TWrist: An agile compliant 3-DoF tensegrity joint

Tianyuan Wang , Mark A. Post , Andy M. Tyrrell

Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (3) : 100170 -100170.

PDF (1898KB)
Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (3) : 100170 -100170. DOI: 10.1016/j.birob.2024.100170
Research Article
research-article

TWrist: An agile compliant 3-DoF tensegrity joint

Author information +
History +
PDF (1898KB)

Abstract

Tensegrity structures, with their unique physical characteristics, hold substantial potential in the field of robotics. However, the very structures that will give tensegrity robots potential advantages over traditional robots also hold long term challenges. Due to the inherent high redundancy of tensegrity structures and the employment of tension elements, tensegrity robots exhibit excellent stability, compliance, and flexibility, although this also results in lower structural deformation efficiency. Existing research has endeavoured to enhance the motion performance of tensegrity robots, exploring diverse approaches such as actuation schemes, structure design, aligned with control algorithms. However, the physical constraints of the elements in such structures and the absence of suitable controllers impede further advancements in the usefulness of tensegrity robots. This paper presents a novel design based on an under constrained transition region design and a tailored control approach based on inverse kinematics, improving the motion performance of the proposed novel tensegrity joint. Through this approach, the tensegrity joint, while preserving the advantages of compliance and flexibility expected from tensegrity structures, offers three degrees of rotational freedom, mirroring the controllability of conventional rigid-body joints. The results demonstrate the capability of tensegrity-based robotic joints to provide flexible actuation under situations demanding high compliance. The integration of structure design with a tailored control approach offers a pioneering model for future development of tensegrity robots, underscoring the practical viability of tensegrity structures in the realm of robotics.

Keywords

Tensegrity / Soft robot / Tensegrity control / Robot manipulator

Cite this article

Download citation ▾
Tianyuan Wang, Mark A. Post, Andy M. Tyrrell. TWrist: An agile compliant 3-DoF tensegrity joint. Biomimetic Intelligence and Robotics, 2024, 4(3): 100170-100170 DOI:10.1016/j.birob.2024.100170

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Tianyuan Wang: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Resources, Software, Validation, Visualization, Writing - original draft, Writing - review & editing. Mark A. Post: Resources, Supervision, Writing - review & editing. Andy M. Tyrrell: Resources, Supervision, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]

M.A. Post, X.-T. Yan, P. Letier, Modularity for the future in space robotics: A review, Acta Astronaut. 189 (2021) 530-547.

[2]

J. Delmerico, S. Mintchev, A. Giusti, B. Gromov, K. Melo, T. Horvat, C. Cadena, M. Hutter, A. Ijspeert, D. Floreano, L.M. Gambardella, R. Siegwart, D. Scaramuzza, The current state and future outlook of rescue robotics, J. Field Robot. 36 (7) (2019) 1171-1191.

[3]

C. Majidi, Soft robotics: A Perspective—Current trends and prospects for the future, Soft Robot. 1 (1) (2014) 5-11.

[4]

C. Lee, M. Kim, Y.J. Kim, N. Hong, S. Ryu, H.J. Kim, S. Kim, Soft robot review, Int. J. Control Autom.. 15 (1) (2017) 3-15.

[5]

J. Lai, B. Lu, H.K. Chu, Variable-stiffness control of a dual-segment soft robot using depth vision, IEEE/ASME Trans. Mechatron. 27 (2) (2022) 1034-1045.

[6]

A. Stilli, H.A. Wurdemann, K. Althoefer, A novel concept for safe, stiffness-controllable robot links, Soft Robot. 4 (1) (2017) 16-22.

[7]

R.E. Skelton, J. William Helton, R. Adhikari, J.-P. Pinaud, W. Chan,An introduction to the mechanics of tensegrity structures,in: Y. Hurmuzlu, O. D.I. Nwokah (Eds.), The Mechanical Systems Design Handbook: Modeling, Measurement, and Control, CRC Press, 2002.

[8]

R. Buckminster Fuller, R. Marks, The Dymaxion World of Buckminster Fuller, Anchor Books, Garden City, N.Y, 1973.

[9]

K.D. Snelson, Continuous tension, discontinuous compression structures, 1965.

[10]

R. Skelton, W.J. Helton, R. Adhikari, Mechanics of Tensegrity Beams, Rep (1998-1), UCSD. Structural Systems & Contr. Lab., 1998.

[11]

M.C. Oliveira, R.E. Skelton, Tensegrity Systems, Springer, MA, 2009.

[12]

S. Kaewunruen, C. Ngamkhanong, S. Xu, Large amplitude vibrations of imperfect spider web structures, Sci. Rep. 10 (1) (2020) 19161.

[13]

F. Fraternali, N. Stehling, A. Amendola, B.A. Tiban Anrango, C. Holland, C. Rodenburg, Tensegrity modelling and the high toughness of spider dragline silk, Nanomaterials (Basel) 10 (8) (2020).

[14]

N. Wang, K. Naruse, D. Stamenović, J.J. Fredberg, S.M. Mijailovich, I.M. Tolić-Nø rrelykke, T. Polte, R. Mannix, D.E. Ingber, Mechanical behavior in living cells consistent with the tensegrity model, Proc. Natl. Acad. Sci. USA 98 (14)(2001) 7765-7770.

[15]

D.E. Ingber, Tensegrity I. Cell structure and hierarchical systems biology J. Cell Sci. 116 (Pt 7) (2003) 1157-1173.

[16]

S.M. Levin, 16. Tensegrity, the new biomechanics, in: M. Hutson, A. Ward (Eds.), Oxford Textbook of Musculoskeletal Medicine, Oxford University Press, 2016, pp. 155-156, 158-160.

[17]

A.P. Sabelhaus, J. Bruce, K. Caluwaerts, P. Manovi, R.F. Firoozi, S. Dobi, A. M. Agogino, V. SunSpiral, System design and locomotion of SUPERball, an untethered tensegrity robot, in: 2015 IEEE International Conference on Robotics and Automation, ICRA, 2015, pp. 2867-2873.

[18]

J. Bruce, K. Caluwaerts, A. Iscen, A.P. Sabelhaus, V. SunSpiral, Design and evolution of a modular tensegrity robot platform, in: 2014 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2014, pp. 3483-3489.

[19]

J. Bruce, A.P. Sabelhaus, Y. Chen, D. Lu, K. Morse, S. Milam, K. Caluwaerts, A. M. Agogino, V. SunSpiral, SUPERball: Exploring tensegrities for planetary probes,in:International Symposium on Artificial Intelligence, Robotics and Automation in Space, I-SAIRAS, 2014.

[20]

R. Kobayashi, H. Nabae, G. Endo, K. Suzumori, Soft tensegrity robot driven by thin artificial muscles for the exploration of unknown spatial configurations, IEEE Robot. Autom. Lett. 7 (2) (2022) 5349-5356.

[21]

J. Kimber, Z. Ji, A. Petridou, T. Sipple, K. Barhydt, J. Boggs, L. Dosiek, J. Rieffel, Low-cost wireless modular soft tensegrity robots, in: 2019 2nd IEEE International Conference on Soft Robotics, RoboSoft, ieeexplore. ieee.org, 2019, pp. 88-93.

[22]

J. Rieffel, J.-B. Mouret, Adaptive and resilient soft tensegrity robots, Soft Robot. 5 (3) (2018) 318-329.

[23]

J. Friesen, A. Pogue, T. Bewley, M. de Oliveira, R. Skelton, V. Sunspiral, DuCTT: A tensegrity robot for exploring duct systems, in: 2014 IEEE International Conference on Robotics and Automation, ICRA, 2014, pp. 4222-4228.

[24]

J.M. Friesen, P. Glick, M. Fanton, P. Manovi, A. Xydes, T. Bewley, V. Sunspiral, The second generation prototype of a duct climbing tensegrity robot, DuCTTv2, Proc. - IEEE Int. Conf. Robot. Autom. 2016-June (2016) 2123-2128.

[25]

A.P. Sabelhaus, L.J. van Vuuren, A. Joshi, E.L. Zhu, H.J. Garnier, K.A. Sover, J. Navarro, A. Agogino, A. Agogino, Design, simulation, and testing of a flexible actuated spine for quadruped robots, 2018.

[26]

R. Kobayashi, H. Nabae, K. Suzumori, Active-bending six-bar tensegrity modular robot driven by thin artificial muscles, IEEE Robot. Autom. Lett.(2023) 1-8.

[27]

R. Kobayashi, H. Nabae, K. Suzumori, Large torsion thin artificial muscles tensegrity structure for twist manipulation, IEEE Robot. Autom. Lett. 8 (3)(2023) 1207-1214.

[28]

B.R. Tietz, R.W. Carnahan, R.J. Bachmann, R.D. Quinn, V. SunSpiral, Tetraspine: Robust terrain handling on a tensegrity robot using central pat-tern generators,in: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2013, pp. 261-267.

[29]

D. Zappetti, S. Mintchev, J. Shintake, D. Floreano, Bio-inspired tensegrity soft modular robots, in: Biomimetic and Biohybrid Systems, Springer International Publishing, 2017, pp. 497-508.

[30]

T. Kaufhold, F. Schale, V. Böhm, K. Zimmermann, Indoor locomotion experiments of a spherical mobile robot based on a tensegrity structure with curved compressed members, in: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 2017, pp. 523-528.

[31]

F. Carreño, M.A. Post, Design of a novel wheeled tensegrity robot: a comparison of tensegrity concepts and a prototype for travelling air ducts, Robot. Biomim 5 (1) (2018) 1.

[32]

T. Wang, System Design for Modular Tenseg-rity Robots (Ph.D. thesis), School of Physics, Engineering and Technology, 2023.

[33]

S. Lessard, D. Castro, W. Asper, S.D. Chopra, L.B. Baltaxe-Admony, M. Teodorescu, V. Sunspiral, A. Agogino, A bio-inspired tensegrity manip-ulator with multi-DOF, structurally compliant joints, in: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, Vol. 2016-Noem, IEEE, 2016, pp. 5515-5520.

[34]

J.M. Friesen, J.L. Dean, T. Bewley, V. Sunspiral, A tensegrity-inspired compliant 3-dof compliant joint, in: 2018 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2018, pp. 3301-3306.

[35]

S. Ikemoto, K. Tsukamoto, Y. Yoshimitsu, Development of a modular tensegrity robot arm capable of continuous bending, Front. Robot. AI 8 (2021) 774253.

[36]

D. Stewart, A platform with six degrees of freedom Proc. Inst. Mech. Eng. 180 (1) (1965) 371-386.

[37]

A. Tasora, R. Serban, H. Mazhar, A. Pazouki, D. Melanz, J. Fleischmann, M. Taylor, H. Sugiyama, D. Negrut, Chrono: An open source multi-physics dynamics engine,in: High Performance Computing in Science and Engineering, Springer International Publishing, 2016, pp. 19-49.

[38]

M. Taylor, R. Serban, Validation of Basic Modeling Elements in Chrono, Tech. rep., University of Wisconsin-Madison, 2015.

AI Summary AI Mindmap
PDF (1898KB)

236

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/