Legged odometry based on fusion of leg kinematics and IMU information in a humanoid robot

Huailiang Ma , Aiguo Song , Jingwei Li , Ligang Ge , Chunjiang Fu , Guoteng Zhang

Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (1) : 100196 -100196.

PDF (1650KB)
Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (1) : 100196 -100196. DOI: 10.1016/j.birob.2024.100196
Research Article
research-article

Legged odometry based on fusion of leg kinematics and IMU information in a humanoid robot

Author information +
History +
PDF (1650KB)

Abstract

Position and velocity estimation are the key technologies to improve the motion control ability of humanoid robots. Aiming at solving the positioning problem of humanoid robots, we have designed a legged odometry algorithm based on forward kinematics and the feed back of IMU. We modeled the forward kinematics of the leg of the humanoid robot and used Kalman filter to fuse the kinematics information with IMU data, resulting in an accurate estimate of the humanoid robot’s position and velocity. This odometry method can be applied to different humanoid robots, requiring only that the robot is equipped with joint encoders and an IMU. It can also be extended to other legged robots. The effectiveness of the legged odometry scheme was demonstrated through simulations and physical tests conducted with the Walker2 humanoid robot.

Keywords

Humanoid robots / State estimation / Legged odometry / Kalman filter

Cite this article

Download citation ▾
Huailiang Ma, Aiguo Song, , Jingwei Li, Ligang Ge, Chunjiang Fu, Guoteng Zhang. Legged odometry based on fusion of leg kinematics and IMU information in a humanoid robot. Biomimetic Intelligence and Robotics, 2025, 5(1): 100196-100196 DOI:10.1016/j.birob.2024.100196

登录浏览全文

4963

注册一个新账户 忘记密码

1 CRediT authorship contribution statement

Huailiang Ma: Writing - original draft, Validation, Investigation, Conceptualization. Aiguo Song: Conceptualization. Jingwei Li: Conceptualization. Ligang Ge: Resources. Chunjiang Fu: Resources. Guoteng Zhang: Writing - review & editing, Writing - original draft, Conceptualization.

2 Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

3 Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (62373223) and the Open Research Projects of the State Key Laboratory of Robotics (2023-010).

References

[1]

F. Rubio, F. Valero, C. Llopis-Albert, A review of mobile robots: Concepts, methods, theoretical framework, and applications, Int. J. Adv. Robot. Syst. 16 (2) (2019) 1729881419839596.

[2]

B. Barshan, H.F. Durrant-Whyte, Inertial navigation systems for mobile robots, IEEE Trans. Robot. Autom. 11 (3) (1995) 328-342.

[3]

C. Forster, M. Pizzoli, D. Scaramuzza, SVO: Fast semi-direct monocular visual odometry, in: 2014 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2014, pp. 15-22.

[4]

X. Zhu, Y. Chen, X. Zhang, Z. Zhang, B. Ren, Feature matching for indoor-oriented visual odometry, in: 2022 International Conference on Networking and Network Applications, NaNA, IEEE, 2022, pp. 253-258.

[5]

G. Chen, B. Wang, X. Wang, H. Deng, B. Wang, S. Zhang, PSF-LO: Parameter-ized semantic features based LiDAR odometry, in: 2021 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2021, pp. 5056-5062.

[6]

J. Zhang, S. Singh, et al., LOAM: Lidar odometry and mapping in real-time, in: Robotics: Science and Systems, vol. 2, no. 9, Berkeley, CA, 2014, pp. 1-9.

[7]

C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, J.J. Leonard, Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age, IEEE Trans. Robotics 32 (6)(2016) 1309-1332.

[8]

Y. Liu, C. Wang, H. Wu, Y. Wei, M. Ren, C. Zhao, Improved LiDAR localization method for mobile robots based on multi-sensing, Remote Sens. 14 (23) (2022) 6133.

[9]

J. Borenstein, H.R. Everett, L. Feng, D. Wehe, Mobile robot positioning: Sensors and techniques, J. Robotic Syst. 14 (4) (1997) 231-249.

[10]

P.-C. Lin, H. Komsuoglu, D.E. Koditschek, A leg configuration measurement system for full-body pose estimates in a hexapod robot, IEEE Trans. Robotics 21 (3) (2005) 411-422.

[11]

P.-C. Lin, H. Komsuoglu, D.E. Koditschek, Sensor data fusion for body state estimation in a hexapod robot with dynamical gaits, IEEE Trans. Robot. 22(5)(2006) 932-943.

[12]

M. Bloesch, C. Gehring, P. Fankhauser, M. Hutter, M.A. Hoepflinger, R. Siegwart, State estimation for legged robots on unstable and slippery terrain, in: 2013 IEEE RSJ International Conference on Intelligent Robots and Systems, pp. 6058-6064.

[13]

M. Bloesch, M. Hutter, M.A. Hoepflinger, S. Leutenegger, C. Gehring, C.D. Remy, R. Siegwart, State estimation for legged robots: Consistent fusion of leg kinematics and IMU, 2013.

[14]

S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen, P. Marion, R. Tedrake, Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot, Auton. Robots 40 (2016) 429-455.

[15]

R. Hartley, M. Ghaffari, R.M. Eustice, J.W. Grizzle, Contact-aided invariant extended Kalman filtering for robot state estimation, Int. J. Robotics Res. 39 (4) (2020) 402-430.

[16]

G. Ji, J. Mun, H. Kim, J. Hwangbo, Concurrent training of a control policy and a state estimator for dynamic and robust legged locomotion, IEEE Robot. Autom. Lett. 7 (2) (2022) 4630-4637.

[17]

D. Wisth, M. Camurri, M. Fallon, VILENS: Visual, inertial, lidar, and leg odometry for all-terrain legged robots, IEEE Trans. Robot. 39 (1) (2022) 309-326.

[18]

L. Qiao, Y. Liu, C. Fu, L. Ge, Y. Li, X. Rong, T. Chen, G. Zhang, A reactive planning and control framework for humanoid robot locomotion, Adv. Intell. Syst. (2024) 2400263.

[19]

N. El-Sheimy, H. Hou, X. Niu, Analysis and modeling of inertial sensors using Allan variance, IEEE Trans. Instrum. Measur. 57 (1) (2007) 140-149.

[20]

Walker: Humanoid service robot walke into the future, 2024, https://www.ubtrobot.com/humanoid/products/Walker. Last Accessed 18 June 2024).

AI Summary AI Mindmap
PDF (1650KB)

264

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/