Using neuroevolution for designing soft medical devices

Hugo Alcaraz-Herrera , Michail-Antisthenis Tsompanas , Igor Balaz , Andrew Adamatzky

Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (1) : 100205 -100205.

PDF (1743KB)
Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (1) : 100205 -100205. DOI: 10.1016/j.birob.2024.100205
Research Article
research-article

Using neuroevolution for designing soft medical devices

Author information +
History +
PDF (1743KB)

Abstract

Soft robots can exhibit better performance in specific tasks compared to conventional robots, particularly in healthcare related tasks. However, the field of soft robotics is still young, and designing them often involves mimicking natural organisms or relying heavily on human experts’ creativity. A formal automated design process is required. The use of neuroevolution-based algorithms to automatically design initial sketches of soft actuators that can enable the movement of future medical devices, such as drug-delivering catheters, is proposed. The actuator morphologies discovered by algorithms like Age-Fitness Pareto Optimisation, NeuroEvolution of Augmenting Topologies (NEAT), and Hypercube-based NEAT (HyperNEAT) were compared based on the maximum displacement reached and their robustness against various control methods. Analysing the results granted the insight that neuroevolution-based algorithms produce better-performing and more robust actuators under diverse control methods. Specifically, the best-performing morphologies were discovered by the NEAT algorithm.

Keywords

NEAT / HyperNEAT / AFPO / Soft robot / Actuator / Catheter

Cite this article

Download citation ▾
Hugo Alcaraz-Herrera, Michail-Antisthenis Tsompanas, , , , Igor Balaz, , Andrew Adamatzky, . Using neuroevolution for designing soft medical devices. Biomimetic Intelligence and Robotics, 2025, 5(1): 100205-100205 DOI:10.1016/j.birob.2024.100205

登录浏览全文

4963

注册一个新账户 忘记密码

1 CRediT authorship contribution statement

Hugo Alcaraz-Herrera: Writing - review & editing, Writing - original draft, Visualization, Software, Methodology, Investigation, Formal analysis, Data curation. Michail-Antisthenis Tsompanas: Writing - review & editing, Methodology, Funding acquisition, Conceptualization. Igor Balaz: Writing - review & editing, Project administration, Funding acquisition, Conceptualization. Andrew Adamatzky: Writing - review & editing, Supervision, Funding acquisition, Conceptualization.

2 Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

3 Acknowledgements

This project has received funding from the European Union’s Horizon Europe research and innovation programme (101070328). UWE researchers were funded by the UK Research and Innovation (10044516).

References

[1]

A. Schulz, C. Sung, A. Spielberg, W. Zhao, R. Cheng, E. Grinspun, D. Rus, W. Matusik, Interactive robogami: An end-to-end system for design of robots with ground locomotion, Int. J. Robot. Res. 36 (10) (2016) 1131-1147, http://dx.doi.org/10.1177/0278364917723465.

[2]

J. Hiller, H. Lipson, Dynamic simulation of soft multimaterial 3d-printed objects, Soft Robotics 1 (1) (2014) 88-101.

[3]

S. Kriegman, D. Blackiston, M. Levin, J. Bongard, A scalable pipeline for designing reconfigurable organisms, Proc. Natl. Acad. Sci. 117 (4) (2020) 1853-1859, http://dx.doi.org/10.1073/pnas.1910837117.

[4]

K.O. Stanley, R. Miikkulainen, Evolving neural networks through augment-ing topologies, Evol. Comput. 10 (2) (2002) 99-127, http://dx.doi.org/10.1162/106365602320169811.

[5]

J.E. Auerbach, J.C. Bongard, Evolving complete robots with CPPN-NEAT: The utility of recurrent connections,in:Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, Association for Computing Machinery, 2011, http://dx.doi.org/10.1145/2001576.2001775.

[6]

K.O. Stanley, D.B. D’Ambrosio, J. Gauci, A Hypercube-Based Encoding for Evolving Large-Scale Neural Networks, Artif. Life 15 (2) (2009) 185-212, http://dx.doi.org/10.1162/artl.2009.15.2.15202.

[7]

K.O. Stanley, Compositional pattern producing networks: A novel abstrac-tion of development, Genet. Program. Evol. Mach. 8 (2) (2007) 131-162, http://dx.doi.org/10.1007/s10710-007-9028-8.

[8]

G.S. Hornby, ALPS: the age-layered population structure for reducing the problem of premature convergence,in: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, 2006, pp. 815-822, http://dx.doi.org/10.1145/1143997.1144142.

[9]

H. Alcaraz-Herrera, M.-A. Tsompanas, A. Adamatzky, I. Balaz, Neuroevolu-tion algorithms applied in the designing process of biohybrid actuators, 2024, https://arxiv.org/abs/2408.07671.

[10]

F. Tanaka, C. Aranha, Co-evolving morphology and control of soft robots using a single genome, in: 2022 IEEE Symposium Series on Computa-tional Intelligence (SSCI), 2022, pp. 1235-1242, http://dx.doi.org/10.1109/SSCI51031.2022.10022230.

[11]

D. Matthews, A. Spielberg, D. Rus, S. Kriegman, J. Bongard, Efficient automatic design of robots, Proc. Natl. Acad. Sci. 120 (41) (2023) http://dx.doi.org/10.1073/pnas.2305180120.

[12]

I. Asimov, I, Robot, Gnome Press, United States, 1950, p. 253.

[13]

S. Hirose, Y. Umetani, The development of soft gripper for the versatile robot hand, Mech. Mach. Theory 13 (3) (1978) 351-359.

[14]

N. Negroponte, Soft architecture machines, The MIT Press, 1976.

[15]

P. Akella, M. Cutkosky, Manipulating with soft fingers: modeling contacts and dynamics,in:Proceedings, 1989 International Conference on Robotics and Automation, IEEE, 1989, pp. 764-769.

[16]

A. Bicchi, Intrinsic contact sensing for soft fingers, in: Proceedings., IEEE International Conference on Robotics and Automation, IEEE, 1990, pp. 968-973.

[17]

F.Y. Chen, Gripping mechanisms for industrial robots: an overview, Mech. Mach. Theory 17 (5) (1982) 299-311.

[18]

C. Gillespie, C. Gillespie, Optical control of electrostatic actuators using amorphous silicon, Strain 1 (12) (1985) 300.

[19]

G.L. Kenaley, M.R. Cutkosky, Electrorheological fluid-based robotic fingers with tactile sensing, in: ICRA, 1989, pp. 132-136.

[20]

H. Lipson, Challenges and opportunities for design, simulation, and fabrication of soft robots, Soft Robotics 1 (1) (2014) 21-27.

[21]

D. Rus, M.T. Tolley, Design, fabrication and control of soft robots, Nature 521 (7553) (2015) 467-475.

[22]

E. Milana, Soft robotics for infrastructure protection, Frontiers in Robotics and AI 9 (2022) 1026891.

[23]

R.R. Murphy, Marsupial and shape-shifting robots for urban search and rescue, IEEE Intell. Syst. their Appl. 15 (2) (2000) 14-19.

[24]

X. Wang, Q. Zhang, D. Shen, J. Chen, A novel rescue robot: Hybrid soft and rigid structures for narrow space searching, in: 2019 IEEE Interna-tional Conference on Robotics and Biomimetics (ROBIO), IEEE, 2019, pp. 2207-2213.

[25]

T. Wen, J. Hu, J. Zhang, X. Li, S. Kang, N. Zhang, Design, performance analysis, and experiments of a soft robot for rescue, J. Mech. Robot. 16(7)(2024).

[26]

G. Methenitis, D. Hennes, D. Izzo, A. Visser,Novelty search for soft robotic space exploration, in:Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, 2015, pp. 193-200.

[27]

S. Aracri, F. Giorgio-Serchi, G. Suaria, M.E. Sayed, M.P. Nemitz, S. Mahon, A.A. Stokes, Soft robots for ocean exploration and offshore operations: A perspective, Soft Robotics 8 (6) (2021) 625-639.

[28]

C.S.X. Ng, G.Z. Lum, Untethered soft robots for future planetary explorations? Adv. Intell. Syst. 5 (3) (2023) 2100106.

[29]

S. Mintchev, D. Zappetti, J. Willemin, D. Floreano, A soft robot for ran-dom exploration of terrestrial environments, in: 2018 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2018, pp. 7492-7497.

[30]

T. Patino, R. Mestre, S. Sanchez, Miniaturized soft bio-hybrid robotics: a step forward into healthcare applications, Lab Chip 16 (19) (2016) 3626-3630.

[31]

C. Majidi, Soft robotics: a perspective—current trends and prospects for the future, Soft Robotics 1 (1) (2014) 5-11.

[32]

J.-H. Hsiao, J.-Y. Chang, C.-M. Cheng, Soft medical robotics: clinical and biomedical applications, challenges, and future directions, Adv. Robot. 33(21)(2019) 1099-1111.

[33]

Y.S. Kwoh, J. Hou, E.A. Jonckheere, S. Hayati, A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery, IEEE Trans. Biomed. Eng. 35 (2) (1988) 153-160.

[34]

C.C. Nguyen, M.T. Thai, T.T. Hoang, J. Davies, P.T. Phan, K. Zhu, L. Wu, M.A. Brodie, D. Tsai, Q.P. Ha, et al., Development of a soft robotic catheter for vascular intervention surgery, Sensors Actuators A 357 (2023) 114380.

[35]

J. Rogatinsky, D. Recco, J. Feichtmeier, Y. Kang, N. Kneier, P. Hammer, E. O’Leary, D. Mah, D. Hoganson, N.V. Vasilyev, et al.A multifunctional soft robot for cardiac interventions, Sci. Adv. 9 (43) (2023) eadi5559.

[36]

C.C. Nguyen, T. Teh, M.T. Thai, P.T. Phan, T.T. Hoang, H. Low, J. Davies, E. Nicotra, N.H. Lovell, T.N. Do, Bidirectional soft robotic catheter for arrhythmia treatment, in: 2022 International Conference on Robotics and Automation (ICRA), IEEE, 2022, pp. 9579-9585.

[37]

V. Levering, Q. Wang, P. Shivapooja, X. Zhao, G.P. López, Soft robotic con-cepts in catheter design: an on-demand fouling-release urinary catheter, Adv. Healthc. Mater. 3 (10) (2014) 1588-1596.

[38]

P.I. Baburova, D.V. Kladko, A. Lokteva, A. Pozhitkova, V. Rumyantceva, V. Rumyantceva, I.V. Pankov, S. Taskaev, V.V. Vinogradov, Magnetic soft robot for minimally invasive urethral catheter biofilm eradication, ACS Nano 17(21)(2023) 20925-20938.

[39]

Y. Yang, J. Wang, L. Wang, Q. Wu, L. Ling, Y. Yang, S. Ning, Y. Xie, Q. Cao, L. Li, et al. Magnetic soft robotic bladder for assisted urination, Sci. Adv. 8 (34) (2022) eabq1456.

[40]

T. Gopesh, J.H. Wen, D. Santiago-Dieppa, B. Yan, J.S. Pannell, A. Khalessi, A. Norbash, J. Friend, Soft robotic steerable microcatheter for the en-dovascular treatment of cerebral disorders, Sci. Robotics 6 (57) (2021) eabf0601.

[41]

C. Zhou, Y. Yang, J. Wang, Q. Wu, Z. Gu, Y. Zhou, X. Liu, Y. Yang, H. Tang, Q. Ling, et al., Ferromagnetic soft catheter robots for minimally invasive bioprinting, Nature Commun. 12 (1) (2021) 5072.

[42]

Y. Li, J. Peine, M. Mencattelli, J. Wang, J. Ha, P.E. Dupont, A soft robotic balloon endoscope for airway procedures, Soft Robotics 9 (5) (2022) 1014-1029.

[43]

X. Hu, Y. Zhou, M. Li, J. Wu, G. He, N. Jiao, Catheter-assisted bioinspired adhesive magnetic soft millirobot for drug delivery, Small 20 (11) (2024) 2306510.

[44]

B. Mazzolai, V. Mattoli, L. Beccai, E. Sinibaldi, Emerging technologies inspired by plants, Bioinspired Approaches Human-centric Technol. (2014) 111-132.

[45]

B. Mazzolai, P. Salvini, On robots and plants: The case of the plantoid, a robotic artifact inspired by plants, in: Plant Ethics, Routledge, 2018, pp. 221-230.

[46]

M. Friedman, K. Krauthausen, Interview with barbara mazzolai: Plants, plantoids, and active materials, Active Mater. (2021) 129.

[47]

B. Mazzolai, G. Meloni, A. Degl’Innocenti, Can a robot grow? Plants give us the answer, in: Bioinspiration, Biomimetics, and Bioreplication 2017, 10162, SPIE, 2017, 10162, SPIE, 2017, pp. 24-33.

[48]

B. Mazzolai, C. Laschi, P. Dario, S. Mugnai, S. Mancuso, The plant as a biomechatronic system, Plant Signal. Behav. 5 (2) (2010) 90-93.

[49]

A. Sadeghi, A. Mondini, E. Del Dottore, V. Mattoli, L. Beccai, S. Taccola, C. Lucarotti, M. Totaro, B. Mazzolai, A plant-inspired robot with soft differential bending capabilities, Bioinspiration Biomim. 12 (1) (2016) 015001.

[50]

Y. Peng, H. Nabae, Y. Funabora, K. Suzumori, Peristaltic transporting device inspired by large intestine structure, Sensors Actuators A 365 (2024) 114840.

[51]

Y. Peng, H. Nabae, Y. Funabora, K. Suzumori, Controlling a peristaltic robot inspired by inchworms, Biomim. Intell. Robotics 4 (1) (2024) 100146.

[52]

J. Bhatia, H. Jackson, Y. Tian, J. Xu, W. Matusik, Evolution gym: A large-scale benchmark for evolving soft robots, Adv. Neural Inf. Process. Syst. 34 (2021) 2201-2214.

[53]

L. Smith, R. MacCurdy, SoRoForge: End-to-end soft actuator design, IEEE Trans. Autom. Sci. Eng. 20 (3) (2023) 1475-1486, http://dx.doi.org/10.1109/TASE.2023.3241866.

[54]

L. Smith, T. Hainsworth, J. Haimes, R. MacCurdy, Automated synthesis of bending pneumatic soft actuators, in: 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), 2022, pp. 358-363, http://dx.doi.org/10.1109/RoboSoft54090.2022.9762105.

[55]

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjec-tive genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182-197, http://dx.doi.org/10.1109/4235.996017.

[56]

H. Zhang, M.Y. Wang, F. Chen, Y. Wang, A.S. Kumar, J.Y.H. Fuh, Design and development of a soft gripper with topology optimization, in: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 6239-6244, http://dx.doi.org/10.1109/IROS.2017.8206527.

[57]

R. Wen, Z. Guo, T. Zhao, X. Ma, Q. Wang, Z. Wu, Neuroevolution of augmenting topologies based musculor-skeletal arm neurocontroller, in: 2017 IEEE International Instrumentation and Measurement Technology Conference ( I2MTC), 2017, pp. 1-6, http://dx.doi.org/10.1109/I2MTC.2017.7969727.

[58]

N. Cheney, J. Bongard, H. Lipson, Evolving soft robots in tight spaces, in: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO ’15, 2015, pp. 935-942, http://dx.doi.org/10.1145/2739480.2754662.

[59]

J.E. Auerbach, J.C. Bongard, Evolving CPPNs to grow three-dimensional physical structures, in: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO ’10, 2010, pp. 627-634, http://dx.doi.org/10.1145/1830483.1830597.

[60]

S.K. Jha, F. Josheski, Artificial evolution using neuroevolution of augmenting topologies (NEAT) for kinetics study in diverse viscous mediums, Neural Comput. Appl. 29 (12) (2018) http://dx.doi.org/10.1007/s00521-016-2664-2.

[61]

T. Kimura, R. Niiyama, Y. Kuniyoshi, Modularized genotype combination to design multiobjective soft-bodied robots, in: 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), 2021, pp. 295-301, http://dx.doi.org/10.1109/RoboSoft51838.2021.9479428.

[62]

S. Risi, K.O. Stanley, Confronting the challenge of learning a flexible neural controller for a diversity of morphologies, in: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO ’13, 2013, pp. 255-262, http://dx.doi.org/10.1145/2463372.2463397.

[63]

J. Clune, B.E. Beckmann, C. Ofria, R.T. Pennock, Evolving coordinated quadruped gaits with the HyperNEAT generative encoding, in: 2009 IEEE Congress on Evolutionary Computation, 2009, pp. 2764-2771, http://dx.doi.org/10.1109/CEC.2009.4983289.

[64]

J. Yosinski, J. Clune, D. Hidalgo, S. Nguyen, J.C. Zagal, H. Lipson,Evolving robot gaits in hardware: the HyperNEAT generative encoding vs. parameter optimization, in: Proceedings of the 2023 Artificial Life Conference, 2011, p. 134, http://dx.doi.org/10.7551/978-0-262-29714-1-ch134.

[65]

D.B. D’Ambrosio, K.O. Stanley,Generative encoding for multiagent learning, in:Proceedings of the 10th Annual Conference on Genetic and Evolution-ary Computation, 2008, pp. 819-826, http://dx.doi.org/10.1145/1389095.1389256.

[66]

J. Clune, C. Ofria, R.T. Pennock,The sensitivity of hyperneat to different geometric representations of a problem, in:Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, 2009, pp. 675-682, http://dx.doi.org/10.1145/1569901.1569995.

[67]

N. Cheney, R. MacCurdy, J. Clune, H. Lipson, Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding, ACM SIGEVOlution 7 (1) (2014) 11-23.

[68]

Reconfigurable Organisms,https://github.com/skriegman/reconfigurable_organisms Accessed: 2024-05-19.

[69]

BioMeld Reconfigurable Organisms,https://github.com/Antisthenis/reconfigurable_organisms/tree/biomeld_dev2 Accessed: 2024-05-19.

[70]

M.-A. Tsompanas, I. Balaz, Outline of an evolutionary morphology gen-erator towards the modular design of a biohybrid catheter, Frontiers in Robotics and AI 11 (2024).

[71]

M.D. Schmidt, H. Lipson,Age-fitness pareto optimization, in:Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, 2010, pp. 543-544, http://dx.doi.org/10.1145/1830483.1830584.

[72]

K. Stanley, R. Miikkulainen, Efficient evolution of neural network topolo-gies, in: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600)2, 2002, pp. 1757-1762 vol.2, http://dx.doi.org/10.1109/CEC.2002.1004508.

[73]

D.E. Goldberg, J. Richardson,Genetic algorithms with sharing for multi-modal function optimization, in:Proceedings of the Second International Conference on Genetic Algorithms on Genetic Algorithms and their Application, 1987, pp. 41-49.

[74]

M.-A. Tsompanas, Incremental growth on compositional pattern producing networks based optimization of biohybrid actuators, in: S. Smith, J.a. Correia, C. Cintrano (Eds.) International Conference on the Applications of Evolutionary Computation (Part of EvoStar), Springer Nature Switzerland, Cham, 2024, pp. 275-289.

[75]

G. Klambauer, T. Unterthiner, A. Mayr, S. Hochreiter, Self-normalizing neural networks, in:Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 972-981.

[76]

E.C.R.G. (UCF), The hybercube-based NeuroEvolution of augmenting topologies (HyperNEAT) users page, 2016, http://eplex.cs.ucf.edu/hyperNEATpage/ Accessed: March 24th, 2024.

[77]

N. Jakobi, Evolutionary robotics and the radical envelope-of-noise hypothesis, Adapt. Behav. 6 (2) (1997) 325-368.

[78]

Z.D. Jastrzebski, The Nature and Properties of Engineering Materials, Wiley, California, United States, 1987, p. 636.

[79]

S. Risi, K.O. Stanley, An enhanced hypercube-based encoding for evolving the placement, density, and connectivity of neurons, Artif. Life 18 (4)(2012) 331-363, http://dx.doi.org/10.1162/ARTL_a_00071.

[80]

A. Ororbia, A. ElSaid, T. Desell, Investigating recurrent neural network memory structures using neuro-evolution, in: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’19, 2019, pp. 446-455, http://dx.doi.org/10.1145/3321707.3321795.

[81]

A.S. Thakur, A.B. Awari, Z. Lyu, T. Desell, Efficient neuroevolution using island repopulation and simplex hyperparameter optimization, in: 2023 IEEE Symposium Series on Computational Intelligence (SSCI), 2023, pp. 1837-1842, http://dx.doi.org/10.1109/SSCI52147.2023.10371872.

[82]

R.J. Preen, L. Bull, A. Adamatzky, Towards an evolvable cancer treatment simulator, Biosystems 182 (2019) 1-7.

AI Summary AI Mindmap
PDF (1743KB)

183

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/