Embodying rather than encoding: Towards developing a source-filter theory for undulation gait generation

Longchuan Li , Shugen Ma , Isao Tokuda , Zaiyang Liu , Zhenxuan Ma , Yang Tian , Shuai Kang

Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (3) : 100173 -100173.

PDF (2313KB)
Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (3) : 100173 -100173. DOI: 10.1016/j.birob.2024.100173
Research Article
research-article

Embodying rather than encoding: Towards developing a source-filter theory for undulation gait generation

Author information +
History +
PDF (2313KB)

Abstract

Biological undulation enables legless creatures to move naturally, and robustly in various environments. Consequently, many kinds of undulating robots have been developed. However, the fundamental mechanism of biological undulation gait generation has not yet been well explained, which hinders deepening the investigation and optimization of these robots. Towards developing a theory for explaining this biological behavior, which will further guide the design of artificial undulation systems, we propose a hypothesis based on both biological findings and previous robotics studies. To verify the hypothesis, we investigate embodied intelligence of undulation locomotion via a mechanical system. Through experimental study, we observe the phenomenon that undulation gait is a production of the source, which is the torque inputs, and the filter, which is the natural dynamics of the system. We further derive a general mathematical model and conduct morphological computation accordingly. From a simple model to a complicated system, our work explores the principles of undulation gait generation. Our findings significantly simplify the control system design of artificial undulating systems.

Keywords

Undulation gait / Morphological computation / Embodiment / Robot locomotion

Cite this article

Download citation ▾
Longchuan Li, Shugen Ma, Isao Tokuda, Zaiyang Liu, Zhenxuan Ma, Yang Tian, Shuai Kang. Embodying rather than encoding: Towards developing a source-filter theory for undulation gait generation. Biomimetic Intelligence and Robotics, 2024, 4(3): 100173-100173 DOI:10.1016/j.birob.2024.100173

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Longchuan Li: Writing - original draft, Validation, Supervision, Methodology, Investigation. Shugen Ma: Writing - review & editing. Isao Tokuda: Writing - review & editing, Supervision. Zaiyang Liu: Validation. Zhenxuan Ma: Validation, Data curation. Yang Tian: Data curation. Shuai Kang: Writing - review & editing, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by Fundamental Research Funds for the Central Universities, China (ZY2301, BH2316, buctrc202215), the National Natural Science Foundation of China (62273340), and the Natural Science Foundation of China Liaoning Province (2021-MS-031).

References

[1]

M.H. Dickinson, C.T. Farley, R.J. Full, M.A.R. Koehl, R. Kram, S. Lehman, How animals move: An integrative view, Science 288 (5463) (2000) 100-106.

[2]

D.M. Woolley, Evidence for twisted plane undulations in golden hamster sperm tails, J. Cell Biol. 75 (3) (1977) 851-865.

[3]

J. Gray, H.W. Lissmann, The locomotion of nematodes, J. Exp. Biol. 41 (1)(1964) 135-154.

[4]

Z.V. Guo, L. Mahadevan, Limbless undulatory propulsion on land Proc. Natl. Acad. Sci. Limbless undulatory propulsion on land, Proc. Natl. Acad. Sci. 105 (9) (2008) 3179-3184.

[5]

G.B. Gillis, Environmental effects on undulatory locomotion in the Amer-ican eel Anguilla rostrata: Kinematics in water and on land, J. Exp. Biol. 201 (7) (1998) 949-961.

[6]

H. Ohno, S. Hirose, Study on slime robot (proposal of slime robot and design of slim slime robot),in: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, 2000, pp. 2218-2223.

[7]

S. Ma, H. Araya, L. Li, Development of a creeping snake-robot, in: Proceed-ings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, 2001, pp. 77-82.

[8]

H. Yamada, S. Chigisaki, M. Mori,Development of amphibious snake-like robot ACM-R5, in:Proceedings of the 36th International Symposium on Robotics, 2005.

[9]

A.A. Transeth, P. Liljeback, K.Y. Pettersen, Snake robot obstacle aided loco-motion: An experimental validation of a non-smooth modeling approach,in: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp. 2582-2589.

[10]

M. Porez, F. Boyer, A.J. Ijspeert, Improved lighthill fish swimming model for bio-inspired robots: Modeling, computational aspects and experimental comparisons, Int. J. Robot. Res. 33 (10) (2014) 1322-1341.

[11]

S. Hirose, Biologically Inspired Robots, Oxford Univ. Press, London, U.K., 1993.

[12]

S. Ma, Analysis of creeping locomotion of a snake-like robot, Adv. Robot. 15 (2) (2001) 205-224.

[13]

Z. Wang, S. Ma, B. Li, Y. Wang, Passive creeping of a snake-like robot, in:Proceedings of the IEEE International Conference on Robotics and Biomimetics , 2009, pp. 57-62.

[14]

D. Chen, Z. Wu, H. Dong, M. Tan, J. Yu, Exploration of swimming perfor-mance for a biomimetic multi-joint robotic fish with a compliant passive joint, Bioinspir. Biomim. 16 (2) (2020) 026007.

[15]

Y. Cao, L. Li, S. Ma, A creeping snake-like robot with partial actuation, in:Proc. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 , 2022, pp. 1202-1207.

[16]

L. Li, S. Ma, I. Tokuda, Y. Tian, Y. Cao, M. Nokata, Z. Li, Embodying rather than encoding: Undulation with binary input,in:Proc. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 , 2022, pp. 1196-1201.

[17]

T. Chiba, M. Kajiyama, The Vowel: Its Nature and Structure, Phonetic society of Japan, Tokyo, 1958.

[18]

G. Fant, T. Chiba, M. Kajiyama, Pioneers in speech acoustics ((feature articles) sixtieth anniversary of the publication of the vowel, its nature and structure by Chiba and Kajiyama), J. Phonet. Soc. Japan 5 (2) (2001) 4-5.

[19]

Isao T. Tokuda, The source/filter theory of speech , in: The Oxford Research Encyclopedia of Linguistics, 2021.

[20]

A.M. Taylor, D. Reby, The contribution of source-filter theory to mammal vocal communication research, J. Zool. 280 (3) (2010) 221-236.

[21]

Isao T. Tokuda, Non-linear dynamics in mammalian voice production Anthropol. Sci. 126 (1) (2018) 35-41.

[22]

Y. Li, J. Li, M. Akagi, Contributions of the glottal source and vocal tract cues to emotional vowel perception in the valence-arousal space, J. Acoust. Soc. Am. 144 (2) (2018) 908-916.

[23]

T. Saitou, M. Unoki, M. Akagi, Development of an F0 control model based on F0 dynamic characteristics for singing-voice synthesis, Speech Commun. 46 (3-4) (2005) 405-417.

[24]

X. Wang, S. Takaki, J. Yamagishi,Neural source-filter-based waveform model for statistical parametric speech synthesis, in: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2019, pp. 5916-5920.

[25]

A. Rao, P.K. Ghosh, SFNet: A computationally efficient source filter model based neural speech synthesis, IEEE Signal Process. Lett. 27 (2020) 1170-1174.

[26]

T. McGeer, Passive dynamic walking Int. J. Robot. Res. 9 (2) (1990) 62-82.

[27]

R. Pfeifer, M. Lungarella, F. Iida, Self-organization, embodiment, and biologically inspired robotics, Science 318 (2007) 1088-1093.

[28]

P.E. Schiebel, J.M. Rieser, A.M. Hubbard, L. Chen, D.Z. Rocklin, D.I. Goldman,Mechanical diffraction reveals the role of passive dynamics in a slithering snake, Proc. Natl. Acad. Sci. 116 (11) (2019) 4798-4803.

[29]

D.N. Beal, F.S. Hover, M.S. Triantafyllou, J.C. Liao, G.V. Lauder, Passive propulsion in vortex wakes J. Fluid Mech. 549 (2006) 385-402.

[30]

T. Dear, B. Buchanan, R. Abrajan-Guerrero, S.D. Kelly, M. Travers, H. Choset, Locomotion of a multi-link non-holonomic snake robot with passive joints, Int. J. Robot. Res. 39 (5) (2020) 598-616.

[31]

A. Kakogawa, S. Jeon, S. Ma, Stiffness design of a resonance-based planar snake robot with parallel elastic actuators, IEEE Robot. Autom. Lett. 3 (2)(2018) 1284-1291.

[32]

M. Tesch, K. Lipkin, I. Brown, R. Hatton, A. Peck, J. Rembisz, H. Choset, Parameterized and scripted gaits for modular snake robots, Adv. Robot. 23(9) (2009) 1131-1158.

[33]

H. Hauser, A.J. Ijspeert, R.M. Füchslin, R. Pfeifer, W. Maass, Towards a theoretical foundation for morphological computation with compliant bodies, Biol. Cybern. 105 (5) (2011) 355-370.

[34]

J. Snoek, H. Larochelle, R.P. Adams, Practical Bayesian optimization of ma-chine learning algorithms, in: Advances in Neural Information Processing Systems, vol. 25, 2012.

[35]

K.A. Saar, A. Rosendo, F. Iida, Bayesian optimization of gaits on a bipedal slip model, in: 2017 IEEE International Conference on Robotics and Biomimetics, ROBIO, 2017, pp. 1812-1817.

[36]

K.A. Saar, F. Giardina, F. Iida, Model-free design optimization of a hopping robot and its comparison with a human designer, IEEE Robot. Autom. Lett. 3 (2) (2018) 1245-1251.

[37]

J. Hunt, F. Giardina, A. Rosendo, F. Iida, Improving efficiency for an open-loop-controlled locomotion with a pulsed actuation, IEEE/ASME Trans. Mechatronics 21 (3) (2016) 1581-1591.

[38]

F. Ruppert, A. Badri-Spröwitz, Learning plastic matching of robot dynamics in closed-loop central pattern generators, Nat. Mach. Intell. 4 (7) (2022) 652-660.

[39]

P. Liljeback, K.Y. Pettersen, Ø. Stavdahl, J.T. Gravdahl, Snake robot locomo-tion in environments with obstacles, IEEE/ASME Trans. Mechatronics 17(6) (2011) 1158-1169.

[40]

X. Wu, S. Ma, Adaptive creeping locomotion of a CPG-controlled snake-like robot to environment change, Auton. Robots 28 (3) (2010) 283-294.

[41]

R. Thandiackal, K. Melo, L. Paez, J. Herault, T. Kano, K. Akiyama, A.J. Ijspeert, Emergence of robust self-organized undulatory swimming based on local hydrodynamic force sensing, Science Robotics 6 (57) (2021) eabf6354.

[42]

L.C. van Laake, J. de Vries, S.M. Kani, J.T.B. Overvelde, A fluidic relaxation oscillator for reprogrammable sequential actuation in soft robots, Matter 5 (9) (2022) 2898-2917.

[43]

R.D. Kent, Research on speech motor control and its disorders: A review and prospective, J. Commun. Disorders 33 (5) (2000) 391-428.

[44]

D.A. Winter, Human balance and posture control during standing and walking, Gait Posture 3 (4) (1995) 193-214.

[45]

S. Grillners, Neurobiological bases of rhythmic motor acts in vertebrates, Science 228 (4696) (1985) 143-149.

[46]

S. Grillners, Control of Locomotion in Bipeds, Tetrapods, and Fish, in: Handbook of Physiology: The Nervous System II, pp. 1179-1236.

[47]

J.A. Tourville, F.H. Guenther, The DIVA model: A neural theory of speech acquisition and production, Lang. Cogn. Process. 26 (7) (2011) 952-981.

[48]

A. Shumway-Cook, M.H. Woollacott, Motor Control: Translating Research Into Clinical Practice, Lippincott Williams and Wilkins, 2007.

[49]

D.M. Wolpert, J. Diedrichsen, J.R. Flanagan, Principles of sensorimotor learning, Nat. Rev. Neurosci. 12 (12) (2011) 739-751.

[50]

V. Dietz, Human neuronal control of automatic functional movements: Interaction between central programs and afferent input, Physiol. Rev. 72(1)(1992) 33-69.

[51]

R.B. Ivry, R.E. Hazeltine, Perception and production of temporal intervals across a range of durations: Evidence for a common timing mechanism, J. Exp. Psychol.: Hum. Percept. Perform. 21 (1) (1995) 3-18.

[52]

J.M. Hausdorff, et al., Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease, Movement Disorders 13 (3) (1996) 428-437.

[53]

A.A. Smith, The control of voluntary speech movements, J. Acoust. Soc. Am. 92 (2) (1992) 739-755.

[54]

K. Takakusaki, Functional neuroanatomy for posture and gait control J. Mov. Disord. 10 (1) (2017) 1-17.

[55]

D.Q. Nguyen, V.A. Ho, Anguilliform swimming performance of an eel-inspired soft robot, Soft Robot. 9 (3) (2022) 425-439.

[56]

L. Li, C. Zhao, S. He, Q. Qi, S. Kang, S. Ma, Enhancing undulation of soft robots in granular media: A numerical and experimental study on the effect of anisotropic scales, Biomimetic Intell. Robot. 4 (2) (2024) 100158.

[57]

L. Li, S. Ma, I. Tokuda, F. Asano, M. Nokata, Y. Tian, L. Du, Generation of efficient rectilinear gait based on dynamic morphological computation and its theoretical analysis, IEEE Robot. Autom. Lett. 6 (2) (2021) 841-848.

[58]

A. Kakogawa, T. Kawabata, S. Ma, Plate-springed parallel elastic actuator for efficient snake robot movement, IEEE/ASME Trans. Mechatronics 26 (6)(2021) 3051-3063.

AI Summary AI Mindmap
PDF (2313KB)

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/