A novel magnetoelastic torque sensor with planar spiral coil probes for humanoid robot joints

Zijian Zhang , Zitao Wang , Ming Shao , Yangyang Dong , Fenglei Ni

Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (3) : 100229 -100229.

PDF (2947KB)
Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (3) : 100229 -100229. DOI: 10.1016/j.birob.2025.100229
Research Article
research-article

A novel magnetoelastic torque sensor with planar spiral coil probes for humanoid robot joints

Author information +
History +
PDF (2947KB)

Abstract

Humanoid robot joints require real-time torque detection to provide accurate force feedback information for the control system. To meet the measurement requirements and realize the miniaturization of the sensor, a torque sensor based on the magnetoelastic effect is developed, utilizing planar spiral coils as detection probes. In this work, a planar spiral coil mutual inductance calculation model is established to solve the mutual inductance coefficient, and the mechanical structure and circuit design of the sensor are completed. Finally, a torque loading platform is built to perform calibration experiments, and the hysteresis model is improved to compensate for the hysteresis phenomenon. The calibration results indicate that the sensor shows excellent loaded nonlinearity of 3.08%F.S., unloaded nonlinearity of 2.71%F.S., loaded repeatability of 2.48%F.S., unloaded repeatability of 1.89%F.S. and hysteresis of 1.9%F.S., at a compact probe size of 13.8×9.9×1.8 mm.

Keywords

Magnetoelastic effect / Torque sensor / Planar spiral coil / Mutual inductance calculation / Hysteresis model

Cite this article

Download citation ▾
Zijian Zhang, Zitao Wang, Ming Shao, Yangyang Dong, Fenglei Ni. A novel magnetoelastic torque sensor with planar spiral coil probes for humanoid robot joints. Biomimetic Intelligence and Robotics, 2025, 5(3): 100229-100229 DOI:10.1016/j.birob.2025.100229

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zijian Zhang: Writing - review & editing, Supervision, Methodology. Zitao Wang: Writing - original draft. Ming Shao: Formal analysis. Yangyang Dong: Writing - review & editing, Supervision, Project administration. Fenglei Ni: Funding acquisition, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work is supported in part by Guangxi Science and Technology Program, China (2024AB12006), the Open Fund of Innovation Center for Control Actuators, China (ICCA18-202405)and China Huaneng Group.,Ltd. Headquarters Technology Project (HNKJ24-HF15).

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.birob.2025.100229.

References

[1]

R. Dou, S. Yu, W. Li, et al., Inverse kinematics for a 7-DOF humanoid robotic arm with joint limit and end pose coupling, Mech. Mach. Theory 169 (2022) 104637.

[2]

H. Huang, S.Q. Liu, Are consumers more attracted to restaurants featuring humanoid or non-humanoid service robots? Int. J. Hosp. Manag. 107 (2022) 103310.

[3]

Y. Li, L. Zhu, Z. Zhang, et al., Humanoid robot heads for human-robot interaction: A review, Sci. China Technol. Sci. 67 (2) (2024) 357-379.

[4]

Y. Liu, X. Chen, Z. Yu, et al., High-precision dynamic torque control of high stiffness actuator for humanoids, ISA Trans. 141 (2023) 401-413.

[5]

B. Fu, G. Cai, Design and optimization of a joint torque sensor with small crosstalk error for robots, Measurement 200 (2022) 111629.

[6]

S.C. Mahadik, V.R. Deulgaonkar, S.M. Bhosle,Robotic Joint Torque Sensors: A Review, Cham, Springer International Publishing, 2024.

[7]

L. Shi, J. Feng, Y. Zhu, et al., A review of flexible strain sensors for walking gait monitoring, Sens. Actuators A: Phys. 377 (2024) 115730.

[8]

I.J. Garshelis,Torque and power measurement in:Mechanical Variables Measurement-Solid, Fluid, and Thermal, CRC Press, 2023, 5-1-5-16.

[9]

W.J. Fleming, Automotive torque measurement: A summary of seven different methods,in:Proceedings of the 32nd IEEE Vehicular Technology Conference, IEEE, 1982.

[10]

Y.-J. Wang, P.-K. Chi, Y.-H. Lin, et al., A six-axis force and torque sen-sor consisting of compliant mechanisms and full-bridge strain gauges, Measurement 226 (2024) 114151.

[11]

M. Pu, J. Zhang, Q. Luo, et al., Theory and application of an optimal design method for capacitive six-axis force/torque sensors, Measurement 203 (2022) 112009.

[12]

S. Aiguo, F. Liyue, Multi-dimensional force sensor for haptic interaction: A review, Virtual Real. Intell. Hardw. 1 (2) (2019) 121-135.

[13]

S. Zhong, L. Chen, W. Liang, et al., Contactless torque sensors based on optical methods: A review, Opt. Lasers Eng. 173 (2024) 107832.

[14]

Z. Li, X. Li, J. Lin, et al., Design and application of multidimensional force/torque sensors in surgical robots: A review, IEEE Sens. J. 23 (12)(2023) 12441-12454.

[15]

G. Palli, S. Pirozzi, An optical torque sensor for robotic applications, Int. J. Optomechatronics 7 (4) (2013) 263-282.

[16]

S. Mirzamohamadi, M.M. Sheikhi, M.R. Karafi, et al., Novel contactless hybrid static magnetostrictive force-torque (chsmft) sensor using galfenol,J. Magn. Magn. Mater. 553 (2022) 168969.

[17]

X. Tousignant, D. Ménard, Optimization of magnetoelastic torquemeter designs, IEEE Trans. Magn. 57 (2) (2020) 1-4.

[18]

Y.-S. Zhan, C.-H. Lin, A constitutive model of coupled magneto-thermo-mechanical hysteresis behavior for giant magnetostrictive materials, Mech. Mater. 148 (2020) 103477.

[19]

J. Liu, L. Yang, J. Ma, The state-of-art and prospect of contactless torque measurement methods, in: Proceedings of the IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2019.

[20]

M. Foerster, F. Macià, Preface to special issue on magneto-elastic effects, J. Phys.: Condens. Matter. 31 (19) (2019) 190301.

[21]

D. Jiles, Introduction To Magnetism and Magnetic Materials, CRC Press, 2015.

[22]

X. Liang, C. Dong, H. Chen, et al., A review of thin-film magnetoelastic materials for magnetoelectric applications, Sensors 20 (5) (2020) 1532.

[23]

P. Marın, A. Hernando, Applications of amorphous and nanocrystalline magnetic materials, J. Magn. Magn. Mater. 215 (2000) 729-734.

[24]

R.C. O’Handley, Modern Magnetic Materials: Principles and Applications, Wiley, 2000.

[25]

F.T. Calkins, A.B. Flatau, M.J. Dapino, Overview of magnetostrictive sensor technology, J. Intell. Mater. Syst. Struct. 18 (10) (2007) 1057-1066.

[26]

D. Jiles, Theory of the magnetomechanical effect, J. Phys.. D: Appl. Phys. 28(8) (1995) 1537.

[27]

M.J. Sablik, D.C. Jiles, Modeling the effects of torsional stress on hysteretic magnetization, IEEE Trans. Magn. 35 (1) (1999) 498-504.

[28]

D.C. Jiles, L. Li, A new approach to modeling the magnetomechanical effect,J. Appl. Phys. 95 (11) (2004) 7058-7060.

[29]

X. Zhang, M. Zhao, Y. Huang, et al., Novel non-contact torque measurement using the magnetomechanical effect, Instrum. Sci. Technol. 47 (1) (2019) 107-116.

[30]

R. Szewczyk,Generalization of the model of magnetoelastic effect: 3D mechanical stress dependence of magnetic permeability tensor in soft magnetic materials, Materials 13 (18) (2020) 4070.

[31]

Z. Luo, X. Wei, Analysis of square and circular planar spiral coils in wireless power transfer system for electric vehicles, IEEE Trans. Ind. Electron. 65(1) (2017) 331-341.

[32]

I. Hussain, D.-K. Woo, Simplified mutual inductance calculation of planar spiral coil for wireless power applications, Sensors 22 (4) (2022) 1537.

[33]

Z. Zijian, S. Ming, S. Kai, et al., Mutual Inductance Calculation Between Arbitrarily Positioned Polygonal Coils. Transactions of Nanjing University of Aeronautics & Astronautics, (S): 120-6.

[34]

H. Tavakkoli, E. Abbaspour-Sani, A. Khalilzadegan, et al., Analytical study of mutual inductance of hexagonal and octagonal spiral planer coils, Sens. Actuators A: Phys. 247 (2016) 53-64.

[35]

I.-G. Lee, N. Kim, I.-K. Cho, et al., Design of a patterned soft magnetic structure to reduce magnetic flux leakage of magnetic induction wireless power transfer systems, IEEE Trans. Electromagn. Compat. 59 (6) (2017) 1856-1863.

[36]

A. Ostaszewska-Liżewska, M. Nowicki, R. Szewczyk, et al., A FEM-based optimization method for driving frequency of contactless magnetoelastic torque sensors in steel shafts, Materials 14 (17) (2021) 4996.

[37]

D.C. Jiles, D.L. Atherton, Theory of ferromagnetic hysteresis, J. Magn. Magn. Mater. 61 (1-2) (1986) 48-60.

[38]

H. Sayyaadi, M.R. Zakerzadeh, Position control of shape memory al-loy actuator based on the generalized Prandtl-Ishlinskii inverse model, Mechatronics 22 (7) (2012) 945-957.

[39]

D. An, H. Li, Y. Xu, et al., Compensation of hysteresis on piezoelectric actuators based on tripartite PI model, Micromachines 9 (2) (2018) 44.

[40]

G.-Y. Gu, L.-M. Zhu, C.-Y. Su, Modeling and compensation of asym-metric hysteresis nonlinearity for piezoceramic actuators with a mod-ified Prandtl-Ishlinskii model, IEEE Trans. Ind. Electron. 61 (3) (2013) 1583-1595.

[41]

G.-Y. Gu, M.-J. Yang, L.-M. Zhu, Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model, Rev. Sci. Instrum. 83 (6) (2012).

[42]

R. Zhang, Z. Gong, Z. Qiu, et al., Study on stress testing of ferromagnetic materials based on magnetic anisotropy, Insight, Non-Destr. Test. Cond. Monit. 64 (1) (2022) 45-49.

AI Summary AI Mindmap
PDF (2947KB)

410

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/