 5 (2018) 53.

[86]

A. Chu, Design of the Berkeley Lower Extremity Exoskeleton (BLEEX), University of California, Berkeley, 2005.

[87]

B. Chen, L. Grazi, F. Lanotte, et al., A real-time lift detection strategy for a hip exoskeleton, Front. Neurorobotics 12 (2018) 17.

[88]

N. Karavas, A. Ajoudani, N. Tsagarakis, et al., Tele-impedance based assistive control for a compliant knee exoskeleton, Robot. Auton. Syst. 73 (2015) 78-90.

[89]

A. Zoss, H. Kazerooni, A. Chu, On the mechanical design of the berkeley lower extremity exoskeleton (BLEEX), in: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2005, pp. 3465-3472.

[90]

M. Paterna, C. De Benedictis, C. Ferraresi, Preliminary testing of a passive exoskeleton prototype based on McKibben muscles, Machines 12 (6)(2024) 388.

[91]

A. Zibafar, S. Ghaffari, G. Vossoughi, Achieving transparency in series elastic actuator of sharif lower limb exoskeleton using LLNF-NARX model, in: 2016 4th International Conference on Robotics and Mechatronics, ICROM, IEEE, 2016, pp. 398-403.

[92]

H.C. Hsieh, D.F. Chen, L. Chien, et al., Design of a parallel actuated ex-oskeleton for adaptive and safe robotic shoulder rehabilitation, IEEE/ASME Trans. Mechatronics 22 (5) (2017) 2034-2045.

[93]

S. Dooley, S. Kim, M.A. Nussbaum, et al., Occupational arm-support and back-support exoskeletons elicit changes in reactive balance after slip-like and trip-like perturbations on a treadmill, Appl. Ergon. 115 (2024) 104178.

[94]

S. Wang, L. Wang, C. Meijneke, et al., Design and control of the MIND-WALKER exoskeleton, IEEE Trans. Neural Syst. Rehabil. Eng. 23 (2) (2014) 277-286.

[95]

D.M. Ka, C. Hong, T.H. Toan, et al., Minimizing human-exoskeleton interaction force by using global fast sliding mode control, Int. J. Control. Autom. Syst. 14 (4) (2016) 1064-1073.

[96]

S.H. Collins, M.B. Wiggin, G.S. Sawicki, Reducing the energy cost of human walking using an unpowered exoskeleton, Nature 522 (7555) (2015) 212-215.

[97]

E. Rocon, J.L. Pons, Exoskeletons in Rehabilitation Robotics:Tremor Suppression, Springer Science & Business Media, 2011.

[98]

B. Laschowski, J. McPhee, J. Andrysek, Lower-limb prostheses and exoskeletons with energy regeneration: Mechatronic design and optimization review, J. Mech. Robot. 11 (4) (2019) 040801.

[99]

R.C. Browning, J.R. Modica, R. Kram, et al., The effects of adding mass to the legs on the energetics and biomechanics of walking, Med. Sci. Sport. Exerc. 39 (3) (2007) 515-525.

[100]

L. Li, C. Yang, Y. Zhang, et al., Correctional DP-based energy management strategy of plug-in hybrid electric bus for city-bus route, IEEE Trans. Veh. Technol. 64 (7) (2014) 2792-2803.

[101]

L. Jing, Y. Pan, T. Wang, et al., Transient analysis and verification of a magnetic gear integrated permanent magnet brushless machine with halbach arrays, IEEE J. Emerg. Sel. Top. Power Electron. 10 (2) (2021) 1881-1890.

[102]

I. Husain, B. Ozpineci, M.S. Islam, et al., Electric drive technology trends, Challenges, Oppor. Futur. Electr. Veh. Proc. 109 (6) (2021) 1039-1059.

[103]

D.P. Ferris, G.S. Sawicki, M.A. Daley, A physiologist’s perspective on robotic exoskeletons for human locomotion, Int. J. Humanoid Robot. 4 (03) (2007) 507-528.

[104]

J.M. Donelan, Q. Li, V. Naing, et al., Biomechanical energy harvesting: generating electricity during walking with minimal user effort, Science 319 (5864) (2008) 807-810.

[105]

K.A. Witte, J. Zhang, R.W. Jackson, et al., Design of two lightweight, high-bandwidth torque-controlled ankle exoskeletons, in: 2015 IEEE In-ternational Conference on Robotics and Automation, ICRA, IEEE, 2015, pp. 1223-1228.

[106]

Merletti Roberto, Dario Farina, et al., Surface Electromyography: Physiology, Engineering, and Applications, John Wiley & Sons, 2016.

[107]

O. Tyagi, T.R. Mukherjee, Mehta R.K., Neurophysiological, muscular, and perceptual adaptations of exoskeleton use over days during overhead work with competing cognitive demands, Appl. Ergon. 113 (2023) 104097.

[108]

N. Yagn, Apparatus for facilitating walking, running, and jumping, 1890, U.S.Patents 420179. [Online].

[109]

B.J. Makinson, Research and Development Prototype for Machine Aug-mentation of Human Strength and Endurance:Handiman I Project of General Electric Company Specialty Materials Handling Products Operation, National Technical Information Service, 1971.

[110]

Jia Shan, Lu Xinliang, Han Yali, Wang Xingsong, Method for lower extremity exoskeleton’s ankle joint trajectory to track human’s in swing phase, J. Southeast Univ. (Natural Sci. Edition) 44 (1) (2014) 87-92.

[111]

M. Tiboni, G. Incerti, C. Remino,et al. Comparison of signal processing techniques for condition monitoring based on artificial neural networks,in: International Conference on Condition Monitoring of Machinery in Non-Stationary Operation, Springer International Publishing, Cham, 2018, pp. 179-188.

[112]

J. Li, N. Thakor, A. Bezerianos, Brain functional connectivity in uncon-strained walking with and without an exoskeleton, IEEE Trans. Neural Syst. Rehabil. Eng. 28 (3) (2020) 730-739.

[113]

A. Rodríguez-Fernández, J. Lobo-Prat, J.M. Font-Llagunes, Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments, J. Neuroeng. Rehabil. 18 (1) (2021) 22.

[114]

Y. Ma, X. Wu, J. Yi, et al., A review on human-exoskeleton coordination towards lower limb robotic exoskeleton systems, Int. J. Robot. Autom. 34 (4) (2019) 431-451.

[115]

S. Głowiński, M. Ptak, A kinematic model of a humanoid lower limb exoskeleton with pneumatic actuators, Acta Bioeng. Biomech. 24 (1)(2022) 145-157.

[116]

G. Gaudet, M. Raison, S. Achiche, Current trends and challenges in pediatric access to sensorless and sensor-based upper limb exoskeletons, Sensors 21 (10) (2021) 3561.

[117]

C.H. Wu, H.F. Mao, J.S. Hu, et al., The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury, J. Neuroeng. Rehabil. 15 (2018) 1-10.

[118]

J. Ma, D. Sun, Y. Ding, et al., Cooperativity model for improving the walking-assistance efficiency of the exoskeleton, Micromachines 13 (7)(2022) 1154.

[119]

L. Sun, J. Jing, C. Li, et al., Multi-terrains assistive force parameter opti-mization method for soft exoskeleton, IEEE Trans. Neural Syst. Rehabil. Eng. 31 (2023) 2028-2036.

[120]

Zhang Yan, Wang Jian-zhou, L.I Wei, Wang Jie, Chen Ling-ling, Yang Peng, Knee-joint exoskeleton control based on data-driven approach, J. Zhejiang Univ. (Engineering Science) (ISSN: 1008-973X) 53 (10) (2019) 2024-2033.

[121]

X. Liang, Y. Yan, W. Wang, et al., Adaptive human-robot interaction torque estimation with high accuracy and strong tracking ability for a lower limb rehabilitation robot, IEEE/ASME Trans. Mechatronics (2024).

[122]

L.R. Jiao, R. Vellaisamy, T. Gall, Robotic pancreatoduodenectomy-how I do it: tips, tricks and pitfalls to standardize the technique to reduce postoperative morbidity and mortality, Artif. Intell. Surg. 3 (2) (2023) 98-110.

[123]

M. Tiboni, A. Borboni, F. Vérité, et al., Sensors and actuation technologies in exoskeletons: A review, Sensors 22 (3) (2022) 884.

[124]

J.W. Burdick, J.L. Contreras-Vidal typo, et al., Integration of neuro-physiology and robotics for the control of upper limb prosthetics and exoskeletons, Annu. Rev. Control. Robot. Auton. Syst. 1 (2017) 175-200.

[125]

E. Niedermeyer, F.H. Lopes da Silva, Electroencephalography: Basic Prin-ciples, Clinical Applications, and Related Fields, Lippincott Williams & Wilkins, 2005.

[126]

H.H. J, The ten-twenty electrode system of the international federation, Electroencephalogr. Clin. Neurophysiol. 10 (1958) 367-380.

[127]

J.R. Wolpaw, D.J. McFarland, Control of robotic and prosthetic devices using the surface electromyographic signal, IEEE Trans. Neural Syst. J.A. Rehabil.Smith, Eng.A.B. 12 Doe,(3) K.C. (2004) Roberts, 339-352; The role of encoders in precision control systems, Int. J. Control Eng. 33 (4) (2019) 213-230.

[128]

L.M. Johnson, S.Y. Wang, Optoelectronic encoders: principles and applications, IEEE Trans. Instrum. Meas. 70 (1) (2020) 123-137.

[129]

M.A. Khan, S.J. Patel, N.K. Sinha, Enhancing accuracy in industrial ap-plications with encoder-based feedback, J. Ind. Technol. 45 (2) (2021) 189-206.

[130]

L. Chen, D. Hu, Study of a cable-driven hip swimming-assisted ex-oskeleton utilizing adaptive active control strategy, J. Field Robot.(2024).

[131]

B. Wang, Research on Human Motion Intention Perception Method of Underwater Booster Robot (M.S. thesis), Sch. Aeronaut. Astronaut, 2020.

[132]

Q. Wang, Z. Zhou, Z. Zhang, et al., An underwater lower-extremity soft exoskeleton for breaststroke assistance, IEEE Trans. Med. Robot.Bionics 2 (3) (2020) 447-462.

[133]

X. Hu, J. Li, S. Li, et al., Morphology modulation of artificial muscles by thermodynamic-twist coupling, Natl. Sci. Rev. 10 (1) (2023) nwac196.

[134]

M. Feng, D. Yang, L. Ren, et al., X-crossing pneumatic artificial muscles, Sci. Adv. 9 (38) (2023) eadi7133.

[135]

Field and Service Robotics: Results of the 5th International Conference, Springer Science & Business Media, 2006.

[136]

D.J. Hyun, H. Park, T. Ha, et al., Biomechanical design of an agile, electricity-powered lower-limb exoskeleton for weight-bearing assistance, Robot. Auton. Syst. 95 (2017) 181-195.

[137]

Y. Sankai, HAL:Hybrid assistive limb based on cybernics, robotics research,in: The 13th International Symposium ISRR, Springer Berlin Heidelberg, 2011, pp. 25-34.

[138]

S. Casey,Ekso bionics: Ekso (eLEGS), in: Biomedical Engineering, University of Rhode Island.

[139]

J.E. Pratt, B.T. Krupp, C.J. Morse, et al., The RoboKnee: an exoskeleton for enhancing strength and endurance during walking,in: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 3, IEEE, 2004, pp. 2430-2435.

[140]

Rewalk rehabilitation, 2019, https://rewalk.com/rewalk-rehabilitation/.(Accessed 18 May 2019)

[141]

W. Van Dijk, C. Meijneke, H. Van Der Kooij, Evaluation of the achilles ankle exoskeleton, IEEE Trans. Neural Syst. Rehabil. Eng 25 (2) (2016) 151-160.

[142]

C. Meijneke, W. Van Dijk, H. Van Der Kooij, Achilles: An autonomous lightweight ankle exoskeleton to provide push-off power, in: 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, IEEE, 2014, pp. 918-923.

[143]

B.T. Quinlivan, S. Lee, P. Malcolm, et al., Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit, Sci. Robot. 2 (2) (2017) eaah4416.

[144]

S. Lee, S. Crea, P. Malcolm, et al., Controlling negative and positive power at the ankle with a soft exosuit, in: 2016 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2016, pp. 3509-3515.

[145]

M.B. Yandell, B.T. Quinlivan, D. Popov, et al., Physical interface dynamics alter how robotic exosuits augment human movement: implications for optimizing wearable assistive devices, J. Neuroeng. Rehabil. 14 (2017) 1-11.

[146]

M.B. Yandell, J.R. Tacca, K.E. Zelik, Design of a low profile, unpowered ankle exoskeleton that fits under clothes: Overcoming practical barriers to widespread societal adoption, IEEE Trans. Neural Syst. Rehabil. Eng. 27 (4) (2019) 712-723.

[147]

M.B. Hong, Y.J. Shin, J.H. Wang, Novel three-DOF ankle mechanism for lower-limb exoskeleton: kinematic analysis and design of passive-type ankle module, in: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2014, pp. 504-509.

[148]

E. Etenzi, R. Borzuola, A.M. Grabowski, Passive-elastic knee-ankle ex-oskeleton reduces the metabolic cost of walking, J. NeuroEngineering Rehabil. 17 (2020) 1-15.

[149]

Y. Leng, G. Huang, L. Ma, et al., A lightweight, integrated and portable force-controlled ankle exoskeleton for daily walking assistance, in: 2021 27th International Conference on Mechatronics and Machine Vision in Practice, M2VIP, IEEE, 2021, pp. 42-47.

[150]

X. Wang, S. Guo, H. Qu, et al., Design of a purely mechanical sensor-controller integrated system for walking assistance on an ankle-foot exoskeleton, Sensors 19 (14) (2019) 3196.

[151]

X. Wang, S. Guo, B. Qu, et al., Design of a passive gait-based ankle-foot exoskeleton with self-adaptive capability, Chin. J. Mech. Eng. 33 (1) (2020) 49.

[152]

Zhang Leiyu, Ye Tuxian, Gao Xiang, et al., Design and EMG signal evaluation of ankle assistance exosuit, J. Mech. Eng. 59 (17) (2023) 67-78.

[153]

H.H. Lee, K.T. Yoon, H.H. Lim, et al., A novel passive shoulder exoskeleton using link chains and magnetic spring joints, IEEE Trans. Neural Syst. Rehabil. Eng. 32 (2024) 708-717.

[154]

H. Kazerooni, R. Steger, The berkeley lower extremity exoskeleton, 2006.

[155]

A. Chu, H. Kazerooni, A. Zoss, On the biomimetic design of the berkeley lower extremity exoskeleton (BLEEX),in:Proceedings of the 2005 IEEE International Conference on Robotics and Automation, IEEE, 2005, pp. 4345-4352.

[156]

H. Kazerooni, A. Chu, R. Steger, That which does not stabilize, will only make us stronger, Int. J. Robot. Res. 26 (1) (2007) 75-89.

[157]

J. Ghan, R. Steger, H. Kazerooni, Control and system identification for the berkeley lower extremity exoskeleton (BLEEX), Adv. Robot. 20 (9) (2006) 989-1014.

[158]

H. Kazerooni, J.L. Racine, L. Huang, et al., On the control of the berkeley lower extremity exoskeleton (BLEEX),in:Proceedings of the 2005 IEEE International Conference on Robotics and Automation, IEEE, 2005, pp. 4353-4360.

[159]

R. Steger, S.H. Kim, H. Kazerooni, Control scheme and networked con-trol architecture for the berkeley lower extremity exoskeleton (BLEEX),in:Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006, ICRA 2006, IEEE, 2006, pp. 3469-3476.

[160]

C.J. Walsh, K. Pasch, H. Herr, An autonomous, underactuated exoskele-ton for load-carrying augmentation, in: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2006, pp. 1410-1415.

[161]

Y. Ding, I. Galiana, A. Asbeck, et al., Multi-joint actuation platform for lower extremity soft exosuits, in: 2014 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2014, pp. 1327-1334.

[162]

S. Hussain, P.K. Jamwal, P.V. Vliet, et al., Robot assisted ankle neuro-rehabilitation: state of the art and future challenges, Expert. Rev. Neurother. 21 (1) (2021) 111-121.

[163]

A.T. Asbeck, S.M.M. De Rossi, K.G. Holt, et al., A biologically inspired soft exosuit for walking assistance, Int. J. Robot. Res. 34 (6) (2015) 744-762.

[164]

H.T. Tran, H. Cheng, M.K. Duong, et al., Fuzzy-based impedance regulation for control of the coupled human-exoskeleton system, in: 2014 IEEE International Conference on Robotics and Biomimetics, ROBIO 2014,IEEE, 2014, pp. 986-992.

[165]

R. Huang, H. Cheng, H. Zheng, et al., Study on master-slave control strategy of lower extremity exoskeleton robot, in: Proceeding of the 11th World Congress on Intelligent Control and Automation, IEEE, 2014, pp. 985-991.

[166]

S. Yu, C. Han, I. Cho, Design considerations of a lower limb exoskeleton system to assist walking and load-carrying of infantry soldiers, Appl. Bionics Biomech. 11 (3) (2014) 119-134.

[167]

H. Kim, C. Seo, Y.J. Shin, et al., Locomotion control strategy of hy-draulic lower extremity exoskeleton robot, in: 2015 IEEE International Conference on Advanced Intelligent Mechatronics, AIM, IEEE, 2015, pp. 577-582.

[168]

J. Deng, W. Jiang, H. Gao, et al., Active power assist with equivalent force on connection for lower limb exoskeleton robots, Actuators 13 (6) (2024) 212, Multidisciplinary Digital Publishing Institute.

[169]

N. Zhou, Y. Liu, Q. Song, et al., Analysis, design and preliminary evaluation of an anthropometric self-stabilization passive exoskeleton for enhancing the ability of walking with loads, Robot. Auton. Syst. 153 (2022) 104079.

[170]

Q. Chen, S. Guo, L. Sun, et al., Inertial measurement unit-based optimiza-tion control of a soft exosuit for hip extension and flexion assistance, J. Mech. Robot. 13 (2) (2021) 021016.

[171]

Q. Chen, S. Guo, J. Wang, et al., Biomechanical and physiological evalu-ation of biologically-inspired hip assistance with belt-type soft exosuits, IEEE Trans. Neural Syst. Rehabil. Eng. 30 (2022) 2802-2814.

[172]

Q. Chen, S. Guo, D. Zhang, Force tracking control with adaptive stiffness and iterative position of hip-assistive soft exosuits, IEEE Trans. Autom. Sci. Eng. (2023).

[173]

Q. Chen, J. Wang, Q. Xiang, S. Guo, Bayesian algorithm-based force profiles optimization of hipassistive soft exosuits under variable walking speeds, IEEE Trans. Med. Robot. Bionics (2024).

[174]

H. Tang, Y. Li, J.W. Zhang, et al., Design and optimization of a novel sagittal-plane knee exoskeleton with remote-center-of-motion mechanism, Mech. Mach. Theory 194 (2024) 105570.

[175]

Y. Zhan, W. Zhang, Z. Hou, et al., Non-anthropomorphic passive load-bearing lower-limb exoskeleton with a reconfigurable mechanism based on mechanical intelligence, Mech. Mach. Theory 201 (2024) 105753.

[176]

C. Liu, H. Liang, N. Ueda, et al., Functional evaluation of a force sensor-controlled upper-limb power-assisted exoskeleton with high backdrivability, Sensors 20 (21) (2020) 6379.

[177]

C. Liu, H. Liang, Y. Murata, et al., A wearable lightweight exoskeleton with full degrees of freedom for upper-limb power assistance, Adv. Robot. 35 (7) (2021) 413-424.

[178]

M. Xiloyannis, D. Chiaradia, A. Frisoli, et al., Physiological and kinematic effects of a soft exosuit on arm movements, J. NeuroEng. Rehabil. 16 (1)(2019).

[179]

L. Hao, Z. Zhao, X. Li, et al., A safe human-robot interactive control struc-ture with human arm movement detection for an upper-limb wearable robot used during lifting tasks, Int. J. Adv. Robot. Syst. 17 (5) (2020) 1729881420937570.

[180]

H. Zhang, J. Fan, Y. Qin, et al., Active neural network control for a wear-able upper limb rehabilitation exoskeleton robot driven by pneumatic artificial muscles, IEEE Trans. Neural Syst. Rehabil. Eng. (2024).

[181]

Y.M. Zhou, C.J. Hohimer, H.T. Young, et al., A portable inflatable soft wearable robot to assist the shoulder during industrial work, Sci. Robot. 9 (91) (2024) eadi2377.

[182]

A. Ebrahimi, Stuttgart exo-jacket: An exoskeleton for industrial upper body applications, in: 2017 10th International Conference on Human System Interactions, HSI, IEEE, 2017, pp. 258-263.

[183]

I. Pacifico, A. Scano, E. Guanziroli, et al., An experimental evaluation of the proto-mate: a novel ergonomic upper-limb exoskeleton to reduce workers’ physical strain, IEEE Robot. Autom. Mag. 27 (1) (2020) 54-65.

[184]

I. Pacifico, F. Aprigliano, A. Parri, et al. Using a spring-loaded upper-limb exoskeleton in cleaning tasks: A preliminary study,in:Wearable Robotics: Challenges and Trends: Proceedings of the 5th International Symposium on Wearable Robotics, WeRob 2020, and of WearRAcon Eu-rope 2020, October (2020) 13-16, Springer International Publishing, 2022, pp. 481-485.

[185]

S. Spada, L. Ghibaudo, C. Carnazzo, et al. Passive upper limb exoskeletons: an experimental campaign with workers, in: Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018) Volume VIII: Ergonomics and Human Factors in Manufacturing, Agriculture, Build-ing and Construction, Sustainable Development and Mining 20, pringer International Publishing 2019, pp. 230-239.

[186]

H.M. Wang, D.K.L. Le, W.C. Lin, Evaluation of a passive upper-limb exoskeleton applied to assist farming activities in fruit orchards, Appl. Sci. 11 (2) (2021) 757.

[187]

K. Shi, J. Yang, Z. Hou, et al., Design and evaluation of a four-dof upper limb exoskeleton with gravity compensation, Mech. Mach. Theory 201 (2024) 105746.

[188]

S. Toyama, G. Yamamoto, Development of wearable-agri-robot mecha-nism for agricultural work, in: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2009, pp. 5801-5806.

[189]

S. Toyama, G. Yamamoto, Wearable agrirobot J. Vibroengineering 12 (3)(2010).

[190]

N. Lucchesi, S. Marcheschi, L. Borelli, et al., An approach to the design of fully actuated body extenders for material handling, in: 19th International Symposium in Robot and Human Interactive Communication, IEEE, 2010, pp. 482-487.

[191]

M. Bergamasco, F. Salsedo, S. Marcheschi, et al., A novel compact and lightweight actuator for wearable robots, in: 2010 IEEE International Conference on Robotics and Automation, IEEE, 2010, pp. 4197-4203.

[192]

S. Marcheschi, F. Salsedo, M. Fontana, et al., Body extender: Whole body exoskeleton for human power augmentation, in: 2011 IEEE International Conference on Robotics and Automation, IEEE, 2011, pp. 611-616.

[193]

M. Fontana, R. Vertechy, S. Marcheschi, et al., The body extender: A full-body exoskeleton for the transport and handling of heavy loads, IEEE Robot. Autom. Mag. 21 (4) (2014) 34-44.

[194]

Guoan Zhang, Research on Active and Passive Combined Whole-Body Exoskeleton Assisted Robot, Harbin Institute of Technology, 2018.

[195]

W. Van Dijk, T. Van de Wijdeven, M.M. Holscher, et al., Exobuddy-a non-anthropomorphic quasi-passive exoskeleton for load carrying assistance, in: 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics, Biorob, IEEE, 2018, pp. 336-341.

[196]

S. Christensen, S. Bai, S. Rafique, et al. AXO-SUIT-a modular full-body exoskeleton for physical assistance,in:Mechanism Design for Robotics: Proceedings of the 4th IFToMM Symposium on Mechanism Design for Robotics, Springer International Publishing, 2019, pp. 443-450.

[197]

S. Bai, M.R. Islam, V. Power, et al., User-centered development and performance assessment of a modular full-body exoskeleton (AXO-SUIT), Biomim. Intell. Robot. 2 (2) (2022) 100032.

[198]

S. Christensen, S. Bai, S. Rafique, et al. AXO-SUIT-a modular full-body exoskeleton for physical assistance,in:Mechanism Design for Robotics: Proceedings of the 4th IFToMM Symposium on Mechanism Design for Robotics, Springer International Publishing, 2019, pp. 443-450.

[199]

S. Christensen, S. Rafique, S. Bai, Design of a powered full-body exoskele-ton for physical assistance of elderly people, Int. J. Adv. Robot. Syst. 18 (6) (2021) 17298814211053534.

[200]

Z. Zhou, W. Chen, H. Fu, et al., Design and experimental evaluation of a non-anthropomorphic passive load-carrying exoskeleton, in: 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics, ICARM, IEEE, 2021, pp. 251-256.

[201]

Song Jiyuan, Zhu Aibin, Tu Yao, et al., Design and features of exoskele-ton assisting individual-soldier rescue, Acta Armament. 43 (09) (2022) 2037-2047.

[202]

L.M. Mooney, et al., Design and evaluation of a soft exosuit for assisting with load carriage, IEEE Trans. Robot. 30 (5) (2014) 1159-1169.

[203]

D.D. Molinaro, I. Kang, A.J. Young, Estimating human joint moments unifies exoskeleton control, reducing user effort, Sci. Robot. 9 (88) (2024) eadi8852.

[204]

D. Clode, L. Dowdall, E. da Silva, et al., Evaluating initial usability of a hand augmentation device across a large and diverse sample, Sci. Robot. 9 (90) (2024) eadk5183.

[205]

L. Gionfrida, D. Kim, D. Scaramuzza, et al., Wearable robots for the real world need vision, Sci. Robot. 9 (90) (2024) eadj8812.

[206]

M. Gherardini, V. Ianniciello, F. Masiero, et al., Restoration of grasping in an upper limb amputee using the myokinetic prosthesis with implanted magnets, Sci. Robot. 9 (94) (2024) eadp3260.

[207]

X. Liang, G. He, T. Su, et al., Finite-time observer-based variable impedance control of cable-driven continuum manipulators, IEEE Trans. Hum.-Mach. Syst. 52 (1) (2021) 26-40.

[208]

R.R. Murphy, Real-world exoskeletons are better than those in the movie Atlas, Sci. Robot. 9 (93) (2024) eadr9557.

[209]

Z. He, P. Wang, Y. Song, et al., A wearable robot for lower limb fracture reduction and rehabilitation: Design and experimental verification, Mech. Mach. Theory 203 (2024) 105806.

[210]

X. Li, Y. Hao, J. Zhang, et al., Design, modeling and experiments of a variable stiffness soft robotic glove for stroke patients with clenched fist deformity, IEEE Robot. Autom. Lett. 8 (7) (2023) 4044-4051.

[211]

H. Peng, X. Wang, D. Geng, W. Xu, A pneumatic particle-blocking variable-stiffness actuator, Sensors 23 (2023) 9817.

[212]

Long Yilin, Wang Binluan, Jin Hongzhe, Xu Weiming, Zhao Jie, Vari-able stiffness actuator and variable stiffness flexible gripper based on differential gear train, J. Mech. Eng. 59 (1) (2023) 91-102.

[213]

C. Ji, M. Kong, R. Li, Time-energy optimal trajectory planning for variable stiffness actuated robot, IEEE Access 7 (2019) 14366-14377.

[214]

H. Chang, S.J. Kim, J. Kim, Feedforward motion control with a variable stiffness actuator inspired by muscle cross-bridge kinematics, IEEE Trans. Robot. 35 (3) (2019) 747-760.

[215]

K. Sharma, A. Arora, S.K. Tripathi, Review of supercapacitors: Materials and devices, J. Energy Storage 21 (2019) 801-825.

[216]

R.A. Shveda, A. Rajappan, T.F. Yap, et al., A wearable textile-based pneumatic energy harvesting system for assistive robotics, Sci. Adv. 8(34) (2022) eabo2418.

[217]

H. Dieringa, Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review, J. Mater. Sci. 46 (2011) 289-306.

AI Summary AI Mindmap
PDF (5753KB)

1390

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/