Motion planning for robotics: A review for sampling-based planners

Liding Zhang , Kuanqi Cai , Zewei Sun , Zhenshan Bing , Chaoqun Wang , Luis Figueredo , Sami Haddadin , Alois Knoll

Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (1) : 100207 -100207.

PDF (4811KB)
Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (1) : 100207 -100207. DOI: 10.1016/j.birob.2024.100207
Review
research-article

Motion planning for robotics: A review for sampling-based planners

Author information +
History +
PDF (4811KB)

Abstract

Recent advancements in robotics have transformed industries such as manufacturing, logistics, surgery, and planetary exploration. A key challenge is developing efficient motion planning algorithms that allow robots to navigate complex environments while avoiding collisions and optimizing metrics like path length, sweep area, execution time, and energy consumption. Among the available algorithms, sampling-based methods have gained the most traction in both research and industry due to their ability to handle complex environments, explore free space, and offer probabilistic completeness along with other formal guarantees. Despite their widespread application, significant challenges still remain. To advance future planning algorithms, it is essential to review the current state-of-the-art solutions and their limitations. In this context, this work aims to shed light on these challenges and assess the development and applicability of sampling-based methods. Furthermore, we aim to provide an in-depth analysis of the design and evaluation of ten of the most popular planners across various scenarios. Our findings highlight the strides made in sampling-based methods while underscoring persistent challenges. This work offers an overview of the important ongoing research in robotic motion planning.

Keywords

Robotics / Motion planning / Sampling-based algorithms

Cite this article

Download citation ▾
Liding Zhang, Kuanqi Cai, Zewei Sun, Zhenshan Bing, Chaoqun Wang, Luis Figueredo, Sami Haddadin, Alois Knoll. Motion planning for robotics: A review for sampling-based planners. Biomimetic Intelligence and Robotics, 2025, 5(1): 100207-100207 DOI:10.1016/j.birob.2024.100207

登录浏览全文

4963

注册一个新账户 忘记密码

1 CRediT authorship contribution statement

Liding Zhang: Writing - original draft. Kuanqi Cai: Writing - original draft. Zewei Sun: Writing - original draft. Zhenshan Bing: Project administration. Chaoqun Wang: Methodology. Luis Figueredo: Conceptualization. Sami Haddadin: Resources, Funding acquisition. Alois Knoll: Resources, Conceptualization.

2 Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

3 Acknowledgments

The authors acknowledge the financial support by the Bavarian State Ministry for Economic Affairs, Regional Development and Energy (StMWi) for the Lighthouse Initiative KI.FABRIK (Phase 1: Infrastructure and the research and development program under grant no. DIK0249).

References

[1]

M.R. Pedersen, L. Nalpantidis, R.S. Andersen, C. Schou, S. Bøgh, V. Krüger, O. Madsen, Robot skills for manufacturing: From concept to industrial deployment, Robot. Comput. -Integr. Manuf. 37 (2016) 282-291.

[2]

E. Matheson, R. Minto, E.G. Zampieri, M. Faccio, G. Rosati, Human-robot collaboration in manufacturing applications: A review, Robotics 8 (4)(2019) 100.

[3]

J. Arents, M. Greitans, Smart industrial robot control trends, challenges and opportunities within manufacturing, Appl. Sci. 12 (2) (2022) 937.

[4]

W. Echelmeyer, A. Kirchheim, E. Wellbrock, Robotics-logistics: Chal-lenges for automation of logistic processes, in: 2008 IEEE International Conference on Automation and Logistics, IEEE, 2008, pp. 2099-2103.

[5]

R. Lin, H. Huang, M. Li, An automated guided logistics robot for pallet transportation, Assem. Autom. 41 (1) (2021) 45-54.

[6]

R. Bernardo, J.M. Sousa, P.J. Gonçalves, Survey on robotic systems for internal logistics, J. Manuf. Syst.. 65 (2022) 339-350.

[7]

A.R. Lanfranco, A.E. Castellanos, J.P. Desai, W.C. Meyers, Robotic surgery: a current perspective, Ann. Surg. 239 (1) (2004) 14-21.

[8]

M. Diana, J. Marescaux, Robotic surgery, J. Br. Surg. 102 (2) (2015) e15-e28.

[9]

A. Sozzi, M. Bonfè, S. Farsoni, G.D. Rossi, R. Muradore, Dynamic motion planning for autonomous assistive surgical robots, Electronics 8 (9) (2019) 957.

[10]

B.H. Wilcox, Robotic vehicles for planetary exploration, Appl. Intell. 2 (1992) 181-193.

[11]

J. Oberländer, S. Klemm, G. Heppner, A. Roennau, R. Dillmann, A multi-resolution 3-D environment model for autonomous planetary exploration, in: 2014 IEEE International Conference on Automation Science and Engineering, CASE, IEEE, 2014, pp. 229-235.

[12]

K. Albee, A.C. Hernandez, O. Jia-Richards, A.T. Espinoza, Real-time mo-tion planning in unknown environments for legged robotic planetary exploration, in: 2020 IEEE Aerospace Conference, IEEE, 2020, pp. 1-9.

[13]

K. Chen, Z. Bing, Y. Wu, F. Wu, L. Zhang, S. Haddadin, A. Knoll, Real-time contact state estimation in shape control of deformable linear ob-jects under small environmental constraints, in: 2024 IEEE International Conference on Robotics and Automation, ICRA, 2024, pp. 13833-13839.

[14]

E. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959) 269-271.

[15]

F. Duchoň, A. Babinec, M. Kajan, P. Beňo, M. Florek, T. Fico, L. Jurišica, Path planning with modified a star algorithm for a mobile robot, Procedia Eng. 96 (2014) 59-69.

[16]

A. Stentz, Optimal and efficient path planning for partially-known envi-ronments, in: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, IEEE, 1994, pp. 3310-3317.

[17]

J. Tu, S.X. Yang, Genetic algorithm based path planning for a mobile robot, in: 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), vol. 1, IEEE, 2003, pp. 1221-1226.

[18]

Q. Zhu, Y. Yan, Z. Xing, Robot path planning based on artificial potential field approach with simulated annealing, in: Sixth International Confer-ence on Intelligent Systems Design and Applications, vol. 2, IEEE, 2006, pp. 622-627.

[19]

S. LaValle, Rapidly-exploring random trees: A new tool for path planning, Res. Rep. 9811 (1998).

[20]

L.E. Kavraki, P. Švestka, J.-C. Latombe, M.H. Overmars, Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Trans. Robot. Autom. 12 (4) (1996) 566-580.

[21]

H.-P. Huang, S.-Y. Chung, Dynamic visibility graph for path planning, in: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3, IEEE, 2004, pp. 2813-2818.

[22]

M. Foskey, M. Garber, M.C. Lin, D. Manocha, A Voronoi-based hybrid mo-tion planner, in: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180),, vol. 1, 2001, pp. 55-60.

[23]

W. Cheah, H.H. Khalili, S. Watson, P. Green, B. Lennox, Grid-based motion planning using advanced motions for hexapod robots, in: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, IEEE, 2018, pp. 3573-3578.

[24]

S.X. Yang, C. Luo, A neural network approach to complete coverage path planning, IEEE Trans. Syst. Man Cybern. B 34 (1) (2004) 718-724.

[25]

Y. Zhang, D.-w. Gong, J.-h. Zhang, Robot path planning in uncer-tain environment using multi-objective particle swarm optimization, Neurocomputing 103 (2013) 172-185.

[26]

P. Vadakkepat, K.C. Tan, W. Ming-Liang, Evolutionary artificial potential fields and their application in real time robot path planning, in: Proceed-ings of the 2000 Congress on Evolutionary Computation. CEC00(Cat. No. 00TH8512) vol. 1, IEEE, 2000, pp. 256-263.

[27]

O. Brock, L.E. Kavraki,Decomposition-based motion planning: A frame-work for real-time motion planning in high-dimensional configuration spaces,in:Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 2, IEEE, 2001, pp. 1469-1474.

[28]

S. Pandya, S. Hutchinson, A case-based approach to robot motion plan-ning, in: [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics, IEEE, 1992, pp. 492-497.

[29]

T. Lozano-Perez, Spatial Planning: A Configuration Space Approach, Springer, 1990.

[30]

D. Fox, W. Burgard, S. Thrun, The dynamic window approach to collision avoidance, IEEE Robot. Autom. Mag. 4 (1) (1997) 23-33.

[31]

A. Zelinsky, R.A. Jarvis, J. Byrne, S. Yuta, et al., Planning paths of complete coverage of an unstructured environment by a mobile robot,in: Proceedings of International Conference on Advanced Robotics, vol. 13, Citeseer, 1993, pp. 533-538.

[32]

M.P. Garcia, O. Montiel, O. Castillo, R. Sepulveda, P. Melin, Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation, Appl. Soft Comput. 9 (3) (2009) 1102-1110.

[33]

J.D. Gammell, T.D. Barfoot, S.S. Srinivasa, Batch informed trees (BIT*): Informed asymptotically optimal anytime search, Int. J. Robot. Res. 39 (5) (2020) 543-567, http://dx.doi.org/10.1177/0278364919890396.

[34]

M.P. Strub, J.D. Gammell, Adaptively Informed Trees (AIT*): Fast asymp-totically optimal path planning through adaptive heuristics, in: 2020 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2020, pp. 3191-3198.

[35]

B. Lindqvist, A. Patel, K. Löfgren, G. Nikolakopoulos, A tree-based next-best-trajectory method for 3-D UAV exploration, IEEE Trans. Robot. 40 (2024) 3496-3513.

[36]

R. Border, J.D. Gammell, The Surface Edge Explorer (SEE): A measurement-direct approach to next best view planning, Int. J. Robot. Res. (IJRR)(2024).

[37]

D. Hsu, R. Kindel, J.-C. Latombe, S. Rock, Randomized kinodynamic motion planning with moving obstacles, Int. J. Robot. Res. 21 (3) (2002) 233-255.

[38]

J.-C. Latombe, Motion planning: A journey of robots, molecules, digital actors, and other artifacts, Int. J. Robot. Res. 18 (11) (1999) 1119-1128.

[39]

S.R. Lindemann, S.M. LaValle, Current issues in sampling-based motion planning, in: Robotics Research. The Eleventh International Symposium: with 303 Figures, Springer, 2005, pp. 36-54.

[40]

K.I. Tsianos, I.A. Sucan, L.E. Kavraki, Sampling-based robot motion planning: Towards realistic applications, Comp. Sci. Rev. 1 (1) (2007) 2-11.

[41]

M. Elbanhawi, M. Simic, Sampling-based robot motion planning: A review, Ieee Access 2 (2014) 56-77.

[42]

I. Noreen, A. Khan, Z. Habib, Optimal path planning using RRT* based approaches: a survey and future directions, Int. J. Adv. Comput. Sci. Appl. 7 (11) (2016).

[43]

Z. Kingston, M. Moll, L.E. Kavraki, Sampling-based methods for motion planning with constraints, Annu. Rev. Control., Robot., Auton. Syst. 1 (1)(2018) 159-185.

[44]

K. Cai, C. Wang, J. Cheng, C.W. De Silva, M.Q.-H. Meng, Mobile robot path planning in dynamic environments: A survey, 2020, arXiv preprint arXiv:2006.14195.

[45]

J.R. Sanchez-Ibanez, C.J. Pérez-del Pulgar, A. García-Cerezo, Path planning for autonomous mobile robots: A review, Sensors 21 (23) (2021) 7898.

[46]

J.D. Gammell, M.P. Strub, Asymptotically optimal sampling-based motion planning methods, Annu. Rev. Control., Robot., Auton. Syst. 4 (1) (2021) 295-318.

[47]

A. Orthey, C. Chamzas, L.E. Kavraki, Sampling-based motion planning: A comparative review, Annu. Rev. Control., Robot., Auton. Syst. 7 (2023).

[48]

T. Xu, Recent advances in rapidly-exploring random tree: A review, Heliyon (2024).

[49]

S. Karaman, E. Frazzoli, Sampling-based algorithms for optimal motion planning, Int. J. Robot. Res. 30 (7) (2011) 846-894.

[50]

J.D. Gammell, T.D. Barfoot, S.S. Srinivasa, Informed sampling for asymp-totically optimal path planning, IEEE Trans. Robot. 34 (4) (2018) 966-984.

[51]

J. Ding, Y. Zhou, X. Huang, K. Song, S. Lu, L. Wang, An improved RRT* algorithm for robot path planning based on path expansion heuristic sampling, J. Comput. Sci. 67 (2023) 101937.

[52]

J. Wang, W. Chi, C. Li, C. Wang, M.Q.-H. Meng, Neural RRT*: Learning-based optimal path planning, IEEE Trans. Autom. Sci. Eng. 17 (4) (2020) 1748-1758.

[53]

J. Wang, T. Li, B. Li, M.Q.-H. Meng, GMR-RRT*: Sampling-based path planning using Gaussian mixture regression, IEEE Trans. Intell. Veh. 7(3)(2022) 789-800.

[54]

J. Nasir, F. Islam, U. Malik, et al., RRT*-SMART: A rapid convergence implementation of RRT*, Int. J. Adv. Robot. Syst. 10 (7) (2013).

[55]

B. Sakcak, L. Bascetta, G. Ferretti, M. Prandini, Sampling-based optimal kinodynamic planning with motion primitives, Auton. Robots 43 (7)(2019) 1715-1732.

[56]

L. Zhang, Z. Bing, K. Chen, L. Chen, K. Cai, Y. Zhang, F. Wu, P. Krumbholz, Z. Yuan, S. Haddadin, A. Knoll, Flexible Informed Trees (FIT*): Adaptive batch-size approach in informed sampling-based path planning,in:2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2024, pp. 3146-3152.

[57]

J.D. Gammell, S.S. Srinivasa, T.D. Barfoot, Batch Informed Trees (BIT*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs, in: 2015 IEEE International Conference on Robotics and Automation, ICRA, 2015, pp. 3067-3074.

[58]

J.D. Gammell, T.D. Barfoot, S.S. Srinivasa, Batch Informed Trees (BIT*): Informed asymptotically optimal anytime search, Int. J. Robot. Res. 39 (5)(2020) 543-567.

[59]

F. Yu, Y. Chen, Cyl-IRRT*: Homotopy optimal 3D path planning for AUVs by biasing the sampling into a cylindrical informed subset, IEEE Trans. Ind. Electron. 70 (4) (2022) 3985-3994.

[60]

Z. Huang, H. Chen, J. Pohovey, K. Driggs-Campbell, Neural informed RRT*: Learning-based path planning with point cloud state representations under admissible ellipsoidal constraints, 2024, arXiv:2309.14595, [Online] Available: https://arxiv.org/abs/2309.14595.

[61]

B. Ichter, J. Harrison, M. Pavone, Learning sampling distributions for robot motion planning, in: 2018 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2018, pp. 7087-7094.

[62]

D. Molina, K. Kumar, S. Srivastava, Learn and link: Learning critical regions for efficient planning, in: 2020 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2020, pp. 10605-10611.

[63]

C. Xiong, H. Zhou, D. Lu, Z. Zeng, L. Lian, C. Yu, Rapidly-exploring adaptive sampling tree*: a sample-based path-planning algorithm for unmanned marine vehicles information gathering in variable ocean environments, Sensors 20 (9) (2020) 2515.

[64]

K. Cai, C. Wang, S. Song, H. Chen, M.Q.-H. Meng, Risk-aware path planning under uncertainty in dynamic environments, J. Intell. Robot. Syst. 101 (2021) 1-15.

[65]

K. Cai, W. Chen, C. Wang, H. Zhang, M.Q.-H. Meng, Curiosity-based robot navigation under uncertainty in crowded environments, IEEE Robot. Autom. Lett. 8 (2) (2022) 800-807.

[66]

H.-T. Tak, C.-G. Park, S.-C. Lee,Improvement of RRT*-smart algorithm for optimal path planning and application of the algorithm in 2 & 3-dimension environment, J. Korean Soc. Aviat. Aeronaut. 27 (2) (2019) 1-8.

[67]

H. Suwoyo, A. Adriansyah, J. Andika, A. Ubaidillah, M.F. Zakaria, An integrated RRT* SMART-A* algorithm for solving the global path planning problem in a static environment, IIUM Eng. J. 24 (1) (2023) 269-284.

[68]

A. Boeuf, J. Cortés, R. Alami, T. Siméon, Enhancing sampling-based kino-dynamic motion planning for quadrotors, in: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, IEEE, 2015, pp. 2447-2452.

[69]

C.K. Verginis, D.V. Dimarogonas, L.E. Kavraki, Kdf: Kinodynamic motion planning via geometric sampling-based algorithms and funnel control, IEEE Trans. Robot. 39 (2) (2022) 978-997.

[70]

S.M. LaValle, Planning Algorithms, Cambridge University Press, 2006.

[71]

S.M. LaValle, J.J. Kuffner Jr., Randomized kinodynamic planning, Int. J. Robot. Res. 20 (5) (2001) 378-400.

[72]

A. Atramentov, S.M. LaValle,Efficient nearest neighbor searching for motion planning, in:Proceedings 2002 IEEE International Conference on Robotics and Automation, vol. 1, IEEE, 2002, pp. 632-637.

[73]

J. Pan, S. Chitta, D. Manocha, Faster sample-based motion planning using instance-based learning, in: Algorithmic Foundations of Robotics X: Proceedings of the Tenth Workshop on the Algorithmic Foundations of Robotics, Springer, 2013, pp. 381-396.

[74]

L. Zhang, Z. Bing, Y. Zhang, K. Cai, L. Chen, F. Wu, S. Haddadin, A. Knoll, Elliptical K-nearest neighbors: Path optimization via Coulomb’s law and invalid vertices in C-space obstacles,in: 2024 IEEE/RSJ Inter-national Conference on Intelligent Robots and Systems (IROS), 2024, pp. 12032-12039.

[75]

M. Kleinbort, O. Salzman, D. Halperin, Collision detection or nearest-neighbor search? On the computational bottleneck in sampling-based motion planning, in: Algorithmic Foundations of Robotics XII: Proceedings of the Twelfth Workshop on the Algorithmic Foundations of Robotics, Springer, 2020, pp. 624-639.

[76]

M. Kleinbort, E. Granados, K. Solovey, R. Bonalli, K.E. Bekris, D. Halperin, Refined analysis of asymptotically-optimal kinodynamic planning in the state-cost space, in: 2020 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2020, pp. 6344-6350.

[77]

L. Janson, E. Schmerling, A. Clark, M. Pavone, Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions, Int. J. Robot. Res. 34 (7) (2015) 883-921.

[78]

L. Janson, B. Ichter, M. Pavone, Deterministic sampling-based motion planning: Optimality, complexity, and performance, Int. J. Robot. Res. 37(1) (2018) 46-61.

[79]

M. Tsao, K. Solovey, M. Pavone, Sample complexity of probabilistic roadmaps via ε-nets, in: 2020 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2020, pp. 2196-2202.

[80]

C. Wang, M.Q.-H. Meng, Variant step size RRT: An efficient path planner for UAV in complex environments, in: 2016 IEEE International Conference on Real-Time Computing and Robotics, RCAR, IEEE, 2016, pp. 555-560.

[81]

C. Wang, L. Meng, S. She, I.M. Mitchell, T. Li, F. Tung, W. Wan, M.Q.-H. Meng, C.W. de Silva, Autonomous mobile robot navigation in uneven and unstructured indoor environments, in: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, IEEE, 2017, pp. 109-116.

[82]

Y. Zhang, R. Wang, C. Song, J. Xu, An improved dynamic step size RRT algorithm in complex environments, in: 2021 33rd Chinese Control and Decision Conference, CCDC, IEEE, 2021, pp. 3835-3840.

[83]

J. Yang, J. Tian, T. Chao, Variable step size strategy for RRT* algo-rithm,in: International Conference on Signal and Information Processing, Networking and Computers, Springer, 2023, pp. 12-19.

[84]

H. Shen, W.-F. Xie, J. Tang, T. Zhou, Adaptive manipulability-based path planning strategy for industrial robot manipulators, IEEE/ASME Trans. Mechatronics 28 (3) (2023) 1742-1753.

[85]

Q. Li, H. Zhao, M. Zhang, Z. Sun,A path planning algorithm for mobile robots based on DGABI-RRT, in:Intelligent Robotics and Applications: 14th International Conference, ICIRA 2021, Yantai, China, October 22-25, 2021, Proceedings, Part IV 14, Springer, 2021, pp. 554-564.

[86]

J. Kuffner, S. LaValle,RRT-connect: An efficient approach to single-query path planning,in:Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 2, 2000, pp. 995-1001.

[87]

B. Akgun, M. Stilman, Sampling heuristics for optimal motion planning in high dimensions, in: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2011, pp. 2640-2645.

[88]

M. Jordan, A. Perez, Optimal Bidirectional Rapidly-Exploring Ran-dom Trees, MIT-CSAIL-TR-2013-021, Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA, 2013.

[89]

A.H. Qureshi, Y. Ayaz, Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments, Robot. Auton. Syst. 68 (2015) 1-11.

[90]

Z. Tahir, A.H. Qureshi, Y. Ayaz, R. Nawaz, Potentially guided bidirectional-ized RRT* for fast optimal path planning in cluttered environments, Robot. Auton. Syst. 108 (2018) 13-27.

[91]

F. Burget, M. Bennewitz, W. Burgard, BI 2 RRT*: An efficient sampling-based path planning framework for task-constrained mobile manipula-tion, in: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, IEEE, 2016, pp. 3714-3721.

[92]

D. Yi, M.A. Goodrich, K.D. Seppi, Homotopy-aware RRT*: Toward human-robot topological path-planning,in:Proceedings of the 2016 11th ACM/IEEE International Conference on Human-Robot Interaction, HRI, IEEE, 2016.

[93]

Z. Lin, Y. Li, J. Xiang, G. Ling, F. Suo, Bidirectional homotopy-guided RRT for path planning, in: 2020 16th International Conference on Control, Automation, Robotics and Vision, ICARCV, IEEE, 2020, pp. 333-338.

[94]

J. Wang, W. Chi, C. Li, M.Q.-H. Meng, Efficient robot motion planning using bidirectional-unidirectional RRT extend function, IEEE Trans. Autom. Sci. Eng. 19 (3) (2021) 1859-1868.

[95]

H. Liu, X. Zhang, J. Wen, R. Wang, X. Chen, Goal-biased bidirectional RRT based on curve-smoothing, IFAC-PapersOnLine 52 (24) (2019) 255-260.

[96]

P. Xin, X. Wang, X. Liu, Y. Wang, Z. Zhai, X. Ma, Improved bidirectional RRT* algorithm for robot path planning, Sensors 23 (2) (2023) 1041.

[97]

S.M. LaValle, J.J. Kuffner, Rapidly-exploring random trees: Progress and prospects: Steven M. Lavalle, Iowa State University, A James J. Kuffner, Jr., University of Tokyo, Tokyo, Japan, in: Algorithmic and computational robotics, AK Peters/CRC Press, 2001, pp. 303-307.

[98]

R. Bohlin, L. Kavraki,Path planning using lazy PRM, in:Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 1, 2000, pp. 521-528.

[99]

C.L. Nielsen, L.E. Kavraki,A two level fuzzy PRM for manipulation planning, in:Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000)(Cat. No.00CH37113), vol. 3, IEEE, 2000, pp. 1716-1721.

[100]

K. Hauser, Lazy collision checking in asymptotically-optimal motion plan-ning, in: 2015 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2015, pp. 2951-2957.

[101]

D. Kim, Y. Kwon, S.-e. Yoon, Adaptive lazy collision checking for optimal sampling-based motion planning, in: 2018 15th International Conference on Ubiquitous Robots, UR, IEEE, 2018, pp. 320-327.

[102]

J. Chase Kew, B. Ichter, M. Bandari, T.-W.E. Lee, A. Faust, Neural colli-sion clearance estimator for batched motion planning, in: International Workshop on the Algorithmic Foundations of Robotics, Springer, 2020, pp. 73-89.

[103]

L. Janson, E. Schmerling, A. Clark, M. Pavone, Fast marching tree: a fast marching sampling-based method for optimal motion planning in many dimensions, 2015, arXiv:1306.3532, [Online] Available: https://arxiv.org/abs/1306.3532.

[104]

A.H. Qureshi, Y. Ayaz, Potential functions based sampling heuristic for optimal path planning, Auton. Robots 40 (2016) 1079-1093.

[105]

I.-B. Jeong, S.-J. Lee, J.-H. Kim, Quick-RRT*: Triangular inequality-based implementation of RRT* with improved initial solution and convergence rate, Expert Syst. Appl. 123 (2019) 82-90.

[106]

Y. Li, W. Wei, Y. Gao, D. Wang, Z. Fan, PQ-RRT*: An improved path planning algorithm for mobile robots, Expert Syst. Appl. 152 (2020) 113425.

[107]

B. Liao, F. Wan, Y. Hua, R. Ma, S. Zhu, X. Qing, F-RRT*: An improved path planning algorithm with improved initial solution and convergence rate, Expert Syst. Appl. 184 (2021) 115457.

[108]

Q. Li, J. Wang, H. Li, B. Wang, C. Feng, Fast-RRT*: An improved motion planner for mobile robot in two-dimensional space, IEEJ Trans. Electr. Electron. Eng. 17 (2) (2022) 200-208.

[109]

D. Armstrong, A. Jonasson, AM-RRT*: Informed sampling-based planning with assisting metric, in: 2021 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2021, pp. 10093-10099.

[110]

H. Wanga, X. Liu, S. Song, B. Li, X. Lu, J. Nie, X. Zhao,Improved RRT path planning algorithm based on growth evaluation, in:International Conference on Intelligent Equipment and Special Robots, vol. 12127, ICIESR 2021, SPIE, 2021, pp. 521-527.

[111]

M. Rickert, O. Brock, A. Knoll, Balancing exploration and exploitation in motion planning, in: 2008 IEEE International Conference on Robotics and Automation, IEEE, 2008, pp. 2812-2817.

[112]

C. Urmson, R. Simmons,Approaches for heuristically biasing RRT growth, in:Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No.03CH37453), vol. 2, IEEE, 2003, pp. 1178-1183.

[113]

M. Penrose, Random Geometric Graphs, vol. 5, OUP Oxford, 2003.

[114]

S. Koenig, M. Likhachev, D. Furcy, Lifelong planning A*, Artificial Intelligence 155 (1-2) (2004) 93-146.

[115]

M.P. Strub, J.D. Gammell, Advanced BIT*(ABIT*): Sampling-based planning with advanced graph-search techniques, in: 2020 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2020, pp. 130-136.

[116]

L. Chen, L. Yu, S. Libin, Z. Jiwen, Greedy BIT*(GBIT*): greedy search policy for sampling-based optimal planning with a faster initial solution and convergence, in: 2021 International Conference on Computer, Control and Robotics, ICCCR, IEEE, 2021, pp. 30-36.

[117]

M.P. Strub, J.D. Gammell, Adaptively Informed Trees (AIT*) and Effort Informed Trees (EIT*): Asymmetric bidirectional sampling-based path planning, Int. J. Robot. Res. 41 (4) (2022) 390-417.

[118]

V.N. Hartmann, M.P. Strub, M. Toussaint, J.D. Gammell, Effort Informed Roadmaps (EIRM*): Efficient asymptotically optimal multiquery planning by actively reusing validation effort,in: The International Symposium of Robotics Research, Springer, 2022, pp. 555-571.

[119]

C. Li, H. Ma, P. Xu, J. Wang, M.Q.-H. Meng, BiAIT*: Symmetrical bidirec-tional optimal path planning with adaptive heuristic, IEEE Trans. Autom. Sci. Eng. (2023) 1-13.

[120]

O. Arslan, P. Tsiotras, Use of relaxation methods in sampling-based algorithms for optimal motion planning, in: 2013 IEEE International Conference on Robotics and Automation, IEEE, 2013, pp. 2421-2428.

[121]

O. Arslan, P. Tsiotras, Dynamic programming guided exploration for sampling-based motion planning algorithms, in: 2015 IEEE International Conference on Robotics and Automation, ICRA, Seattle, WA, USA, 2015, pp. 4819-4826.

[122]

M. Otte, E. Frazzoli, RRTX: Asymptotically optimal single-query sampling-based motion planning with quick replanning, Int. J. Robot. Res. 35 (7)(2016) 797-822.

[123]

K. Naderi, J. Rajamäki, P. Hämäläinen, RT-RRT* a real-time path planning algorithm based on RRT,in: Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games, 2015, pp. 113-118.

[124]

J.-G. Kang, D.-W. Lim, Y.-S. Choi, W.-J. Jang, J.-W. Jung, Improved RRT-connect algorithm based on triangular inequality for robot path planning, Sensors 21 (2) (2021) 333.

[125]

J.-G. Kang, J.-W. Jung, Post triangular rewiring method for shorter RRT robot path planning, 2021, arXiv preprint arXiv:2107.05344.

[126]

J. Kamat, J. Ortiz-Haro, M. Toussaint, F.T. Pokorny, A. Orthey, Bitkomo: Combining sampling and optimization for fast convergence in optimal motion planning, in: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, IEEE, 2022, pp. 4492-4497.

[127]

S. Choudhury, J.D. Gammell, T.D. Barfoot, S.S. Srinivasa, S. Scherer, Region-ally Accelerated Batch Informed Trees (RABIT*): A framework to integrate local information into optimal path planning, in: 2016 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2016, pp. 4207-4214.

[128]

M. Toussaint, Newton methods for k-order markov constrained motion problems, 2014, arXiv preprint arXiv:1407.0414.

[129]

N. Ratliff, M. Zucker, J.A. Bagnell, S. Srinivasa, CHOMP: Gradient optimiza-tion techniques for efficient motion planning, in: 2009 IEEE International Conference on Robotics and Automation, IEEE, 2009, pp. 489-494.

[130]

M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, S. Schaal, STOMP: Stochastic trajectory optimization for motion planning, in: 2011 IEEE International Conference on Robotics and Automation, IEEE, 2011, pp. 4569-4574.

[131]

J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg, P. Abbeel, Motion planning with sequential convex optimization and convex collision checking, Int. J. Robot. Res. 33 (9)(2014) 1251-1270.

[132]

A.A. Neto, D.G. Macharet, M.F. Campos, Feasible RRT-based path plan-ning using seventh order Bézier curves, in: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2010, pp. 1445-1450.

[133]

J. Li, C. Yang, AUV path planning based on improved RRT and Bezier curve optimization, in: 2020 IEEE International Conference on Mechatronics and Automation, ICMA, IEEE, 2020, pp. 1359-1364.

[134]

Z. Duraklı, V. Nabiyev, A new approach based on Bezier curves to solve path planning problems for mobile robots, J. Comput. Sci. 58 (2022) 101540.

[135]

Y. Sun, C. Zhang, P. Sun, C. Liu, Safe and smooth motion planning for Mecanum-Wheeled robot using improved RRT and cubic spline, Arab. J. Sci. Eng. 45 (4) (2020) 3075-3090.

[136]

X. Ma, R. Gong, Y. Tan, H. Mei, C. Li, Path planning of mobile robot based on improved PRM based on cubic spline, Wirel. Commun. Mob. Comput. 2022 (1) (2022) 1632698.

[137]

C.-H. Wei, J.-S. Liu, Hybridizing RRT and variable-length genetic algorithm for smooth path generation, in: 2011 IEEE International Conference on Robotics and Biomimetics, IEEE, 2011, pp. 626-632.

[138]

R. Mashayekhi, M.Y.I. Idris, M.H. Anisi, I. Ahmedy, Hybrid RRT: A semi-dual-tree RRT-based motion planner, IEEE Access 8 (2020) 18658-18668.

[139]

S. Al-Ansarry, S. Al-Darraji, Hybrid RRT-A*: An improved path planning method for an autonomous mobile robots, Iraqi J. Electr. Electron. Eng. 17 (1) (2021).

[140]

F. Kiani, A. Seyyedabbasi, R. Aliyev, M.U. Gulle, H. Basyildiz, M.A. Shah, Adapted-RRT: novel hybrid method to solve three-dimensional path planning problem using sampling and metaheuristic-based algorithms, Neural Comput. Appl. 33 (22) (2021) 15569-15599.

[141]

M.A.R. Pohan, J. Utama, Efficient sampling-based for mobile robot path planning in a dynamic environment based on the rapidly-exploring random tree and a rule-template sets, Int. J. Eng. 36 (4) (2023) 797-806.

[142]

L. Cao, L. Wang, Y. Liu, S. Yan, 3D trajectory planning based on the rapidly-exploring random tree-connect and artificial potential fields method for unmanned aerial vehicles, Int. J. Adv. Robot. Syst. 19 (5)(2022) 17298806221118867.

[143]

O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, Int. J. Robot. Res. 5 (1) (1986) 90-98.

[144]

Z. Wang, K. Wang, S. An, Cubic B-spline interpolation and realization, in: Information Computing and Applications: Second International Confer-ence, ICICA 2011, Qinhuangdao, China, October 28-31, 2011. Proceedings, Part I 2, Springer, 2011, pp. 82-89.

[145]

Z. Bing, D. Lerch, K. Huang, A. Knoll, Meta-reinforcement learning in non-stationary and dynamic environments, IEEE Trans. Pattern Anal. Mach. Intell. 45 (3) (2023) 3476-3491.

[146]

X. Zhang, T. Zhu, L. Du, Y. Hu, H. Liu, Local path planning of autonomous vehicle based on an improved heuristic bi-RRT algorithm in dynamic obstacle avoidance environment, Sensors 22 (20) (2022) 7968.

[147]

Q. Zou, X. Du, Y. Liu, H. Chen, Y. Wang, J. Yu, Dynamic path planning and motion control of microrobotic swarms for mobile target tracking, IEEE Trans. Autom. Sci. Eng. 20 (4) (2023) 2454-2468.

[148]

R. Seif, M.A. Oskoei, Mobile robot path planning by RRT* in dynamic environments, Int. J. Intell. Syst. Appl. 7 (5) (2015) 24.

[149]

D. Connell, H.M. La, Dynamic path planning and replanning for mobile robots using RRT*, in: 2017 IEEE International Conference on Systems, Man, and Cybernetics, SMC, IEEE, 2017, pp. 1429-1434.

[150]

J. Qi, H. Yang, H. Sun, MOD-RRT*: A sampling-based algorithm for robot path planning in dynamic environment, IEEE Trans. Ind. Electron. 68 (8)(2021) 7244-7251.

[151]

P. Zhao, Y. Chang, W. Wu, H. Luo, Z. Zhou, Y. Qiao, Y. Li, C. Zhao, Z. Huang, B. Liu, et al., Dynamic RRT: fast feasible path planning in randomly distributed obstacle environments, J. Intell. Robot. Syst. 107 (4) (2023) 48.

[152]

O. Adiyatov, H.A. Varol, A novel RRT*-based algorithm for motion planning in dynamic environments, in: 2017 IEEE International Conference on Mechatronics and Automation, ICMA, IEEE, 2017, pp. 1416-1421.

[153]

K. Wei, B. Ren, A method on dynamic path planning for robotic manipula-tor autonomous obstacle avoidance based on an improved RRT algorithm, Sensors 18 (2) (2018) 571.

[154]

K. Cai, C. Wang, C. Li, S. Song, M.Q.-H. Meng, Adaptive sampling for human-aware path planning in dynamic environments, in: 2019 IEEE International Conference on Robotics and Biomimetics, ROBIO, IEEE, 2019, pp. 1987-1994.

[155]

C. Yuan, G. Liu, W. Zhang, X. Pan, An efficient RRT cache method in dynamic environments for path planning, Robot. Auton. Syst. 131 (2020) 103595.

[156]

W. Chi, M.Q.-H. Meng, Risk-RRT*: A robot motion planning algorithm for the human robot coexisting environment, in: 2017 18th International Conference on Advanced Robotics, ICAR, IEEE, 2017, pp. 583-588.

[157]

W. Chi, C. Wang, J. Wang, M.Q.-H. Meng, Risk-DTRRT-based optimal motion planning algorithm for mobile robots, IEEE Trans. Autom. Sci. Eng. 16 (3) (2018) 1271-1288.

[158]

K. Cai, W. Chen, D. Dugas, R. Siegwart, J.J. Chung, Sampling-based path planning in highly dynamic and crowded pedestrian flow, IEEE Trans. Intell. Transp. Syst. (2023).

[159]

K. Cai, W. Chen, C. Wang, S. Song, M.Q.-H. Meng, Human-aware path planning with improved virtual doppler method in highly dynamic environments, IEEE Trans. Autom. Sci. Eng. 20 (2) (2022) 1304-1321.

[160]

Y. Tian, L. Yan, G.-Y. Park, S. Yang, Y.-S. Kim, S.-R. Lee, C.-Y. Lee,Application of RRT-based local path planning algorithm in unknown environment, in:2007 International Symposium on Computational Intelligence in Robotics and Automation, 2007, pp. 456-460.

[161]

L. Chang-an, C. Jin-gang, L. Guo-dong, L. Chun-yang, Mobile robot path planning based on an improved rapidly-exploring random tree in unknown environment, in: 2008 IEEE International Conference on Automation and Logistics, IEEE, 2008, pp. 2375-2379.

[162]

J. Li, C. Li, T. Chen, Y. Zhang, Improved RRT algorithm for AUV target search in unknown 3D environment, J. Mar. Sci. Eng. 10 (6) (2022) 826.

[163]

B. Lindqvist, A. Patel, K. Löfgren, G. Nikolakopoulos, A tree-based next-best-trajectory method for 3D UAV exploration, IEEE Trans. Robot.(2024).

[164]

R. Pepy, A. Lambert, Safe path planning in an uncertain-configuration space using RRT, in: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2006, pp. 5376-5381.

[165]

Y. Huang, K. Gupta, RRT-SLAM for motion planning with motion and map uncertainty for robot exploration, in: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2008, pp. 1077-1082.

[166]

B.D. Luders, J.P. How, An optimizing sampling-based motion planner with guaranteed robustness to bounded uncertainty, in: 2014 American Control Conference, IEEE, 2014, pp. 771-777.

[167]

T. Summers, Distributionally robust sampling-based motion planning un-der uncertainty, in: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, IEEE, 2018, pp. 6518-6523.

[168]

B. Englot, T. Shan, S.D. Bopardikar, A. Speranzon, Sampling-based min-max uncertainty path planning, in: 2016 IEEE 55th Conference on Decision and Control, CDC, IEEE, 2016, pp. 6863-6870.

[169]

H. Banzhaf, L. Palmieri, D. Nienhüser, T. Schamm, S. Knoop, J.M. Zöllner, Hybrid curvature steer: A novel extend function for sampling-based nonholonomic motion planning in tight environments, in: 2017 IEEE 20th International Conference on Intelligent Transportation Systems, ITSC, IEEE, 2017, pp. 1-8.

[170]

J. Peng, Y. Chen, Y. Duan, Y. Zhang, J. Ji, Y. Zhang, Towards an online RRT-based path planning algorithm for ackermann-steering vehicles, in: 2021 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2021, pp. 7407-7413.

[171]

R. Reyes, I. Becerra, R. Murrieta-Cid, S. Hutchinson, Visual-RRT: Integrating IBVS as a steering method in an RRT planner, Robot. Auton. Syst. 169 (2023) 104525.

[172]

Y. Gan, B. Zhang, C. Ke, X. Zhu, W. He, T. Ihara, Research on robot motion planning based on RRT algorithm with nonholonomic constraints, Neural Process. Lett. 53 (2021) 3011-3029.

[173]

Y. Dong, E. Camci, E. Kayacan, Faster RRT-based nonholonomic path planning in 2D building environments using skeleton-constrained path biasing, J. Intell. Robot. Syst. 89 (2018) 387-401.

[174]

Y. Chen, M. Liu, L. Wang, RRT* combined with gvo for real-time non-holonomic robot navigation in dynamic environment, in: 2018 IEEE International Conference on Real-Time Computing and Robotics, RCAR, IEEE, 2018, pp. 479-484.

[175]

J.J. Park, B. Kuipers, Feedback motion planning via non-holonomic RRT* for mobile robots, in: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, IEEE, 2015, pp. 4035-4040.

[176]

Y. Zhang, D. Gong, S-BRRT*: A spline-based bidirectional RRT with strategies under nonholonomic constraint, in: 2021 33rd Chinese Control and Decision Conference, CCDC, IEEE, 2021, pp. 1753-1758.

[177]

K. Yang, S. Sukkarieh, Real-time continuous curvature path planning of UAVs in cluttered environments, in: 2008 5th International Symposium on Mechatronics and Its Applications, IEEE, 2008, pp. 1-6.

[178]

D.J. Webb, J.v.d. Berg, Kinodynamic RRT*: Optimal motion planning for systems with linear differential constraints, 2012, arXiv preprint arXiv: 1205.5088.

[179]

Y. Li, R. Cui, Z. Li, D. Xu, Neural network approximation based near-optimal motion planning with kinodynamic constraints using RRT, IEEE Trans. Ind. Electron. 65 (11) (2018) 8718-8729.

[180]

H.-T.L. Chiang, J. Hsu, M. Fiser, L. Tapia, A. Faust, RL-RRT: Kinodynamic motion planning via learning reachability estimators from RL policies, IEEE Robot. Autom. Lett. 4 (4) (2019) 4298-4305.

[181]

M. Yavari, K. Gupta, M. Mehrandezh, Lazy steering RRT*: An optimal constrained kinodynamic neural network based planner with no in-exploration steering, in: 2019 19th International Conference on Advanced Robotics, ICAR, IEEE, 2019, pp. 400-407.

[182]

D. Zheng, P. Tsiotras, Accelerating kinodynamic RRT* through dimension-ality reduction, in: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, IEEE, 2021, pp. 3674-3680.

[183]

D. Berenson, S.S. Srinivasa, D. Ferguson, J.J. Kuffner, Manipulation planning on constraint manifolds, in: 2009 IEEE International Conference on Robotics and Automation, IEEE, 2009, pp. 625-632.

[184]

C. Suh, T.T. Um, B. Kim, H. Noh, M. Kim, F.C. Park, Tangent space RRT: A randomized planning algorithm on constraint manifolds, in: 2011 IEEE International Conference on Robotics and Automation, IEEE, 2011, pp. 4968-4973.

[185]

L. Jaillet, J.M. Porta, Path planning under kinematic constraints by rapidly exploring manifolds, IEEE Trans. Robot. 29 (1) (2012) 105-117.

[186]

L. Jaillet, J.M. Porta, Efficient asymptotically-optimal path planning on manifolds, Robot. Auton. Syst. 61 (8) (2013) 797-807.

[187]

L. Jaillet, J.M. Porta, Path planning with loop closure constraints us-ing an atlas-based RRT, in: Robotics Research: The 15th International Symposium ISRR, Springer, 2017, pp. 345-362.

[188]

B. Kim, T.T. Um, C. Suh, F.C. Park, Tangent bundle RRT: A random-ized algorithm for constrained motion planning, Robotica 34 (1) (2016) 202-225.

[189]

L. Han, L. Rudolph, J. Blumenthal, I. Valodzin, Convexly stratified defor-mation spaces and efficient path planning for planar closed chains with revolute joints, Int. J. Robot. Res. 27 (11-12) (2008) 1189-1212.

[190]

T.A. McMahon, Sampling Based Motion Planning with Reachable Volumes (Ph.D. thesis), 2016.

[191]

I.A. Şucan, S. Chitta, Motion planning with constraints using configuration space approximations, in: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2012, pp. 1904-1910.

[192]

F. Burget, A. Hornung, M. Bennewitz, Whole-body motion planning for manipulation of articulated objects, in: 2013 IEEE International Conference on Robotics and Automation, IEEE, 2013, pp. 1656-1662.

[193]

Z. Bing, A. Rohregger, F. Walter, Y. Huang, P. Lucas, F.O. Morin, K. Huang, A. Knoll, Lateral flexion of a compliant spine improves motor performance in a bioinspired mouse robot, Science Robotics 8 (85) (2023).

[194]

K. Cai, R. Laha, Y. Gong, L. Chen, L. Zhang, L.F. Figueredo, S. Haddadin, Demonstration to adaptation: A user-guided framework for sequential and real-time planning,in:2024 IEEE/RSJ International Conference on Intellient Robots and Systems, IROS, 2024, pp. 9871-9878.

[195]

B. Cain, M. Kalaitzakis, N. Vitzilaios, MK-RRT*: Multi-robot kinodynamic RRT trajectory planning, in: 2021 International Conference on Unmanned Aircraft Systems, ICUAS, IEEE, 2021, pp. 868-876.

[196]

J. Hvězda, M. Kulich, L. Přeučil, Improved discrete RRT for coordinated multi-robot planning, 2019, arXiv preprint arXiv:1901.07363.

[197]

L. Zhang, Z. Lin, J. Wang, B. He, Rapidly-exploring random trees multi-robot map exploration under optimization framework, Robot. Auton. Syst. 131 (2020) 103565.

[198]

A. Adler, M. De Berg, D. Halperin, K. Solovey, Efficient multi-robot motion planning for unlabeled discs in simple polygons, in: Algorithmic Founda-tions of Robotics XI: Selected Contributions of the Eleventh International Workshop on the Algorithmic Foundations of Robotics, Springer, 2015, pp. 1-17.

[199]

K. Solovey, O. Salzman, D. Halperin, Finding a needle in an expo-nential haystack: Discrete RRT for exploration of implicit roadmaps in multi-robot motion planning, Int. J. Robot. Res. 35 (5) (2016) 501-513.

[200]

R. Shome, K. Solovey, A. Dobson, D. Halperin, K.E. Bekris, drrt*: Scal-able and informed asymptotically-optimal multi-robot motion planning, Auton. Robots 44 (3) (2020) 443-467.

[201]

J. Sim, J. Kim, C. Nam, Safe interval RRT* for scalable multi-robot path planning in continuous space, 2024, arXiv preprint arXiv:2404.01752.

[202]

L. Zhou, J. Ding, X. Fan, An adaptive RRT algorithm based on narrow pas-sage recognition for assembly path planning, in: 2023 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM, IEEE, 2023, pp. 0203-0208.

[203]

A. Belaid, B. Mendil, A. Djenadi, Narrow passage RRT*: a new variant of RRT, Int. J. Comput. Vis. Robot. 12 (1) (2022) 85-100.

[204]

Q. Chai, Y. Wang, RJ-RRT: improved RRT for path planning in narrow passages, Appl. Sci. 12 (23) (2022) 12033.

[205]

X. Shu, F. Ni, Z. Zhou, Y. Liu, H. Liu, T. Zou, Locally guided multiple Bi-RRT* for fast path planning in narrow passages, in: 2019 IEEE Inter-national Conference on Robotics and Biomimetics, ROBIO, IEEE, 2019, pp. 2085-2091.

[206]

J. Szkandera, I. Kolingerová, M. Maňák,Narrow passage problem solu-tion for motion planning, in:Computational Science-ICCS 2020: 20th International Conference, Amsterdam, the Netherlands, June 3-5, 2020, Proceedings, Part I 20, Springer, 2020, pp. 459-470.

[207]

W. Wang, L. Zuo, X. Xu, A learning-based multi-RRT approach for robot path planning in narrow passages, J. Intell. Robot. Syst. 90 (2018) 81-100.

[208]

F. Islam, J. Nasir, U. Malik, Y. Ayaz, O. Hasan, RRT*-smart: Rapid conver-gence implementation of RRT* towards optimal solution, in: 2012 IEEE International Conference on Mechatronics and Automation, IEEE, 2012, pp. 1651-1656.

[209]

L. Jaillet, A. Yershova, S. La Valle, T. Simeon,Adaptive tuning of the sam-pling domain for dynamic-domain RRTs, in:2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp. 2851-2856.

[210]

D. Ferguson, A. Stentz, Anytime RRTs, in: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2006, pp. 5369-5375.

[211]

L. Jaillet, J. Cortes, T. Simeon,Transition-based RRT for path planning in continuous cost spaces, in:2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 2145-2150.

[212]

T.T. Um, B. Kim, C. Suh, F.C. Park, Tangent space RRT with lazy projection: An efficient planning algorithm for constrained motions,in:Advances in Robot Kinematics: Motion in Man and Machine: Motion in Man and Machine, Springer, 2010, pp. 251-260.

[213]

R. Kang, H. Liu, Z. Wang, Fast convergence RRT for asymptotically-optimal motion planning, in: 2016 IEEE International Conference on Robotics and Biomimetics, ROBIO, IEEE, 2016, pp. 2111-2116.

[214]

C. Wong, E. Yang, X.-T. Yan, D. Gu, Optimal path planning based on a multi-tree T-RRT* approach for robotic task planning in continuous cost spaces, in: 2018 12th France-Japan and 10th Europe-Asia Congress on Mechatronics, IEEE, 2018, pp. 242-247.

[215]

S. Primatesta, A. Osman, A. Rizzo, MP-RRT#: A model predictive sampling-based motion planning algorithm for unmanned aircraft systems, J. Intell. Robot. Syst. 103 (2021) 59.

[216]

X. Liao, Z. Zhu, H. Tang, W. Zhang, F-RRT: Fast RRT algorithm for path planning in dynamic environments, Int. J. Adv. Robot. Syst. 18 (1) (2021) 1-12.

[217]

O. Khattab, A. Yasser, M.A. Jaradat, L. Romdhane, Intelligent adaptive RRT* path planning algorithm for mobile robots, in: 2023 Advances in Science and Engineering Technology International Conferences, ASET, 2023, pp. 01-06.

[218]

Z. Lv, H. Zhang, W. Liu, GMM-RRT for kiwifruit picking path planning, J. Agric. Robot. (2023) 1-15.

[219]

A. Saccuti, R. Monica, J. Aleotti, PROTAMP-RRT: A probabilistic integrated task and motion planner based on RRT, IEEE Robot. Autom. Lett. 8 (12)(2023) 8398-8405.

[220]

J. Ortiz-Haro, W. Hönig, V.N. Hartmann, M. Toussaint, L. Righetti, iDb-RRT: Sampling-based kinodynamic motion planning with motion primitives and trajectory optimization, 2024, arXiv:2403.10745, [Online] Available: https://arxiv.org/abs/2403.10745.

[221]

M. Moll, I.A. Sucan, L.E. Kavraki, Benchmarking motion planning algo-rithms: An extensible infrastructure for analysis and visualization, IEEE Robot. Autom. Mag. 22 (3) (2015) 96-102.

[222]

J.D. Gammell, M.P. Strub, V.N. Hartmann, Planner Developer Tools (PDT): Reproducible experiments and statistical analysis for developing and testing motion planners,in:Proceedings of the Workshop on Evaluating Motion Planning Performance (EMPP), IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2022.

[223]

R. Diankov, Automated Construction of Robotic Manipulation Programs (Ph.D. thesis), Carnegie Mellon University, 2010.

[224]

I.A. Sucan, M. Moll, L.E. Kavraki, The open motion planning library, IEEE Robot. Autom. Mag. 19 (4) (2012) 72-82.

AI Summary AI Mindmap
PDF (4811KB)

309

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/