Enhancing undulation of soft robots in granular media: A numerical and experimental study on the effect of anisotropic scales

Longchuan Li , Chaoyue Zhao , Shuqian He , Qiukai Qi , Shuai Kang , Shugen Ma

Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (2) : 100158 -100158.

PDF (3066KB)
Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (2) : 100158 -100158. DOI: 10.1016/j.birob.2024.100158
Research Article
research-article

Enhancing undulation of soft robots in granular media: A numerical and experimental study on the effect of anisotropic scales

Author information +
History +
PDF (3066KB)

Abstract

Generating efficient locomotion in granular media is important, although it is difficult for robots. Inspired by the fact that sand vipers usually have saw-like scales, in this study, we design a soft undulation robot with tangential anisotropic friction to enhance the undulation performance of soft robots in granular media. A mathematical model was derived and numerical simulations were conducted accordingly to investigate the effectiveness of tangential friction anisotropy for undulation gait generation in granular media. In particular, we introduce a pseudo-rigid-body dynamics model consisting of links and joints while simulating the pneumatic actuation method to more closely approximate the response of soft robots. Moreover, a soft snake-like robot was fabricated, and its forward and reverse undulations were compared in two sets of controlled experiments. The consistency between the experimental results and the numerical simulations confirms that tangential anisotropic friction induces a propulsive effect in undulation, thereby increasing the robot’s locomotion speed. This discovery provides new insights into the design of undulation robots in granular environments.

Keywords

Granular media / Anisotropicity / Pseudo-rigid-body model / Soft robot / Undulation

Cite this article

Download citation ▾
Longchuan Li, Chaoyue Zhao, Shuqian He, Qiukai Qi, Shuai Kang, Shugen Ma, . Enhancing undulation of soft robots in granular media: A numerical and experimental study on the effect of anisotropic scales. Biomimetic Intelligence and Robotics, 2024, 4(2): 100158-100158 DOI:10.1016/j.birob.2024.100158

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was suported by Fundamental Research Funds for the Central Universities, China (ZY2301, BH2316, buctrc202215), the National Natural Science Foundation of China (62273340), and the Natural Science Foundation of China Liaoning Province (2021-MS-031).

References

[1]

X. Xiao, R. Murphy, A review on snake robot testbeds in granular and restricted maneuverability spaces, Robot. Auton. Syst. 110 (2018) 160-172.

[2]

A. Lopez-Arreguin, S. Montenegro, Towards bio-inspired robots for under-ground and surface exploration in planetary environments: An overview and novel developments inspired in sand-swimmers, Heliyon 6 (6) (2020).

[3]

J. Liu, Y. Tong, J. Liu, Review of snake robots in constrained environments, Robot. Auton. Syst. 141 (2021) 103785.

[4]

S. Sharpe, S. Koehler, R. Kuckuk, M. Serrano, P. Vela, J. Mendelson III, D. Goldman, Locomotor benefits of being a slender and slick sand swimmer,J. Exp. Biol. 218 (3) (2015) 440-450.

[5]

S. Hirose, Biologically Inspired Robots, Oxford Univ. Press, London, U.K., 1993.

[6]

S. Ma, Analysis of creeping locomotion of a snake-like robot, Adv. Robot., Adv. Robot. 15 (2) (2001) 205-224.

[7]

X. Ai, H. Yue, W. Wang, Crawling soft robot exploiting wheel-legs and multimodal locomotion for high terrestrial maneuverability, IEEE Trans. Robot. 39 (6) (2023) 4230-4239.

[8]

T. Khunnithiwarawat, T. Maneewarn, A study of Active-Wheel snake robot locomotion gaits, in: 2011 IEEE International Conference on Robotics and Biomimetics, ROBIO, 2011, pp. 2805-2809.

[9]

M. Luo, W. Tao, F. Chen, T. Khuu, S. Ozel, C. Onal, Design improvements and dynamic characterization on fluidic elastomer actuators for a soft robotic snake, in: 2014 IEEE International Conference on Technologies for Practical Robot Applications, TePRA, 2014, pp. 1-6.

[10]

M. Luo, R. Yan, Z. Wan, Y. Qin, J. Santoso, E. Skorina, C. Onal, Orisnake: design, fabrication, and experimental analysis of a 3-D origami snake robot, IEEE Robot. Autom. Lett. 3 (3) (2018) 1993-1999.

[11]

K. Pettersen, Snake robots, Annu. Rev. Control 44 (2017) 19-44.

[12]

C. Onal, D. Rus, Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot, Bioinspiration Biomim. 8 (2) (2013).

[13]

G. Bianchi, K. Herath, S. Cinquemani, Design of a swimming snake robot,Bioinspiration, Biomimetics, and Bioreplication XII, 2022, p. 12041.

[14]

R. Maladen, Y. Ding, P. Umbanhowar, D. Goldman, Undulatory swimming in sand: experimental and simulation studies of a robotic sandfish, Int. J. Robot. Res. 30 (7) (2011) 793-805.

[15]

H. Marvi, D. Hu, Friction enhancement in concertina locomotion of snakes, J. R. Soc. Interface 9 (76) (2012) 3067-3080.

[16]

S. Huang, Y. Tang, H. Bagheri, D. Li, A. Ardente, D. Aukes, H. Marvi, J. Tao, Effects of friction anisotropy on upward burrowing behavior of soft robots in granular materials, Adv. Intell. Syst. 2 (6) (2020) 3067-3080.

[17]

D. Drotman, S. Chopra, N. Gravish, M. Tolley, Anisotropic forces for a worm-inspired digging robot, in: 2022 IEEE 5th International Conference on Soft Robotics, RoboSoft, 2022.

[18]

R. Das, S. Babu, F. Visentin, S. Palagi, B. Mazzolai, An earthworm-like modular soft robot for locomotion in multi-terrain environments, Sci. Rep.(2023).

[19]

X. Qi, H. Shi, T. Pinto, X. Tan, A novel pneumatic soft snake robot using traveling-wave locomotion in constrained environments, IEEE Robot. Autom. Lett. 5 (2) (2020) 1610-1617.

[20]

X. Qi, T. Gao, X. Tan, Bioinspired 3D-printed snakeskins enable effective serpentine locomotion of a soft robotic snake, Soft Robot. 10 (3) (2022) 568-579.

[21]

C. Branyan, Y. Menguc, Soft snake robots: Investigating the effects of gait parameters on locomotion in complex terrains,in:2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2018.

[22]

C. Branyan, R. Hatton, Y. Menguc, Snake-inspired kirigami skin for lateral undulation of a soft snake robot, IEEE Robot. Autom. Lett. 5 (2) (2020) 1728-1733.

[23]

J. Rieser, T. Li, J. Tingle, D. Goldman, J. Mendelson III,Functional con-sequences of convergently evolved microscopic skin features on snake locomotion, Proc. Natl. Acad. Sci. (2021).

[24]

C. Zhang, J. Chen, J. Li, Y. Peng, Z. Mao, Large language models for human-robot interaction: A review, Biomimetic Intell. Robot. 3 (4) (2023) 100131.

[25]

T. Wang, C. Pierce, V. Kojouharov, B. Chong, K. Diaz, H. Lu, D. Goldman, Me-chanical intelligence simplifies control in terrestrial limbless locomotion, Science Robotics 8 (85) (2021).

[26]

L. Li, S. Ma, I. Tokuda, Y. Tian, Y. Cao, M. Nokata, Z. Li, Embodying rather than encoding: undulation with binary input,in:2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2022.

[27]

V. Kojouharov, T. Wang, M. Fernandez, J. Maeng, D. Goldman, Anisotropic body compliance facilitates robotic sidewinding in complex environments, 2023, arXiv(2023)

[28]

Vedant J. Allison, Pseudo-rigid-body dynamic models for design of compliant members, J. Mech. Des. 142 (3) (2020).

[29]

Y. Yu, Z. Feng, Q. Xu, A pseudo-rigid-body 2R model of flexural beam in compliant mechanisms, Mech. Mach. Theory 55 (2012) 18-33.

[30]

Z. Mao, Y. Peng, C. Hu, R. Ding, Y. Yamada, S. Maeda, Soft computing-based predictive modeling of flexible electrohydrodynamic pumps, Biomimetic Intell. Robot. 3 (3) (2023) 110114.

[31]

A. Kakogawa, S. Jeon, S. Ma, Stiffness design of a resonance-based planar snake robot with parallel elastic actuators, IEEE Robot. Autom. Lett. 3 (2)(2018) 1284-1291.

[32]

B. Yaqoob, A. Rodella, B. Mazzolai, N. Pugno, Investigating the dynamic influence of passive effects on undulatory locomotion in viscous environ-ment and unleashing the potential of hybrid friction, Extreme Mech. Lett. 63 (2023) 102048.

[33]

P. Polygerinos, Z. Wang, J. Overvelde, K. Galloway, R. Wood, K. Bertoldi, C.Walsh, Modeling of soft fiber-reinforced bending actuators, IEEE Trans. Robot. 31 (3) (2015) 778-789.

[34]

K. Galloway, P. Polygerinos, C. Walsh, R. Wood,Mechanically pro-grammable bend radius for fiber-reinforced soft actuators, in:2013 16th International Conference on Advanced Robotics, ICAR 2013, 2013.

[35]

C. Branyan, C. Fleming, J. Remaley, A. Kothari, K. Tumer, R. Hatton, Y. Meng, Soft snake robots: mechanical design and geometric gait implementation, in: 2017 IEEE International Conference on Robotics and Biomimetics, ROBIO, 2017.

[36]

C. Branyan, A. Rafsanjani, K. Bertoldi, R. Hatton, Y. Meng, Curvilinear Kirigami skins let soft bending actuators slither faster, Front. Robot. AI 9 (2022).

AI Summary AI Mindmap
PDF (3066KB)

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/