Human autonomy teaming-based safety-aware navigation through bio-inspired and graph-based algorithms

Timothy Sellers , Tingjun Lei , Chaomin Luo , Zhuming Bi , Gene Eu Jan

Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (4) : 100189 -100189.

PDF (4210KB)
Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (4) : 100189 -100189. DOI: 10.1016/j.birob.2024.100189
Research Article
research-article

Human autonomy teaming-based safety-aware navigation through bio-inspired and graph-based algorithms

Author information +
History +
PDF (4210KB)

Abstract

In the field of autonomous robots, achieving complete precision is challenging, underscoring the need for human intervention, particularly in ensuring safety. Human Autonomy Teaming (HAT) is crucial for promoting safe and efficient human-robot collaboration in dynamic indoor environments. This paper introduces a framework designed to address these precision gaps, enhancing safety and robotic interactions within such settings. Central to our approach is a hybrid graph system that integrates the Generalized Voronoi Diagram (GVD) with spatio-temporal graphs, effectively combining human feedback, environmental factors, and key waypoints. An integral component of this system is the improved Node Selection Algorithm (iNSA), which utilizes the revised Grey Wolf Optimization (rGWO) for better adaptability and performance. Furthermore, an obstacle tracking model is employed to provide predictive data, enhancing the efficiency of the system. Human insights play a critical role, from supplying initial environmental data and determining key waypoints to intervening during unexpected challenges or dynamic environmental changes. Extensive simulation and comparison tests confirm the reliability and effectiveness of our proposed model, highlighting its unique advantages in the domain of HAT. This comprehensive approach ensures that the system remains robust and responsive to the complexities of real-world applications.

Keywords

Human autonomy teaming (HAT) / Robot path planning / Generalized Voronoi diagram (GVD) / Spatio-temporal graphs / Bio-inspired algorithms

Cite this article

Download citation ▾
Timothy Sellers, Tingjun Lei, Chaomin Luo, Zhuming Bi, Gene Eu Jan. Human autonomy teaming-based safety-aware navigation through bio-inspired and graph-based algorithms. Biomimetic Intelligence and Robotics, 2024, 4(4): 100189-100189 DOI:10.1016/j.birob.2024.100189

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Timothy Sellers: Writing - review & editing, Writing - original draft, Visualization, Validation, Software, Methodology. Tingjun Lei: Writing - review & editing, Writing - original draft, Visualization, Validation, Software, Methodology, Investigation, Formal analysis. Chaomin Luo: Writing - review & editing, Writing - original draft, Supervision, Resources, Project administration, Methodology, Funding acquisition, Conceptualization. Zhuming Bi: Writing - review & editing, Supervision, Project administration, Conceptualization. Gene Eu Jan: Writing - review & editing, Supervision, Project administration, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

This research was partially supported by the Mississippi Space Grant Consortium under NASA EPSCoR RID grant.

References

[1]

T. Lei, T. Sellers, C. Luo, D.W. Carruth, Z. Bi, Graph-based robot optimal path planning with bio-inspired algorithms, Biomimetic Intell. Robot. 3(3) (2023) 100119.

[2]

G.E. Jan, T. Lei, C.C. Sun, Z.Y. You, C. Luo, On the problems of drone formation and light shows, IEEE Trans. Consum. Electron. (2024).

[3]

D. Short, T. Lei, C. Luo, D.W. Carruth, Z. Bi, A bio-inspired algorithm in image-based path planning and localization using visual features and maps, Intell. Robot. 3 (2) (2023) http://dx.doi.org/10.20517/ir.2023.14.

[4]

T. Sellers, T. Lei, D. Carruth, C. Luo, Deep learning-based heterogeneous system for autonomous navigation, in: Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping VIII, vol. 12539, SPIE, 2023, pp. 140-153.

[5]

T. Sellers, T. Lei, G.E. Jan, Y. Wang, C. Luo, Multi-objective optimization robot navigation through a graph-driven PSO mechanism, in: International Conference on Sensing and Imaging, Springer, 2022, pp. 66-77.

[6]

J.H. Rogers, T. Sellers, T. Lei, D.W. Carruth, C. Luo,Sensor-based multi-waypoint autonomous robot navigation with graph-based models, in: Autonomous Systems: Sensors, Processing and Security for Ground, Air, Sea, and Space Vehicles and Infrastructure 2023, vol. 12540, SPIE, 2023, pp. 215-224.

[7]

D. Zhu, C. Tian, X. Jiang, C. Luo, Multi-AUVs cooperative complete coverage path planning based on GBNN algorithm, in: 2017 29th Chinese Control and Decision Conference, CCDC, IEEE, 2017, pp. 6761-6766.

[8]

S. Alarabi, C. Luo, M. Santora, A PRM approach to path planning with obstacle avoidance of an autonomous robot, in: 2022 8th International Conference on Automation, Robotics and Applications, ICARA, IEEE, 2022, pp. 76-80.

[9]

B. Black, T. Sellers, T. Lei, C. Luo, D.W. Carruth, Optimal multi-target navigation via graph-based algorithms in complex environments, in: 2024 IEEE 33rd International Symposium on Industrial Electronics, ISIE, IEEE, 2024, pp. 1-6.

[10]

T. Sellers, T. Lei, C. Luo, G.E. Jan, J. Ma, A node selection algorithm to graph-based multi-waypoint optimization navigation and mapping, Intell. Robot. 2 (4) (2022) 333-354.

[11]

T. Lei, C. Luo, T. Sellers, S. Rahimi, A bat-pigeon algorithm to crack detection-enabled autonomous vehicle navigation and mapping, Intell. Syst. Appl. 12 (2021) 200053.

[12]

P. Chintam, T. Lei, B. Osmanoglu, Y. Wang, C. Luo, Informed sampling space driven robot informative path planning, Robot. Auton. Syst. 175 (2024) 104656.

[13]

E. Riser, T. Sellers, T. Lei, C. Pradeep, C. Luo,Multi-robot navigation using improved RRT*-smart with digital twin technology, in: Autonomous Systems: Sensors, Processing, and Security for Ground, Air, Sea, and Space Vehicles and Infrastructure 2024, vol. 13052, SPIE, 2024, pp. 114-125.

[14]

T. Lei, C. Luo, S.X. Yang, D.W. Carruth, Z. Bi, Bio-inspired intelligence-based multi-agent navigation with safety-aware considerations, IEEE Trans. Artif. Intell. (2023).

[15]

A. Srivastava, P. Singh, S.K. Verma, K. Kartikey, P.S. Shukla, Path planning robot using PI-CAM, Int. J. Res. Appl. Sci. Eng. Technol. (2022) http://dx.doi.org/10.22214/ijraset.2022.41133.

[16]

J. Han, Y. Seo, Mobile robot path planning with surrounding point set and path improvement, Appl. Soft Comput. 57 (2017) 35-47, http://dx.doi.org/10.1016/j.asoc.2017.03.035.

[17]

A. Gandia, S. Parascho, R. Rust, G. Casas, F. Gramazio, M. Kohler, Towards automatic path planning for robotically assembled spatial structures, in: Robotic Fabrication in Architecture, Art and Design 2018, 2018, http://dx.doi.org/10.1007/978-3-319-92294-2_5.

[18]

M. Sidler, C.R. von Rohr, R. Dornberger, T. Hanne, Emotion influenced robotic path planning, in: Proceedings of the 2017 International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, ISMSI ’17, Association for Computing Machinery, 2017, pp. 130-136, http://dx.doi.org/10.1145/3059336.3059346.

[19]

S. Nair, P. Supriya, Multi robotic path planning in a static environment, in: 2022 4th International Conference on Inventive Research in Com-puting Applications, ICIRCA, 2022, pp. 211-217, http://dx.doi.org/10.1109/ICIRCA54612.2022.9985576.

[20]

G.R. Theja, S. Naidu, Robot path planning using memory, Lect. Notes Netw. Syst. (2019) http://dx.doi.org/10.1007/978-981-13-3765-9_45.

[21]

D. Drake, S. Koziol, E. Chabot, Mobile robot path planning with a moving goal, IEEE Access 6 (2018) 12800-12814, http://dx.doi.org/10.1109/ACCESS.2018.2797070.

[22]

T. Dam, G. Chalvatzaki, J. Peters, J. Pajarinen, Monte-Carlo robot path planning, IEEE Robot. Autom. Lett. 7 (2022) 11213-11220, http://dx.doi.org/10.1109/LRA.2022.3199674.

[23]

H. Zhang, Y. Wang, J. Zheng, J. Yu, Path planning of industrial robot based on improved RRT algorithm in complex environments, IEEE Access 6 (2018) 53296-53306, http://dx.doi.org/10.1109/ACCESS.2018.2871222.

[24]

D. Lyu, Z. Chen, Z. Cai, S. Piao, Robot path planning by leveraging the graph-encoded Floyd algorithm, Future Gener. Comput. Syst. 122 (2021) 204-208, http://dx.doi.org/10.1016/J.FUTURE.2021.03.007.

[25]

T. Dang, F. Mascarich, S. Khattak, C. Papachristos, K. Alexis, Graph-based path planning for autonomous robotic exploration in subterranean environments, in: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2019, pp. 3105-3112, http://dx.doi.org/10.1109/IROS40897.2019.8968151.

[26]

T. Dang, M. Tranzatto, S. Khattak, F. Mascarich, K. Alexis, M. Hutter, Graph-based subterranean exploration path planning using aerial and legged robots, J. Field Robotics 37 (8) (2020) 1363-1388.

[27]

D. Belanová, M. Mach, P. Sinčák, K. Yoshida, Path planning on robot based on D* lite algorithm, in: 2018 World Symposium on Digital Intelligence for Systems and Machines, DISA, IEEE, 2018, pp. 125-130.

[28]

Y. Liu, Y. Jiang, Robotic path planning based on a triangular mesh map, Int. J. Control Autom. Syst. (2020) 1-9, http://dx.doi.org/10.1007/s12555-019-0396-z.

[29]

X.X. Diao, W. Chi, J. Wang, Graph neural network based method for path planning problem, 2023, http://dx.doi.org/10.48550/arXiv.2309.14845, ArXiv abs/2309.14845.

[30]

E.N. Sabudin, R. Omar, S.K. Debnath, M.S. Sulong, Efficient robotic path planning algorithm based on artificial potential field, Int. J. Electr. Comput. Eng. 11 (2021) 4840-4849, http://dx.doi.org/10.11591/IJECE.V11I6.PP4840-4849.

[31]

Z. Clawson, X. Ding, B. Englot, T.A. Frewen, W.M. Sisson, A. Vladimirsky, A bi-criteria path planning algorithm for robotics applications, 2015, ArXiv abs/1511.01166.

[32]

J.S. Lee, D.W. Kim, An effective initialization method for genetic algorithm-based robot path planning using a directed acyclic graph, Inform. Sci. 332 (2016) 1-18, http://dx.doi.org/10.1016/j.ins.2015.11.004.

[33]

M.S. Ganeshmurthy, G. Suresh, Path planning algorithm for autonomous mobile robot in dynamic environment, in: 2015 3rd International Confer-ence on Signal Processing, Communication and Networking, ICSCN, 2015, pp. 1-6, http://dx.doi.org/10.1109/ICSCN.2015.7219901.

[34]

W. Zhao, R. Lun, C. Gordon, A.-B.M. Fofana, D.D. Espy, A. Reinthal, B. Ekelman, G.D. Goodman, J.E. Niederriter, C. Luo, et al., Liftingdoneright: A privacy-aware human motion tracking system for healthcare professionals, Int. J. Handheld Comput. Res. 7 (3) (2016) 1-15.

[35]

S. Musić, S. Hirche, Control sharing in human-robot team interaction, Annu. Rev. Control 44 (2017) 342-354.

[36]

Y. Ajmera, Shared autonomy in web-based human robot interaction, 2020, http://dx.doi.org/10.1007/978-3-030-55190-2_55, ArXiv.

[37]

G. Tokadlı, M.C. Dorneich, Interaction paradigms: From human-human teaming to human-autonomy teaming, in: 2019 IEEE/AIAA 38th Digital Avionics Systems Conference, DASC, IEEE, 2019, pp. 1-8.

[38]

S. Nikolaidis, Y. Zhu, D. Hsu, S. Srinivasa, Human-robot mutual adaptation in shared autonomy, in: 2017 12th ACM/IEEE International Conference on Human-Robot Interaction, HRI, 2017, pp. 294-302, http://dx.doi.org/10.1145/2909824.3020252.

[39]

J.M. Beer, A.D. Fisk, W. Rogers, Toward a framework for levels of robot autonomy in human-robot interaction, J. Hum.-Robot Interact. 3 (2014) 74-99, http://dx.doi.org/10.5898/JHRI.3.2.Beer.

[40]

R. Scalise, Y. Bisk, M. Forbes, D. Yi, Y. Choi, S. Srinivasa, Balancing shared autonomy with human-robot communication, 2018, ArXiv abs/1805.07719.

[41]

R. Pérula-Martínez, Á. Castro-González, M. Malfaz, M.A. Salichs,Autonomy in human-robot interaction scenarios for entertainment, in:Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 2017, pp. 259-260.

[42]

J. Miller, S. Hong, J. Lu, Self-driving mobile robots using human-robot interactions, in: 2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC, 2018, pp. 1251-1256, http://dx.doi.org/10.1109/SMC.2018.00219.

[43]

M. Selvaggio, M. Cognetti, S. Nikolaidis, S. Ivaldi, B. Siciliano, Autonomy in physical human-robot interaction: a brief survey, IEEE Robot. Autom. Lett. 6 (2021) 7989-7996, http://dx.doi.org/10.1109/LRA.2021.3100603.

[44]

F. Cantucci, R. Falcone, C. Castelfranchi, Human-robot interaction through adjustable social autonomy, Intell. Artif. 16 (2022) 69-79, http://dx.doi.org/10.3233/ia-210124.

[45]

J. Wang, M.Q.H. Meng, Optimal path planning using generalized voronoi graph and multiple potential functions, IEEE Trans. Ind. Electron. 67 (12)(2020) 10621-10630.

[46]

D. Chen, A. Xiao, M. Zou, W. Chi, J. Wang, L. Sun, GVD-exploration: an effi-cient autonomous robot exploration framework based on fast generalized voronoi diagram extraction, 2023, arXiv preprint arXiv:2309.06041.

[47]

M. Rowold, L. Ögretmen, T. Kerbl, B. Lohmann, Efficient spatiotemporal graph search for local trajectory planning on oval race tracks, in: Actuators, vol.11, (11) MDPI, 2022, p. 319.

[48]

A. Meliou, A. Krause, C. Guestrin, J.M. Hellerstein, Nonmyopic informative path planning in spatio-temporal models, in: AAAI, vol. 10, (4) 2007, pp. 16-17.

[49]

J. Liu, X. Wei, H. Huang, An improved grey wolf optimization algorithm and its application in path planning, IEEE Access 9 (2021) 121944-121956.

[50]

M. Luber, K.O. Arras, Multi-hypothesis social grouping and tracking for mobile robots, in: Robotics: Science and Systems, 2013.

[51]

W. EdrawMax, A small home office layout, 2020, [Online]; https://www.edrawmax.com/templates/1001382/. (Accessed 15 April 2024). URL:

[52]

C. Miao, G. Chen, C. Yan, Y. Wu, Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm, Comput. Ind. Eng. 156 (2021) 107230.

[53]

A. Hentout, A. Maoudj, D. Guir, S. Saighi, M.A. Harkat, M.Z. Hammouche, A. Bakdi, Collision-free path planning for indoor mobile robots based on rapidly-exploring random trees and piecewise cubic hermite interpolating polynomial, Int. J. Imaging Robot. 19 (03) (2019).

AI Summary AI Mindmap
PDF (4210KB)

173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/