Swimmer with submerged SiO2/Al/LiNbO3 surface acoustic wave propulsion system

Deqing Kong , Ryo Tanimura , Fang Wang , Kailiang Zhang , Minoru Kuribayashi Kurosawa , Manabu Aoyagi

Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (2) : 100159 -100159.

PDF (2054KB)
Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (2) : 100159 -100159. DOI: 10.1016/j.birob.2024.100159
Research Article
research-article

Swimmer with submerged SiO2/Al/LiNbO3 surface acoustic wave propulsion system

Author information +
History +
PDF (2054KB)

Abstract

Acoustic propulsion system presents a novel underwater propulsion approach in small scale swimmer. This study introduces a submerged surface acoustic wave (SAW) propulsion system based on the SiO2/Al/LiNbO 3 structure. At 19.25 MHz, the SAW propulsion system is proposed and investigated by the propulsion force calculation, PIV measurements and propulsion measurements. 3.3 mN propulsion force is measured at 27.6 Vpp. To evaluate the miniature swimmer, the SAW propulsion systems with multiple frequencies are studied. At 2.2 W, the submerged SAW propulsion system at 38.45 MHz demonstrates 0.83 mN/mm2 propulsion characteristics. At 96.13 MHz and 24 Vpp, the movements of miniature swimmer with a fully submerged SAW propulsion system are recorded and analyzed to a maximum of 177 mm/s. Because of miniaturization, high power density, and simple structure, the SAW propulsion system can be expected for some microrobot applications, such as underwater drone, pipeline robot and intravascular robot.

Keywords

Acoustofluidics / Surface acoustic wave / Swimmer / Underwater propulsion system

Cite this article

Download citation ▾
Deqing Kong, Ryo Tanimura, Fang Wang, Kailiang Zhang, Minoru Kuribayashi Kurosawa, Manabu Aoyagi. Swimmer with submerged SiO2/Al/LiNbO3 surface acoustic wave propulsion system. Biomimetic Intelligence and Robotics, 2024, 4(2): 100159-100159 DOI:10.1016/j.birob.2024.100159

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work is based on results obtained from a project, JPNP20004, subsidized by the New Energy and Industrial Technology Development Organization (NEDO).

References

[1]

C.A. Aubin, S. Choudhury, R. Jerch, L.A. Archer, J.H. Pikul, R.F. Shepherd, Electrolytic vascular systems for energy-dense robots, Nature 571 (2019) 51-57.

[2]

L. Paull, S. Saeedi, M. Seto, H. Li, AUV navigation and localization: A review, IEEE J. Ocean. Eng. 39 (2013) 131-149.

[3]

T. Huang, H. Gu, B. Nelson, Nelson, Increasingly intelligent micromachines, Ann. Rev. Control Robotics Auton Syst 5 (2022) 279-310.

[4]

B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Microrobots for minimally invasive medicine, Anna. Rev. Boomed. Eng. 12 (2010) 55-85.

[5]

L. Zhang, J.J. Abbott, L. Dong, B.E. Kratochvil, D.J. Bell, B.J. Nelson, Artificial bacterial flagella: fabrication and magnetic control, Appl. Phys. Lett. 94 (2009) 064107.

[6]

D. Ahmed, C. Dillinger, A. Hong, B.J. Nelson, Artificial acousto-magnetic soft microswimmers, Int. J. Adv. Mater. Technol. 2 (2017) 1700050.

[7]

C. Zhang, J. Chen, J. Li, Y. Peng, Z. Mao, Large language models for human-robot interaction: A review, Biomim. Intell. Robotics (2023) 100131.

[8]

Z. Mao, T. Iizuka, S. Maeda, Bidirectional electrohydrodynamic pump with high symmetrical performance and its application to a tube actuator, Sensors Actuators A 332 (2021) 113168.

[9]

H. Gu, Q. Boehler, H. Cui, E. Secchi, G. Savorana, C. Marco, S. Gervasoni, Magnetic cilia carpets with programmable meta-chronal waves, Nature Commun. 11 (1) (2022) 1-10.

[10]

T. Huang, H. Huang, D. Jin, Q. Chen, J. Huang, L. Zhang, H. Duan, Four-dimensional micro-building blocks, Sci. Adv. 6 (3) (2020) eaav8219.

[11]

H. Gu, Q. Boehler, D. Ahmed, B. Nelson, Magnetic quadrupole assemblies with arbitrary shapes and magnetizations, Science Robotics 4 (35) (2019) eaax8977.

[12]

B. Özkale, R. Parreira, A. Bekdemir, L. Pancaldi, E. Özelc, C. Amadio, M. Kaynak, F. Stellacci, D.J. Mooney, M.S. Sakar, Modular soft robotic microdevices for dexterous biomanipulation, Lab. Chip 19 (2019) 778-788.

[13]

M. Guix, C.C. Mayorga-Martinez, A. Merckoci, Nano/micrimotors in (bio)chemical science application, Chem. Rev. 114 (2014) 6285-6322.

[14]

C.R. Knick, D.J. Sharar, A.A. Wilson, G.L. Smith, C.J. Morris, H.A. Bruck, High frequency, low power, electrically actuated shape memory alloy MEMS bimorph thermal actuators, J. Micromech. Microeng. 29 (2019) 075005.

[15]

B. Wang, Y. Zhang, L. Zhang, Recent progress on micro-and nano-robots: Towards in vivo tracking and localization, Quant. Imaging Med. Surg. 8 (2018) 461.

[16]

D. Mozaffarian, E.J. Benjamin, A.S. Go, D.K. Arnett, M.J. Blaha, M. Cushman, S.R. Das, S. de Ferranti, J.-P. Després, H.J. Fullerton, Heart disease and stroke statistics—2016 update:A report from the American Heart Association, Circulation 133 (2016) e38-e360.

[17]

H. Lu, R. Bekker, M. Grundeken, P. Woudstra, J. Wykrzykowska, J. Tijssen, R. de Winter, K. Koch,Five-year clinical follow-up of the STENTYS self-apposing stent in complex coronary anatomy: A single-centre experience with report of specific angiographic indications,Neth. Heart J. 26 (2018) 263-271.

[18]

E.M. Purcell, Life at low Reynolds number, Amer. J. Phys. 45 (1977) 3-11.

[19]

K. Lee, H. Shao, R. Weissleder, H. Lee, Acoustic purification of extracellular microvesicles, ACS Nano 9 (2015) 2321-2327.

[20]

F. Li, X. Xia, Z. Deng, J. Lei, Y. Shen, Q. Lin, W. Zhou, L. Meng, J. Wu, F. Cai, H. Zheng, Ultrafast Rayleigh-like streaming in a sub-wavelength slit between two phononic crystal plates, J. Appl. Phys. 125 (2019) 134903.

[21]

F. Li, F. Yan, Z. Chen, J. Lei, J. Yu, M. Chen, W. Zhou, L. Meng, L. Niu, J. Wu, J. Li, F. Cai, H. Zheng, Phononic crystal-enhanced near-boundary streaming for sonoporation, Appl. Phys. Lett. 113 (2018) 083701.

[22]

L. Huang, F. Li, F. Cai, L. Meng, W. Zhou, D. Kong, H. Zheng, Phononic crystal-induced standing lamb wave for the transla-tion of subwavelength microparticles, Appl. Phys. Lett. 121 (2022) 023505.

[23]

J. Friend, L. Yeo, Encyclopedia of micro- and nanofluidics, in: Chap. Piezoelectric Microdispensers, Springer, New York, 2008, pp. 1662-1672.

[24]

J. Friend, L. Yeo, Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics, Rev. Modern Phys. 83 (2011).

[25]

H. Yun, D. Kong, M. Aoyagi, Characteristics of thickness-vibration-mode PZT transducer for acoustic micropumps, Sensors Actuators A 332 (2021) 113206.

[26]

L. Yeo, J. Friend, Ultrafast microfluidics using surface acoustic waves, Biomicrofluidics 3 (2009) 012002.

[27]

L. Huang, S. Bao, F. Cai, L. Meng, W. Zhou, J. Zhou, D. Kong, F. Li, H. Zheng, Acoustic rotation of multiple subwavelength cylinders for three-dimensional topography reconstruction, J. Appl. Phys. 134 (2023) 20.

[28]

D. Kong, Y. Wang, T. Tsubata, M.K. Kurosawa, M. Aoyagi,Atomization characteristics of 9.6 MHz directional surface acoustic wave for 1-micron spray system, Sensors Actuators A 365 (2024) 114911.

[29]

R. Tanimura, D. Kong, M. Aoyagi, Multi-degrees-of-freedom swimmer using an ultrasonic longitudinal transducer, Japan. J. Appl. Phys. 61 (2022) SG1038.

[30]

D. Kong, T. Hirata, Y. Wang, F. Li, M.K. Kurosawa, M. Aoyagi, Acoustic underwater propulsion system based on ultrasonic disc PZT transducer, Sensors Actuators A 359 (2023) 114502.

[31]

K. Li, X. Zhou, Y. Liu, J. Sun, X. Tian, H. Zheng, L. Zhang, J. Deng, J. Liu, W. Chen, J. Zhao, A 5 cm-scale piezoelectric jetting agile underwater robot, Adv. Intell. Syst. (2023) 2200262.

[32]

J. Liu, X. Wang, H. Yu, L. Wang, S. Chen, A small-scale swimmer actuated by acoustic radiation force, Smart Mater. Struct. 32 (2023) 115002.

[33]

D. Kong, T. Hirata, Y. Wang, F. Li, M.K. Kurosawa, M. Aoyagi, A novel miniature swimmer propelled by 36◦ Y-cut lithium niobate acoustic propulsion system, Sensors Actuators A 365 (2024) 114837.

[34]

Y. Bourquin, J.M. Cooper, Swimming using surface acoustic waves, PLoS One 8 (2013) e42686.

[35]

D. Kong, K. Nishio, M.K. Kurosawa, Surface acoustic wave propulsion system with acoustic radiation force, Sensors Actuators A Phys. 309 (2020) 111943.

[36]

N. Zhang, Y. Wen, J. Friend, MHz-order surface acoustic wave thruster for underwater silent propulsion, micromachines (2020) 11419.

[37]

D. Kong, R. Tanimura, F. Wang, K. Zhang, M.K. Kurosawa, M. Aoyagi, Submerged surface acoustic wave propulsion system with SiO2/Al/LN structure, in: Proc, IEEE Ultrasonics Symp, 2023, pp. 1-2.

[38]

W.L. Nyborg, Acoustic Streaming Physical Acoustics, Principles and Methods, vol. 2, Part B, Academic Press, 1965, pp. 265-331,

[39]

J. Lighthill, Acoustic streaming, J. Sound Vib. 61 (1978) 391-418.

[40]

S. Shiokawa, Y. Matsui, T. Moriizumi, Experimental study on liquid streaming by SAW, Japan. J. Appl. Phys. 28 (1989) 126-128.

[41]

A.A.S. Junior, Ultrasonic Waves, vol. 147, 2012.

[42]

J. Wu, J. Niu, Y. Liu, X. Rong, R. Song, H. Dong, J. Zhao, Y. Li, Development of a self-moving ultrasonic actuator with high carrying/towing capability driven by longitudinal traveling wave, IEEE/ASME Trans. Mechatron. 28 (1)(2023) 267-279.

[43]

J. Wu, L. Wang, F. Du, G. Zhang, J. Niu, X. Rong, R. Song, H. Dong, J. Zhao, Y. Li, A two-DOF linear ultrasonic motor utilizing the actuating approach of longitudinal-traveling-wave/bending-standing-wave hybrid excitation, Inter. J. Mech. Sci. 248 (2023) 108223.

[44]

M.K. Kurosawa, State-of-art surface acoustic wave linear motor and its future applications, Ultrasonics 38 (2000) 15-19.

[45]

T. Shigematsu, M.K. Kurosawa, Miniaturized SAW motor with 100 MHz drive frequency, Iee J Trans. Sens. Micromach. 126 (2006) 166-167.

[46]

Y. Kurokawa, H. Taki, S. Yashiro, K. Nagasawa, Y. Ishigaki, H. Kanai, Esti-mation of size of red blood cell aggregates using backscattering property of high-frequency ultrasound: in vivo evaluation, J. Appl. Phys. 55 (1-8)(2016) 07KF12.

[47]

A. Sano, Y. Matsui, S. Shiokawa, New manipulator based on surface acoustic wave streaming, Japan. J. Appl. Phys. 37 (1998) 2979-2981.

AI Summary AI Mindmap
PDF (2054KB)

202

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/