Design of FDM-printable tendon-driven continuum robots using a serial S-shaped backbone structure

Kaidi Zhu , Tim C. Lueth , Yilun Sun

Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (1) : 100188 -100188.

PDF (3884KB)
Biomimetic Intelligence and Robotics ›› 2025, Vol. 5 ›› Issue (1) : 100188 -100188. DOI: 10.1016/j.birob.2024.100188
Research Article
research-article

Design of FDM-printable tendon-driven continuum robots using a serial S-shaped backbone structure

Author information +
History +
PDF (3884KB)

Abstract

Tendon-driven continuum robots (TDCR) are widely used in various engineering disciplines due to their exceptional flexibility and dexterity. However, their complex structure often leads to significant manufacturing costs and lengthy prototyping cycles. To cope with this problem, we propose a fused-deposition-modeling-printable (FDM-printable) TDCR structure design using a serial S-shaped backbone, which enables planar bending motion with minimized plastic deformation. A kinematic model for the proposed TDCR structure based on the pseudo-rigid-body model (PRBM) approach is developed. Experimental results have revealed that the proposed kinematic model can effectively predict the bending motion under certain tendon forces. In addition, analyses of mechanical hysteresis and factors influencing bending stiffness are conducted. Finally, A three-finger gripper is fabricated to demonstrate a possible application of the proposed TDCR structure.

Keywords

Continuum robot / FDM printing / Tendon-driven mechanism / Mechanics modeling

Cite this article

Download citation ▾
Kaidi Zhu, Tim C. Lueth, Yilun Sun. Design of FDM-printable tendon-driven continuum robots using a serial S-shaped backbone structure. Biomimetic Intelligence and Robotics, 2025, 5(1): 100188-100188 DOI:10.1016/j.birob.2024.100188

登录浏览全文

4963

注册一个新账户 忘记密码

1 CRediT authorship contribution statement

Kaidi Zhu: Writing - original draft, Validation, Software, Methodology, Investigation, Formal analysis. Tim C. Lueth: Funding acquisition. Yilun Sun: Writing - review & editing, Supervision, Project administration, Conceptualization, Funding acquisition.

2 Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

3 Acknowledgment

This research is supported by the teaching funding of TUM School of Engineering and Design.

References

[1]

T. da Veiga, J.H. Chandler, P. Lloyd, G. Pittiglio, N.J. Wilkinson, A.K. Hoshiar, R.A. Harris, P. Valdastri, Challenges of continuum robots in clinical context: a review, Prog. Biomed. Eng. 2 (3) (2020) 032003.

[2]

T. Li, G. Zhang, X. Li, X. Li, H. Liu, Y. Wang, Flexible head-following motion planning for scalable and bendable continuum robots, Biomim. Int. Robotics 4 (2) (2024) 100161.

[3]

T. Zheng, D.T. Branson, E. Guglielmino, D.G. Caldwell, A 3D dynamic model for continuum robots inspired by an octopus arm, in: 2011 IEEE International Conference on Robotics and Automation, IEEE, 2011, pp. 3652-3657.

[4]

J. Zhang, Y. Li, Z. Kan, Q. Yuan, H. Rajabi, Z. Wu, H. Peng, J. Wu, A pre-programmable continuum robot inspired by elephant trunk for dexterous manipulation, Soft Robotics 10 (3) (2023) 636-646.

[5]

Y. Peng, H. Nabae, Y. Funabora, K. Suzumori, Controlling a peristaltic robot inspired by inchworms, Biomim. Intell. Robotics 4 (1) (2024) 100146.

[6]

P.E. Dupont, N. Simaan, H. Choset, C. Rucker, Continuum robots for medical interventions, Proc. IEEE 110 (7) (2022) 847-870.

[7]

G. Zhang, F. Du, S. Xue, H. Cheng, X. Zhang, R. Song, Y. Li, Design and modeling of a bio-inspired compound continuum robot for minimally invasive surgery, Machines 10 (6) (2022) 468.

[8]

B. Ouyang, Y. Liu, D. Sun, Design of a three-segment continuum robot for minimally invasive surgery, Rob. Biomim. 3 (2016) 1-4.

[9]

J. Burgner-Kahrs, D.C. Rucker, H. Choset, Continuum robots for medical applications: A survey, IEEE Trans. Robot. Autom. 31 (6) (2015) 1261-1280.

[10]

Y. Yamauchi, Y. Ambe, H. Nagano, M. Konyo, Y. Bando, E. Ito, S. Arnold, K. Yamazaki, K. Itoyama, T. Okatani, et al., Development of a continuum robot enhanced with distributed sensors for search and rescue, Robomech. J. 9 (1) (2022) 8.

[11]

Y. Sun, F. Pancheri, C. Rehekampff, T.C. Lueth, TurBot: A turtle-inspired quadruped robot using topology optimized soft-rigid hybrid legs, IEEE/ASME Trans. Mechatronics 29 (4) (2024) 3193-3202.

[12]

M. Wang, X. Dong, W. Ba, A. Mohammad, D. Axinte, A. Norton, Design, modelling and validation of a novel extra slender continuum robot for in-situ inspection and repair in aeroengine, Robot. Comput. -Integr. Manuf. 67 (2021) 102054.

[13]

R.J. Webster, A.M. Okamura, N.J. Cowan, Toward active cannulas: Miniature snake-like surgical robots, in: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2006, pp. 2857-2863.

[14]

R.J. Webster, J.M. Romano, N.J. Cowan, Mechanics of precurved-tube continuum robots, IEEE Trans. Robot. 25 (1) (2008) 67-78.

[15]

Y. Kim, G.A. Parada, S. Liu, X. Zhao, Ferromagnetic soft continuum robots, Sci. Sci. Robot. 4 (33) (2019) eaax7329.

[16]

J. Edelmann, A.J. Petruska, B.J. Nelson, Magnetic control of continuum devices,Magnetic control of continuum devices, Int. Int. J. Robot. Res. 36 (1) (2017) 68-85.

[17]

K. Ikuta, H. Ichikawa, K. Suzuki, Safety-active catheter with multiplesegments driven by micro-hydraulic actuators, in: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2002: 5th International Conference Tokyo, Japan, September 25-28, 2002 Proceedings, Part I 5, Springer, , 2002, pp. 182-191.

[18]

Z. Mao, Y. Peng, C. Hu, R. Ding, Y. Yamada, S. Maeda, Soft computing-based predictive modeling of flexible electrohydrodynamic pumps, Biomim. Intell. Robotics 3 (3) (2023) 100114.

[19]

S. Li, G. Hao, Current trends and prospects in compliant continuum robots: A survey, in: Actuators, vol. 10, MDPI, 2021, p. 145.

[20]

Y. Sun, Y. Liu, T.C. Lueth, Optimization of stress distribution in tendondriven continuum robots using fish-tail-inspired method, IEEE Robot. Autom. Lett. 7 (2) (2022) 3380-3387.

[21]

Y. Chen, S. Yao, M.Q.-H. Meng, L. Liu, Chained spatial beam constraint model: A general kinetostatic model for tendon-driven continuum robots, IEEE/ASME Trans. Mechatronics (2024).

[22]

T. Wang, M.A. Post, A.M. Tyrrell, Twrist: An agile compliant 3-dof tensegrity joint, Biomim. Intell. Robotics 4 (3) (2024) 100170.

[23]

Y. Sun, T.C. Lueth, Enhancing torsional stiffness of continuum robots using 3-D topology optimized flexure joints, IEEE/ASME Trans. Mechatronics 28 (4) (2023) 1844-1852.

[24]

Y. Sun, T.C. Lueth, Cruciate-ligament-inspired compliant joints: Application to 3D-printed continuum surgical robots, in: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, EMBC, IEEE, 2021, pp. 4645-4648.

[25]

Y. Sun, T.C. Lueth, Design of 3D-printed continuum robots using topologyoptimized compliant joints, in: 2023 IEEE International Conference on SoftRobotics (RoboSoft), 2023, pp. 1-6.

[26]

M.D. Kutzer, S.M. Segreti, C.Y. Brown, M. Armand, R.H. Taylor, S.C. Mears, Design of a new cable-driven manipulator with a large open lumen: Preliminary applications in the minimally-invasive removal of osteolysis, in: 2011 IEEE International Conference on Robotics and Automation, IEEE, 2011, pp. 2913-2920.

[27]

I. Gibson, D.W. Rosen, B. Stucker, M. Khorasani, D. Rosen, B. Stucker, M. Khorasani, Additive manufacturing technologies, vol. 17, Springer, 2021.

[28]

M. Attaran, The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing, Bus. Horiz. 60 (5) (2017) 677-688.

[29]

J. Meyer-Szary, M.S. Luis, S. Mikulski, A. Patel, F. Schulz, D. Tretiakow, J. Fercho, K. Jaguszewska, M. Frankiewicz, E. Pawłowska, et al., The role of 3D printing in planning complex medical procedures and training of medical professionals—cross-sectional multispecialty review, Int. J. Environ. Res. Public Health 19 (6) (2022) 3331.

[30]

M. Chung, N. Radacsi, C. Robert, E.D. McCarthy, A. Callanan, N. Conlisk, P.R. Hoskins, V. Koutsos,On the optimization of low-cost FDM 3D printers for accurate replication of patient-specific abdominal aortic aneurysm geometry, 3D Print. Med. 4 (2018) 1-10.

[31]

H.K. Dave, J.P. Davim, Fused Deposition Modeling Based 3D Printing, Springer International Publishing, 2021.

[32]

L.L. Howell, S.P. Magleby, B.M. Olsen, J. Wiley, Handbook of Compliant Mechanisms, Wiley Online Library, 2013.

[33]

Y. Sun, T.C. Lueth, Safe manipulation in robotic surgery using compliant constant-force mechanism, IEEE Trans. Med. Robotics Bionics 5 (3) (2023) 486-495.

[34]

Y. Sun, D. Zhang, Y. Liu, T.C. Lueth, Fem-based mechanics modeling of bio-inspired compliant mechanisms for medical applications, IEEE Trans. Med. Robotics Bionics 2 (3) (2020) 364-373.

[35]

H.-J. Yu, W.-L. Yang, Z.-X. Yang, W. Dong, Z.-J. Du, Z.-Y. Yan, Hysteresis analysis of a notched continuum manipulator driven by tendon, Mech. Sci. 9 (1) (2018) 211-219.

[36]

Y. Xu, D. Song, Z. Zhang, S. Wang, C. Shi, A novel extensible continuum robot with growing motion capability inspired by plant growth for path-following in transoral laryngeal surgery, Soft Robotics 11 (1) (2024) 171-182.

[37]

F. Feng, W. Hong, L. Xie, Design of 3D-printed flexible joints with presettable stiffness for surgical robots, IEEE Access 8 (2020) 79573-79585.

[38]

Y. Sun, Y. Liu, F. Pancheri, T.C. Lueth, LARG: A lightweight robotic gripper with 3-D topology optimized adaptive fingers, IEEE/ASME Trans. Mechatronics 27 (4) (2022) 2026-2034.

AI Summary AI Mindmap
PDF (3884KB)

237

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/