An improved path planning and tracking control method for planetary exploration rovers with traversable tolerance

Haojie Zhang , Feng Jiang , Qing Li

Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (2) : 100219

PDF (3698KB)
Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (2) : 100219 DOI: 10.1016/j.birob.2025.100219
Research Article

An improved path planning and tracking control method for planetary exploration rovers with traversable tolerance

Author information +
History +
PDF (3698KB)

Abstract

In order to ensure the safety and efficiency of planetary exploration rovers, path planning and tracking control of a planetary rover are expected to consider factors such as complex 3D terrain features, the motion constraints of the rover, traversability, etc. An improved path planning and tracking control method is proposed for planetary exploration rovers on rough terrain in this paper. Firstly, the kinematic model of the planetary rover is established. A 3D motion primitives library adapted to various terrains and the rover’s orientations is generated. The state expansion process and heuristic function of the A* algorithm are improved using the motion primitives and terrain features. Global path is generated by improved A*-based algorithm that satisfies the planetary rover’s kinematic constraints and the 3D terrain restrictions. Subsequently, an optional arc path set is designed based on the traversable capabilities of the planetary rover. Each arc path corresponds to a specific motion that determines the linear and angular velocities of the planetary rover. The optimal path is selected through the multi-objective evaluation function. The planetary rover is driven to accurately track the global path by sending optimal commands that corresponds to the optimal path for real-time obstacle avoidance. Finally, the path planning and tracking control method is effectively validated during a given mission through two simulation tests. The experiment results show that the improved A*-based algorithm reduces planning time by 30.05% and generates smoother paths than the classic A* algorithm. The multi-objective arc-based method improves the rover’s motion efficiency, ensuring safer and quicker mission completion along the global path.

Keywords

Planetary exploration rovers / Path planning / Motion primitives / Optional arc paths

Cite this article

Download citation ▾
Haojie Zhang, Feng Jiang, Qing Li. An improved path planning and tracking control method for planetary exploration rovers with traversable tolerance. Biomimetic Intelligence and Robotics, 2025, 5(2): 100219 DOI:10.1016/j.birob.2025.100219

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Haojie Zhang: Writing - review & editing, Conceptualization. Feng Jiang: Writing - original draft, Methodology. Qing Li: Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research was funded by the State Key Laboratory, China (KJW6142210210308) and the National Natural Science Foundation of China (61806183).

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.birob.2025.100219.

References

[1]

Y. Wang, W. Wan, S. Gou, M. Peng, Z. Liu, K. Di, L. Li, T. Yu, J. Wang, X. Cheng, Vision-based decision support for rover path planning in the Chang’e-4 mission, Remote. Sens. 12 (4) (2020) 624, http://dx.doi.org/10.3390/rs12040624.

[2]

X. Diao, W. Chi, J. Wang, Graph neural network based method for robot path planning, Biomim. Intell. Robot. 4 (1) (2024) 100147, http://dx.doi.org/10.1016/j.birob.2024.100147.

[3]

M.Q.-H. Meng, R. Song, Legged mobile robots for challenging terrains, Biomim. Intell. Robot. 2 (1) (2022) 100034, http://dx.doi.org/10.1016/j.birob.2021.100034.

[4]

P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic determi-nation of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4 (2) (1968) 100-107, http://dx.doi.org/10.1109/tssc.1968.300136.

[5]

A. Stentz, The D Algorithm for Real-Time Planning of Optimal Tra-verses, Carnegie Mellon University, the Robotics Institute, 1994, https://api.semanticscholar.org/CorpusID:14389316.

[6]

S. Dong, H. Ju, H. Xu, An improvement of D lite algorithm for planetary rover mission planning, in: 2011 IEEE International Conference on Mecha-tronics and Automation, IEEE, 2011, pp. 1810-1815, http://dx.doi.org/10.1109/ICMA.2011.5986254.

[7]

T. Lei, T. Sellers, C. Luo, D.W. Carruth, Z. Bi, Graph-based robot optimal path planning with bio-inspired algorithms, Biomim. Intell. Robot. 3 (3)(2023) 100119, http://dx.doi.org/10.1016/j.birob.2023.100119.

[8]

L. Zhang, K. Cai, Z. Sun, Z. Bing, C. Wang, L. Figueredo, S. Haddadin, A. Knoll, Motion planning for robotics: A review for sampling-based planners, Biomim. Intell. Robot. (2025) 100207, http://dx.doi.org/10.1016/j.birob.2024.100207.

[9]

R. Raja, A. Dutta, Path planning in dynamic environment for a rover using A* and potential field method, in: 2017 18th International Conference on Advanced Robotics, ICAR, IEEE, 2017, pp. 578-582, http://dx.doi.org/10.1109/icar.2017.8023669.

[10]

X. Yu, Q. Huang, P. Wang, J. Guo, Comprehensive global path planning for lunar rovers, in: 2020 3rd International Conference on Unmanned Systems, ICUS, IEEE, 2020, pp. 505-510, http://dx.doi.org/10.1109/icus50048.2020.9274967.

[11]

M. Sutoh, M. Otsuki, S. Wakabayashi, T. Hoshino, T. Hashimoto, The right path: comprehensive path planning for lunar exploration rovers, IEEE Robot. Autom. Mag. 22 (1) (2015) 22-33, http://dx.doi.org/10.1109/mra.2014.2381359.

[12]

L. Zhou, L. Yang, H. Tang, Research on path planning algorithm and its application based on terrain slope for slipping prediction in complex terrain environment, in: 2017 International Conference on Security, Pattern Analysis, and Cybernetics, SPAC, IEEE, 2017, pp. 224-227, http://dx.doi.org/10.1109/spac.2017.8304280.

[13]

J. Zhang, Y. Xia, G. Shen, A novel learning-based global path planning algorithm for planetary rovers, Neurocomputing 361 (2019) 69-76, http://dx.doi.org/10.1016/j.neucom.2019.05.075.

[14]

T. Tanaka, H. Malki, A deep learning approach to lunar rover global path planning using environmental constraints and the rover internal resource status, Sensors 24 (3) (2024) 844, http://dx.doi.org/10.3390/s24030844.

[15]

J.J. Biesiadecki, M.W. Maimone, The mars exploration rover surface mobil-ity flight software driving ambition, in: 2006 IEEE Aerospace Conference, IEEE, 2006, pp. 15-pp, http://dx.doi.org/10.1109/AERO.2006.1655723.

[16]

S. Hayati, A. Rankin, W. Kim, P. Leger, R. Castano, K. Ali, Advanced robotics technology infusion to the NASA Mars Exploration Rover (MER) project, IFAC Proc. Vol. 40 (15) (2007) 180-185, http://dx.doi.org/10.3182/20070903-3-fr-2921.00033.

[17]

J. Carsten, A. Rankin, D. Ferguson, A. Stentz, Global path planning on board the mars exploration rovers, in: 2007 IEEE Aerospace Conference, IEEE, 2007, pp. 1-11, http://dx.doi.org/10.1109/aero.2007.352683.

[18]

O. Toupet, An Overview of the Mars 2020 Perseverance Rover’s Enhanced Path-Planner, 2020, http://dx.doi.org/10.2014/53782.

[19]

X. Yan, L. Xiang, T. Bao-Yi, M. Xiao-Yan, Autonomous local obstacle avoidance path planning of lunar surface exploration rovers, Control Theory Appl. 36 (12) (2019) 2042-2046, http://dx.doi.org/10.7641/CTA.2019.90590.

[20]

S. Karaman, E. Frazzoli, Sampling-based algorithms for optimal motion planning, Int. J. Robot. Res. 30 (7) (2011) 846-894, http://dx.doi.org/10.1177/0278364911406761.

[21]

J.A. Sethian, Fast marching methods, SIAM Rev. 41 (2) (1999) 199-235, http://dx.doi.org/10.1137/s0036144598347059.

[22]

M.I. Jordan, T.M. Mitchell, Machine learning: Trends, perspectives, and prospects, Science 349 (6245) (2015) 255-260, http://dx.doi.org/10.1126/science.aaa8415.

[23]

W. Wu, X. Xie, M. Wei, N. Liu, X. Chen, P. Yan, M. Omar, L. Xu, Planetary rover path planning based on improved A* algorithm, in: Intelligent Robotics and Applications: 12th International Conference, ICIRA 2019, Shenyang, China, August 8-11, 2019, Proceedings, Part IV 12, Springer, 2019, pp. 341-353, http://dx.doi.org/10.1007/978-3-030-27538-9_29.

[24]

S. Garrido, L. Moreno, F. Martín, D. Alvarez, Fast marching subjected to a vector field-path planning method for mars rovers, Expert Syst. Appl. 78 (2017) 334-346, http://dx.doi.org/10.1016/j.eswa.2017.02.019.

[25]

X. Yu, P. Wang, Z. Zhang, Learning-based end-to-end path planning for lunar rovers with safety constraints, Sensors 21 (3) (2021) 796, http://dx.doi.org/10.3390/s21030796.

[26]

M. Ono, T.J. Fuchs, A. Steffy, M. Maimone, J. Yen, Risk-aware planetary rover operation: Autonomous terrain classification and path planning, in: 2015 IEEE Aerospace Conference, IEEE, 2015, pp. 1-10, http://dx.doi.org/10.1109/aero.2015.7119022.

[27]

B. Rothrock, R. Kennedy, C. Cunningham, J. Papon, M. Heverly, M. Ono, Spoc: Deep learning-based terrain classification for mars rover missions, in: AIAA SPACE 2016, 2016, p. 5539, http://dx.doi.org/10.2514/6.2016-5539.

[28]

J.R. Sánchez-Ibánez, C.J. Pérez-del Pulgar, M. Azkarate, L. Gerdes, A. García-Cerezo, Dynamic path planning for reconfigurable rovers using a multi-layered grid, Eng. Appl. Artif. Intell. 86 (2019) 32-42, http://dx.doi.org/10.1016/j.engappai.2019.08.011.

[29]

W. Huiting, Y. Meng, L. Yuye, H. Tao, Z. Bo, Autonomous navigation path planning algorithm for rovers in lunar south pole surface, J. Deep. Space Explor. 10 (6) (2023) 598-607, http://dx.doi.org/10.15982/j.issn.2096-9287.2023.20230084.

[30]

C.L. Bottasso, D. Leonello, B. Savini, Path planning for autonomous vehicles by trajectory smoothing using motion primitives, IEEE Trans. Control Syst. Technol. 16 (6) (2008) 1152-1168, http://dx.doi.org/10.1109/TCST.2008.917870.

[31]

R.J. Cripps, M. Hussain, S. Zhu, Smooth polynomial approximation of spiral arcs, J. Comput. Appl. Math. 233 (9) (2010) 2227-2234, http://dx.doi.org/10.1016/j.cam.2009.10.008.

[32]

W. Wong, J. Lee, Statistical Analysis of Geographic Information with ArcView GIS and ArcGIS, Wiley, 2005, https://hub.hku.hk/handle/10722/192432.

[33]

Y. Wang, M. Peng, K. Di, W. Wan, Z. Liu, Z. Yue, Y. Xing, X. Mao, B. Teng, Vision based obstacle detection using rover stereo images, Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 42 (2019) 1471-1477, http://dx.doi.org/10.5194/isprs-archives-XLII-2-W13-1471-2019.

[34]

T. Wang, Y. Wu, J. Liang, C. Han, J. Chen, Q. Zhao, Analysis and exper-imental kinematics of a skid-steering wheeled robot based on a laser scanner sensor, Sensors 15 (5) (2015) 9681-9702, http://dx.doi.org/10.3390/s150509681.

AI Summary AI Mindmap
PDF (3698KB)

576

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/