Variable stiffness methods of flexible robots for minimally invasive surgery: A review

Botao Lin , Shuang Song , Jiaole Wang

Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (3) : 100168 -100168.

PDF (2845KB)
Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (3) : 100168 -100168. DOI: 10.1016/j.birob.2024.100168
Review
research-article

Variable stiffness methods of flexible robots for minimally invasive surgery: A review

Author information +
History +
PDF (2845KB)

Abstract

With high flexibility and slim body, flexible robots have been widely used in minimally invasive surgery because they can safely reach the lesion deep inside the human body through small incisions or natural orifices. However, high stiffness of robot body is also required for transferring force and maintaining the motion accuracy. To meet these two contradictory requirements, various methods have been implemented to enable adjustable stiffness for flexible surgical robots. In this review, we first summarize the anatomic constraints of common natural tracts of human body to provide a guidance for the design of variable stiffness flexible robots. And then, the variable stiffness methods have been categorized based on their basic principles of varying the stiffness. In the end, two variable stiffness methods with great potential and the moving strategy of variable stiffness flexible robots are discussed.

Keywords

Minimally invasive surgery / Continuum robot / Variable stiffness

Cite this article

Download citation ▾
Botao Lin, Shuang Song, Jiaole Wang. Variable stiffness methods of flexible robots for minimally invasive surgery: A review. Biomimetic Intelligence and Robotics, 2024, 4(3): 100168-100168 DOI:10.1016/j.birob.2024.100168

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Botao Lin: Investigation, Writing - original draft. Shuang Song: Data curation, Project administration, Validation. Jiaole Wang: Conceptualization, Funding acquisition, Investigation, Project administration, Supervision, Writing - original draft, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was suported in part by Talent Recruitment Project of Guangdong (2021QN02Y839), and in part by the Science Technology Innovation Committee of Shenzhen (JCYJ20220818102408018 and GXWD20231129103418001).

References

[1]

K.-W. Kwok, H. Wurdemann, A. Arezzo, A. Menciassi, K. Althoefer, Soft robot-assisted minimally invasive surgery and interventions: Advances and outlook, Proc. IEEE 110 (7) (2022) 871-892.

[2]

J. Zhu, L. Lyu, Y. Xu, H. Liang, X. Zhang, H. Ding, Z. Wu, Intelligent soft surgical robots for next-generation minimally invasive surgery, Adv. Intell. Syst. 3 (5) (2021) 2100011.

[3]

L. Blanc, A. Delchambre, P. Lambert, Flexible medical devices: Review of controllable stiffness solutions, Actuators 6 (3) (2017).

[4]

Y. Kong, J. Wang, N. Zhang, S. Song, B. Li, Dexterity analysis and motion optimization of In-Situ torsionally-steerable flexible surgical robots, IEEE Robot. Autom. Lett. 7 (3) (2022) 8347-8354.

[5]

M. Manti, V. Cacucciolo, M. Cianchetti, Stiffening in soft robotics: A review of the state of the art, IEEE Robot. Autom. Mag. 23 (3) (2016) 93-106.

[6]

Z.A. Azizi A., Sensing the material by minimally invasive surgery grasper, Int. Robot. Autom. J. 4 (3) (2018) 171-174.

[7]

D. Tyson Mark, R. Humphreys Mitchell, Urological applications of natural orifice transluminal endoscopic surgery (NOTES), Nat. Rev. Urol. 11 (6)(2014) 324-332.

[8]

C. Yang, S. Geng, I. Walker, D.T. Branson, J. Liu, J.S. Dai, R. Kang, Geometric constraint-based modeling and analysis of a novel continuum robot with shape memory alloy initiated variable stiffness, Int. J. Robot. Res. 39 (14)(2020) 1620-1634.

[9]

Y.-J. Kim, S. Cheng, S. Kim, K. Iagnemma, A stiffness-adjustable hy-perredundant manipulator using a variable neutral-line mechanism for minimally invasive surgery, IEEE Trans. Robot. 30 (2) (2014) 382-395.

[10]

A. Firouzeh, S.S. Mirrazavi Salehian, A. Billard, J. Paik, An under actuated robotic arm with adjustable stiffness shape memory polymer joints, in: 2015 IEEE International Conference on Robotics and Automation, ICRA, 2015, pp. 2536-2543.

[11]

Q. Gao, Z. Sun, A novel design of water-activated variable stiffness endoscopic manipulator with safe thermal insulation, Actuators 10 (6)(2021).

[12]

H.M. Le, P.T. Phan, C. Lin, L. Jiajun, S.J. Phee, A temperature-dependent, variable-stiffness endoscopic robotic manipulator with active heating and cooling, Ann. Biomed. Eng. 48 (2020) 1837-1849.

[13]

K. Oliver-Butler, J. Till, C. Rucker, Continuum robot stiffness under external loads and prescribed tendon displacements, IEEE Trans. Robot. 35 (2) (2019) 403-419.

[14]

S. Jiang, B. Chen, F. Qi, Y. Cao, F. Ju, D. Bai, Y. Wang, A variable-stiffness continuum manipulators by an SMA-based sheath in minimally invasive surgery , Int. J. Med. Robot. Comput. Assist. Surg. 16 (2) (2020) e2081.

[15]

Z. Shang, J. Ma, S. Wang, Review of variable stiffness mechanisms in minimally invasive surgical manipulators, J. Mech. Eng. 58 (21) (2022).

[16]

Z. Li, x. chu, x. hu, Z. Zhang, n. li, J. Li, Variable stiffness methods for robots: A review, Smart Mater. Struct. (2023).

[17]

M.S. Lavate, R. Todkar, Variable stiffness actuators: A general review, Int. J. Eng. Tech. Res. 4 (7) (2015) 201-205.

[18]

N. Tsagarakis, M. Van Damme, R. Van Ham, B. Vanderborght, L.C. Visser, A. Bicchi, A. Albu-Schäffer, Variable stiffness actuators: Review on design and components, IEEE/ASME Trans. Mechatronics 21 (5) (2016).

[19]

J. Zhu, Y. Sun, J. Xiong, Y. Liu, J. Zheng, L. Bai, Design and experiment of a variable stiffness prosthetic knee joint using parallel elastic actuation, Robot. Auton. Syst. 171 (2024) 104566.

[20]

C.-H. Huang, K.-W. Chiao, C.-P. Yu, Y.-C. Kuo, C.-C. Lan, A variable-stiffness robot for force-sensitive applications, IEEE/ASME Trans. Mechatronics 28 (4) (2023) 1862-1870.

[21]

Z. Zhang, Z. Xu, L.e.a. Emu, Active mechanical haptics with high-fidelity perceptions for immersive virtual reality, Nat. Mach. Intell. 5 (2023) 643-655.

[22]

W. Dou, G. Zhong, J. Cao, Z. Shi, B. Peng, L. Jiang, Soft robotic ma-nipulators: Designs, actuation, stiffness tuning, and sensing, Adv. Mater. Technol. 6 (9) (2021) 2100018.

[23]

I. De Falco, C. Culmone, A. Menciassi, J. Dankelman, J.J. van Den Dobbel-steen, A variable stiffness mechanism for steerable percutaneous in-struments: integration in a needle, Med. Biol. Eng. Comput. 56 (2018) 2185-2199.

[24]

T.M. Huh, Y.-J. Park, K.-J. Cho, Design and analysis of a stiffness adjustable structure using an endoskeleton, Int. J. Precis. Eng. Manuf. 13 (2012) 1255-1258.

[25]

A. Stilli, H.A. Wurdemann, K. Althoefer, A novel concept for safe, stiffness-controllable robot links, Soft Robot. 4 (1) (2017) 16-22.

[26]

A. Shiva, A. Stilli, Y. Noh, A. Faragasso, I.D. Falco, G. Gerboni, M. Cianchetti, A. Menciassi, K. Althoefer, H.A. Wurdemann, Tendon-based stiffening for a pneumatically actuated soft manipulator, IEEE Robot. Autom. Lett. 1 (2)(2016) 632-637.

[27]

A. Stilli, H.A. Wurdemann, K. Althoefer, Shrinkable, stiffness-controllable soft manipulator based on a bio-inspired antagonistic actuation principle,in: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 2476-2481.

[28]

F. Maghooa, A. Stilli, Y. Noh, K. Althoefer, H.A. Wurdemann, Tendon and pressure actuation for a bio-inspired manipulator based on an antagonistic principle, in: 2015 IEEE International Conference on Robotics and Automation, ICRA, 2015, pp. 2556-2561.

[29]

S. Wakimoto, I. Kumagai, K. Suzumori, Development of large intestine endoscope changing its stiffness, in: 2009 IEEE International Conference on Robotics and Biomimetics, ROBIO, 2009, pp. 2320-2325.

[30]

D.P. Noonan, V. Vitiello, J. Shang, C.J. Payne, G.-Z. Yang, A modular, mechatronic joint design for a flexible access platform for MIS,in: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp. 949-954.

[31]

E. Harsono, J. Yang, S. Bhattacharya, H. Yu, Design and analysis of a novel hybrid-driven continuum robot with variable stiffness, Mech. Mach. Theory 177 (2022) 105067.

[32]

P. Molaei, N.A. Pitts, H.B. Gilbert, Independent tendons increase stiffness of continuum robots without actuator coupling, in: 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 2023, pp. 72-78.

[33]

P. Lloyd, T.L. Thomas, V.K. Venkiteswaran, G. Pittiglio, J.H. Chandler, P. Valdastri, S. Misra, A magnetically-actuated coiling soft robot with variable stiffness, IEEE Robot. Autom. Lett. 8 (6) (2023) 3262-3269.

[34]

N. Herzig, L. He, P. Maiolino, S.-A. Abad, T. Nanayakkara, Conditioned haptic perception for 3D localization of nodules in soft tissue palpation with a variable stiffness probe, PLOS ONE 15 (8) (2020) 1-31.

[35]

C. Li, X. Gu, X. Xiao, C.M. Lim, H. Ren, Flexible robot with variable stiffness in transoral surgery, IEEE/ASME Trans. Mechatronics 25 (1) (2020) 1-10.

[36]

X. Wang, Q. Lu, D. Lee, Z. Gan, N. Rojas, A soft continuum robot with self-controllable variable curvature, IEEE Robot. Autom. Lett. 9 (3) (2024) 2016-2023.

[37]

N. Li, D. Lin, J. Wu, Q. Gan, X. Hu, N. Jiao, Novel concentric magnetic continuum robot with multiple stiffness modes for potential delivery of nanomedicine, Magnetochemistry 9 (5) (2023).

[38]

X. Luo, D. Song, Z. Zhang, S. Wang, C. Shi, A novel distal hybrid pneumatic/cable-driven continuum joint with variable stiffness capacity for flexible gastrointestinal endoscopy, Adv. Intell. Syst. 5 (6) (2023) 2200403.

[39]

Y.-J. Kim, S. Cheng, S. Kim, K. Iagnemma, A novel layer jamming mech-anism with tunable stiffness capability for minimally invasive surgery, IEEE Trans. Robot. 29 (4) (2013) 1031-1042.

[40]

Y. Zuo, G. Merritt, X. Wang, Design of a novel surgical robot with rigidity-adjustable joints based on time-division multiplexing actuation, in: 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), 2020, pp. 885-890.

[41]

M. Brancadoro, M. Manti, S. Tognarelli, M. Cianchetti, Fiber jamming transition as a stiffening mechanism for soft robotics, Soft Robot. 7 (6)(2020) 663-674.

[42]

M. Cianchetti, T. Ranzani, G. Gerboni, I. De Falco, C. Laschi, A. Menciassi, STIFF-FLOP surgical manipulator: Mechanical design and experimental characterization of the single module,in: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 3576-3581.

[43]

M. Brancadoro, M. Manti, F. Grani, S. Tognarelli, A. Menciassi, M. Cianchetti, Toward a variable stiffness surgical manipulator based on fiber jamming transition, Front. Robot. AI 6 (2019) 12.

[44]

M. Langer, E. Amanov, J. Burgner-Kahrs, Stiffening sheaths for continuum robots, Soft Robot. 5 (3) (2018) 291-303.

[45]

A.J. Loeve, D.H. Plettenburg, P. Breedveld, J. Dankelman, Endoscope shaft-rigidity control mechanism: ‘‘FORGUIDE’’,IEEE Trans. Biomed. Eng. 59 (2)(2012) 542-551.

[46]

N.G. Cheng, M.B. Lobovsky, S.J. Keating, A.M. Setapen, K.I. Gero, A.E. Hosoi, K.D. Iagnemma, Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media, in: 2012 IEEE International Conference on Robotics and Automation, 2012, pp. 4328-4333.

[47]

T. Yanagita, T. Kamagata, T. Nakamura, Development of an endoscopic support device using veering-out tube with stiffening capability by granular jamming-application to a large intestine of dead swine, Trans. Soc. Instrum. Control Eng. 51 (5) (2015) 290-296.

[48]

M.S. Moses, M.D.M. Kutzer, H. Ma, M. Armand, A continuum manipulator made of interlocking fibers, in: 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 4008-4015.

[49]

A. Jiang, T. Ranzani, G. Gerboni, L. Lekstutyte, K. Althoefer, P. Das-gupta, T. Nanayakkara, Robotic granular jamming: Does the membrane matter? Soft Robot. 1 (3) (2014) 192-201.

[50]

M. Cianchetti, A. Licofonte, M. Follador, F. Rogai, C. Laschi, Bioinspired soft actuation system using shape memory alloys, Actuators 3 (3) (2014) 226-244.

[51]

C. Liu, J.J.C. Busfield, K. Zhang, An electric self-sensing and variable-stiffness artificial muscle Syst. 5 (9) (2023) 2300131.

[52]

B.H. Do, V. Banashek, A.M. Okamura, Dynamically reconfigurable discrete distributed stiffness for inflated beam robots, in: 2020 IEEE International Conference on Robotics and Automation, ICRA, 2020, pp. 9050-9056.

[53]

R. Mukaide, M. Watanabe, K. Tadakuma, Y. Ozawa, T. Takahashi, M. Konyo, S. Tadokoro, Radial-layer jamming mechanism for string configuration, IEEE Robot. Autom. Lett. 5 (4) (2020) 5221-5228.

[54]

T. Ranzani, M. Cianchetti, G. Gerboni, I.D. Falco, A. Menciassi, A soft modular manipulator for minimally invasive surgery: Design and char-acterization of a single module, IEEE Trans. Robot. 32 (1) (2016) 187-200.

[55]

J. Liu, L. Yin, J.H. Chandler, X. Chen, P. Valdastri, S. Zuo, A dual-bending endoscope with shape-lockable hydraulic actuation and water-jet propulsion for gastrointestinal tract screening, Int. J. Med. Robot. Comput. Assist. Surg. 17 (1) (2021) e2197.

[56]

F. Carpi, G. Frediani, C. Gerboni, J. Gemignani, D. De Rossi, Enabling variable-stiffness hand rehabilitation orthoses with dielectric elastomer transducers, Med. Eng. Phys. 36 (2) (2014) 205-211.

[57]

A. Yagi, K. Matsumiya, K. Masamune, H. Liao, T. Dohi, Rigid-flexible outer sheath model using slider linkage locking mechanism and air pressure for endoscopic surgery, in: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2006, Springer, 2006, pp. 503-510.

[58]

C. Pogue, P. Rao, Q. Peyron, J. Kim, J. Burgner-Kahrs, E. Diller, Multiple curvatures in a tendon-driven continuum robot using a novel mag-netic locking mechanism, in: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2022, pp. 472-479.

[59]

B. Lin, J. Wang, S. Song, B. Li, M.Q.-H. Meng, A modular lockable mech-anism for tendon-driven robots: Design, modeling and characterization, IEEE Robot. Autom. Lett. 7 (2) (2022) 2023-2030.

[60]

Y. Piskarev, J. Shintake, C. Chautems, J. Lussi, Q. Boehler, B.J. Nelson, D. Floreano, A variable stiffness magnetic catheter made of a conductive phase-change polymer for minimally invasive surgery, Adv. Funct. Mater. 32 (20) (2022) 2107662.

[61]

J. Wang, S. Wang, J. Li, X. Ren, R.M. Briggs, Development of a novel robotic platform with controllable stiffness manipulation arms for laparoendo-scopic single-site surgery (LESS), Int. J. Med. Robot. Comput. Assist. Surg. 14 (1) (2018) e1838.

[62]

R. Zhao, Y. Yao, Y. Luo, Development of a variable stiffness over tube based on low-melting-point-alloy for endoscopic surgery, J. Med. Devices 10 (2) (2016) 021002.

[63]

H. Wang, Z. Chen, S. Zuo, Flexible manipulator with low-melting-point alloy actuation and variable stiffness, Soft Robot. 9 (3) (2022) 577-590.

[64]

C. Chautems, A. Tonazzini, Q. Boehler, S.H. Jeong, D. Floreano, B.J. Nelson, Magnetic continuum device with variable stiffness for minimally invasive surgery, Adv. Intell. Syst. 2 (6) (2020) 1900086.

[65]

N. Cheng, G. Ishigami, S. Hawthorne, H. Chen, M. Hansen, M. Telleria, R. Playter, K. Iagnemma, Design and analysis of a soft mobile robot com-posed of multiple thermally activated joints driven by a single actuator, in: 2010 IEEE International Conference on Robotics and Automation, 2010, pp. 5207-5212.

[66]

F. Alambeigi, R. Seifabadi, M. Armand, A continuum manipulator with phase changing alloy, in: 2016 IEEE International Conference on Robotics and Automation, ICRA, 2016, pp. 758-764.

[67]

A.S. Huan, W. Xu, H. Ren, Investigation of a stiffness varying mechanism for flexible robotic system, in: 2016 IEEE International Conference on Mechatronics and Automation, 2016, pp. 828-833.

[68]

C. He, S. Wang, S. Zuo, A linear stepping endovascular intervention robot with variable stiffness and force sensing, Int. J. Comput. Assist. Radiol. Surg. 13 (2018) 671-682.

[69]

H.M. Le, L. Cao, T.N. Do, S.J. Phee, Design and modelling of a vari-able stiffness manipulator for surgical robots, Mechatronics 53 (2018) 109-123.

[70]

C. Chautems, A. Tonazzini, D. Floreano, B.J. Nelson, A variable stiffness catheter controlled with an external magnetic field, in: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2017, pp. 181-186.

[71]

J. Lussi, M. Mattmann, S. Sevim, F. Grigis, C. De Marco, C. Chautems, S. Pané, J. Puigmartí-Luis, Q. Boehler, B.J. Nelson, A submillimeter continuous variable stiffness catheter for compliance control, Adv. Sci. 8 (18) (2021) 2101290.

[72]

Y. Piskarev, Y. Sun, M. Righi, Q. Boehler, C. Chautems, C. Fischer, B.J. Nelson, J. Shintake, D. Floreano, Fast-response variable-stiffness magnetic catheters for minimally invasive surgery, Advanced science, n/a (n/a) 2305537.

[73]

M. Richter, V.K. Venkiteswaran, S. Misra, Concentric tube-inspired mag-netic reconfiguration of variable stiffness catheters for needle guidance, IEEE Robot. Autom. Lett. 8 (10) (2023) 6555-6562.

[74]

M. Mattmann, Q. Boehler, X.-Z. Chen, S. Pané, B.J. Nelson, Shape memory polymer variable stiffness magnetic catheters with hybrid stiffness con-trol, in: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2022, pp. 9589-9595.

[75]

Y. Kim, S.S. Cheng, J.P. Desai, Active stiffness tuning of a spring-based continuum robot for MRI-guided neurosurgery, IEEE Trans. Robot. 34 (1)(2018) 18-28.

[76]

L.T. Gaeta, K.J. McDonald, L. Kinnicutt, M. Le, S. Wilkinson-Flicker, Y. Jiang, T. Atakuru, E. Samur, T. Ranzani, Magnetically induced stiffening for soft robotics, Soft Matter 19 (14) (2023) 2623-2636.

[77]

A. Sadeghi, L. Beccai, B. Mazzolai,Innovative soft robots based on electro-rheological fluids, in:2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 4237-4242.

[78]

K.J. McDonald, L. Kinnicutt, A.M. Moran, T. Ranzani, Modulation of mag-netorheological fluid flow in soft robots using electropermanent magnets, IEEE Robot. Autom. Lett. 7 (2) (2022) 3914-3921.

[79]

X. Yin, J. Yan, S. Wen, J. Zhang, Magnetorheological fluid-filled origami joints with variable stiffness characteristics, IEEE/ASME Trans. Mechatronics 28 (3) (2023) 1546-1557.

[80]

S. Kitano, T. Komatsuzaki, I. Suzuki, M. Nogawa, H. Naito, S. Tanaka, Development of a rigidity tunable flexible joint using magneto-rheological compounds—Toward a multijoint manipulator for laparoscopic surgery, Front. Robot. AI 7 (2020).

[81]

Y. Wang, X. Hu, L. Cui, X. Xiao, K. Yang, Y. Zhu, H. Jin, Bioinspired hand-held time-share driven robot with expandable DoFs, Nature Commun. 15 (768) (2024).

[82]

A.B. Clark, N. Rojas, Malleable robots: Reconfigurable robotic arms with continuum links of variable stiffness, IEEE Trans. Robot. 38 (6) (2022) 3832-3849.

[83]

W.R. Wockenfuß, V. Brandt, L. Weisheit, W.-G. Drossel, Design, modeling and validation of a tendon-driven soft continuum robot for planar motion based on variable stiffness structures, IEEE Robot. Autom. Lett. 7 (2)(2022) 3985-3991.

[84]

J. Meng, S. Li, F. Zhang, Q. Li, Z. Qin, Cochlear size and shape variability and implications in cochlear implantation surgery, Otol. Neurotol. 37 (9)(2016) 1307-1313.

[85]

L.N. Butaric, M. Wadle, J. Gascon, Pediatric Imaging, Neurocognition and Genetics Study, Anatomical variation in maxillary sinus ostium positioning: Implications for nasal-sinus disease, Anat. Rec. 302 (6) (2019) 917-930.

[86]

T.N. Marks, S.D. Maddux, L.N. Butaric, R.G. Franciscus, Climatic adaptation in human inferior nasal turbinate morphology: Evidence from arctic and equatorial populations, Am. J. Phys. Anthropol. 169 (3) (2019) 498-512.

[87]

F. Yoshimachi, T. Matsukage, G. Amoroso, D. Fraser, B. Claessen, S. Saito, Focus on maximal miniaturisation of transradial coronary access materials and techniques by the slender club Japan and europe: An overview and classification, EuroIntervention 10 (2014).

[88]

J. Rogatinsky, D. Recco, J. Feichtmeier, Y. Kang, N. Kneier, P. Hammer, E. O’Leary, D. Mah, D. Hoganson, N.V. Vasilyev, T. Ranzani, A multifunctional soft robot for cardiac interventions Sci. Adv. 9 (43) (2023) eadi5559.

[89]

A. Oezcelik, S.R. DeMeester, General anatomy of the esophagus, Thorac. Surg. Clin. 21 (2) (2011) 289—297, x.

[90]

M. Bush, P. Papa Petros, B. Barrett-Lennard, On the flow through the human female urethra, J. Biomech. 30 (9) (1997) 967-969.

[91]

S. Varadarajulu, S. Banerjee, B.A. Barth, D.J. Desilets, V. Kaul, S.R. Kethu, M. C. Pedrosa, P.R. Pfau, J.L. Tokar, A. Wang, L.-M. Wong Kee Song, S.A. Rodriguez, GI endoscopes, Gastrointest. Endosc. 74 (1) (2011) 1-6.e6.

[92]

M. Grigovich, V.S. Kacharia, N. Bharwani, A. Hemingway, V. Mijatovic, S.K. Rodgers, Evaluating fallopian tube patency: What the radiologist needs to know, RadioGraphics 41 (6) (2021) 1876-1896.

[93]

B. Yashaswini, T. Pasha, R. Reddy, T. Naveen, S.R. Palled, U. Krishna, V. Lokesh, P. Sridhar, R. Nikhila, B. Thejaswini, et al., Comparison of dosimetric analysis of organs at risk and target volumes for ovoids and cylinders in endometrial carcinoma, J. Contemp. Brachytherapy 15 (6)(2023) 414-421.

[94]

M. Harvey, The size of the cervix and its relationship with age and parity, Urogynaecologia 29 (1) (2016).

[95]

P.S. Wellborn, J.E. Mitchell, N.J. Pieper, R.J. Webster, Design and analysis of a small-scale magnetorheological brake, IEEE/ASME Trans. Mechatronics 27 (5) (2022) 3099-3109.

[96]

Y.-J. Kim, S. Cheng, S. Kim, K. Iagnemma, A stiffness-adjustable hy-perredundant manipulator using a variable neutral-line mechanism for minimally invasive surgery, IEEE Trans. Robot. 30 (2) (2013) 382-395.

[97]

J. Guo, J. Leng, J. Rossiter, Electroadhesion technologies for robotics: A comprehensive review, IEEE Trans. Robot. 36 (2) (2020) 313-327.

[98]

J. Shintake, S. Rosset, B.E. Schubert, D. Floreano, H. Shea, Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators, Adv. Mater. 28 (2) (2016) 231-238.

[99]

Z. Xu, Y. Chen, Q. Xu, Spreadable magnetic soft robots with on-demand hardening, Research 6 (2023) 0262.

[100]

C. Lin, B. Lin, E. Lyu, S. Song, J. Wang,An electrostatic locking mechanism for tendon-driven surgical robot, Procedia Comput. Sci. 226 (2023) 43-49, Proceedings of International Conference on Biomimetic Intelligence and Robotics.

[101]

D. Wei, Q. Xiong, J. Dong, H. Wang, X. Liang, S. Tang, X. Xu, H. Wang, H. Wang, Electrostatic adhesion clutch with su-perhigh force density achieved by MXene-Poly(Vinylidene Fluoride-Trifluoroethylene-Chlorotrifluoroethylene) composites, Soft Robot. 10 (3)(2023) 482-492.

[102]

R.P. Chhabra, Non-Newtonian fluids: an introduction, Rheol. Complex Fluids (2010) 3-34.

[103]

C. Bishop, M. Russo, X. Dong, D. Axinte, A novel underactuated continuum robot with shape memory alloy clutches, IEEE/ASME Trans. Mechatronics 27 (6) (2022) 5339-5350.

[104]

H. Xie, C. Wang, S. Li, L. Hu, H. Yang, A geometric approach for follow-the-leader motion of serpentine manipulator, Int. J. Adv. Robot. Syst. 16(5) (2019).

[105]

Y. Kong, S. Song, N. Zhang, J. Wang, B. Li, Design and kinematic modeling of In-Situ torsionally-steerable flexible surgical robots, IEEE Robot. Autom. Lett. 7 (2) (2022) 1864-1871.

[106]

T. Liu, T. Zhang, J. Katupitiya, J. Wang, L. Wu, Haptics-enabled forceps with multimodal force sensing: Toward task-autonomous surgery, IEEE/ASME Trans. Mechatronics (2023) 1-12.

[107]

E. Lyu, T. Liu, J. Wang, S. Song, M.Q.H. Meng, Motion planning of manipulator by points-guided sampling network, IEEE Trans. Autom. Sci. Eng. 20 (2) (2023) 821-831.

[108]

Q. Wu, X. Wang, B. Chen, H. Wu, Z. Shao, Development and hybrid force/position control of a compliant rescue manipulator, Mechatronics 46 (2017) 143-153.

[109]

J. Blaise, M.C.F. Bazzocchi, Space manipulator collision avoidance using a deep reinforcement learning control, Aerospace 10 (9) (2023).

AI Summary AI Mindmap
PDF (2845KB)

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/