NP-MBO: A newton predictor-based momentum observer for interaction force estimation of legged robots

Zhengguo Zhu , Weikai Ding , Weiliang Zhu , Daoling Qin , Teng Chen , Xuewen Rong , Guoteng Zhang

Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (2) : 100160 -100160.

PDF (1972KB)
Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (2) : 100160 -100160. DOI: 10.1016/j.birob.2024.100160
Research Article
research-article

NP-MBO: A newton predictor-based momentum observer for interaction force estimation of legged robots

Author information +
History +
PDF (1972KB)

Abstract

Swift perception of interaction forces is a crucial skill required for legged robots to ensure safe human-robot interaction and dynamic contact management. Proprioceptive-based interactive force is widely applied due to its outstanding cross-platform versatility. In this paper, we present a novel interactive force observer, which possesses superior dynamic tracking performance. We propose a dynamic cutoff frequency configuration method to replace the conventional fixed cutoff frequency setting in the traditional momentum-based observer (MBO). This method achieves a balance between rapid tracking and noise suppression. Moreover, to mitigate the phase lag introduced by the low-pass filtering, we cascaded a Newton Predictor (NP) after MBO, which features simple computation and adaptability. The precision analysis of this method has been presented. We conducted extensive experiments on the point-foot biped robot BRAVER to validate the performance of the proposed algorithm in both simulation and physical prototype.

Keywords

Interaction force estimation / Momentum-based observer / Newton predictor / Force control

Cite this article

Download citation ▾
Zhengguo Zhu, Weikai Ding, Weiliang Zhu, Daoling Qin, Teng Chen, Xuewen Rong, Guoteng Zhang. NP-MBO: A newton predictor-based momentum observer for interaction force estimation of legged robots. Biomimetic Intelligence and Robotics, 2024, 4(2): 100160-100160 DOI:10.1016/j.birob.2024.100160

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zhengguo Zhu: Data curation, Formal analysis, Methodology, Validation, Writing - original draft. Weikai Ding: Data curation, Formal analysis, Validation. Weiliang Zhu: Validation. Daoling Qin: Validation. Teng Chen: Project administration, Writing - review & editing. Xuewen Rong: Funding acquisition, Project administration. Guoteng Zhang: Funding acquisition, Project administration, Supervision, Validation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported in part by the National Key Research and Development Program of China (2022YFB4701504), the National Natural Science Foundation of China (62373223 and 62203268), and Youth Innovation and Technology Support Plan for Higher Education Institutions in Shandong Province (2023KJ029).

References

[1]

A. Dietrich, C. Ott, Hierarchical impedance-based tracking control of kinematically redundant robots, IEEE Trans. Robot. 36 (1) (2020) 204-221.

[2]

X. Bao, S. Guo, Y. Guo, C. Yang, L. Shi, Y. Li, Y. Jiang, Multilevel operation strategy of a vascular interventional robot system for surgical safety in teleoperation, IEEE Trans. Robot. 38 (4) (2022) 2238-2250.

[3]

J. Heinzmann, A. Zelinsky, Quantitative safety guarantees for physical human-robot interaction, Int. J. Robot. Res. 22 (7-8) (2003) 479-504.

[4]

A. De Luca, A. Albu-Schaffer, S. Haddadin, G. Hirzinger,Collision detection and safe reaction with the DLR-iii lightweight manipulator arm, in:2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, pp. 1623-1630.

[5]

M. Camurri, M. Fallon, S. Bazeille, A. Radulescu, V. Barasuol, D.G. Caldwell, C. Semini, Probabilistic contact estimation and impact detection for state estimation of quadruped robots, IEEE Robot. Autom. Lett. 2 (2) (2017) 1023-1030.

[6]

F. Jenelten, R. Grandia, F. Farshidian, M. Hutter, TAMOLS: Terrain-aware motion optimization for legged systems, IEEE Trans. Robot. 38 (6) (2022) 3395-3413.

[7]

M. Focchi, R. Orsolino, M. Camurri, V. Barasuol, C. Mastalli, D. Caldwell, C. Semini, Heuristic planning for rough terrain locomotion in presence of external disturbances and variable perception quality, 2018.

[8]

Z. Zhu, G. Zhang, Z. Sun, T. Chen, X. Rong, A. Xie, Y. Li, Proprioceptive-based whole-body disturbance rejection control for dynamic motions in legged robots, IEEE Robot. Autom. Lett. 8 (11) (2023) 7703-7710.

[9]

D. Qin, G. Zhang, Z. Zhu, X. Zeng, J. Cao, An online terrain classifica-tion framework for legged robots based on acoustic signals, Biomim. Intell. Robotics 3 (2) (2023) 100091,[Online].Available: https://www.sciencedirect.com/science/article/pii/S2667379723000050.

[10]

J. Christie, N. Kottege, Acoustics based terrain classification for legged robots, in: 2016 IEEE International Conference on Robotics and Automation, ICRA, 2016, pp. 3596-3603.

[11]

M.M. Venâncio, R.S. Gonçalves, R.A.d.C. Bianchi, Terrain identification for humanoid robots applying convolutional neural networks, IEEE/ASME Trans. Mechatronics 26 (3) (2021) 1433-1444.

[12]

P. Filitchkin, K. Byl,Feature-based terrain classification for LittleDog, in: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems , 2012, pp. 1387-1392.

[13]

F. Yang, C. Chen, Z. Wang, H. Chen, Y. Liu, G. Li, X. Wu, Vit-based terrain recognition system for wearable soft exosuit, Biomim. Intell. Robotics 3 (1) (2023) 100087, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2667379723000013.

[14]

U. Kim, G. Jo, H. Jeong, C.H. Park, J.-S. Koh, D.I. Park, H. Do, T. Choi, H.-S. Kim, C. Park, A novel intrinsic force sensing method for robot manipulators during human-robot interaction, IEEE Trans. Robot. 37 (6)(2021) 2218-2225.

[15]

J. Long, Q. Liang, W. Sun, Y. Wang, D. Zhang, Ultrathin three-axis FBG wrist force sensor for collaborative robots, IEEE Trans. Instrum. Meas. 70 (2021) 1-15.

[16]

Y. Dai, S. Gao, A flexible multi-functional smart skin for force, touch position, proximity, and humidity sensing for humanoid robots, IEEE Sens. J. 21 (23) (2021) 26355-26363.

[17]

Z. Zhang, M. Leibold, D. Wollherr, Integral sliding-mode observer-based disturbance estimation for Euler-Lagrangian systems, IEEE Trans. Control Syst. Technol. 28 (6) (2020) 2377-2389.

[18]

G. Zhang, S. Ma, Y. Li, Contact force estimation and regulation of a position-controlled floating base system without joint torque information, in: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2020, pp. 3967-3974.

[19]

J. Englsberger, Combining Reduced Dynamics Models and Whole-Body Control for Agile Humanoid Locomotion (Ph.D. dissertation), 2016.

[20]

V. Morlando, A. Teimoorzadeh, F. Ruggiero, Whole-body control with disturbance rejection through a momentum-based observer for quadruped robots, Mech. Mach. Theory 164 (2021) 104412.

[21]

G. Bledt, P.M. Wensing, S. Ingersoll, S. Kim, Contact model fusion for event-based locomotion in unstructured terrains, in: 2018 IEEE International Conference on Robotics and Automation, ICRA, 2018, pp. 4399-4406.

[22]

J. Bingbing, L. Qian, Y. Kun, D. Qianli, M. Xianchao, H. Fei, D. Ke,A RLSN-based current statistical model for target range tracking, in:2021 CIE International Conference on Radar (Radar), 2021, pp. 902-906.

[23]

Z. Zhu, W. Zhu, G. Zhang, T. Chen, Y. Li, X. Rong, R. Song, D. Qin, Q. Hua, S. Ma, Design and control of BRAVER: a bipedal robot actuated via proprioceptive electric motors, Auton. Robots (2023) 1-15.

[24]

F. Jenelten, R. Grandia, F. Farshidian, M. Hutter, TAMOLS: Terrain-aware motion optimization for legged systems, IEEE Trans. Robot. 38 (6) (2022) 3395-3413.

[25]

V. Morlando, A. Teimoorzadeh, F. Ruggiero, Whole-body control with disturbance rejection through a momentum-based observer for quadruped robots, Mech. Mach. Theory 164 (2021) 104412, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0094114X21001701.

[26]

B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling, Planning and Control, first ed., Springer Publishing Company, Incorporated, 2008.

[27]

S. Ovaska, O. Vainio, Recursive linear smoothed Newton predictors for polynomial extrapolation, IEEE Trans. Instrum. Meas. 41 (4) (1992) 510-516.

[28]

P.J. Davis, Interpolation and Approximation, Courier Corporation, 1975.

[29]

W. Feller, An Introduction to Probability Theory and its Applications, John Wiley & Sons, 2008.

AI Summary AI Mindmap
PDF (1972KB)

241

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/