Bioinspiration review of Aquatic Unmanned Aerial Vehicle (AquaUAV)

Xinyang Wang , Jiawei Zhao , Xuan Pei , Tianmiao Wang , Taogang Hou , Xingbang Yang

Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (2) : 100154 -100154.

PDF (1891KB)
Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (2) : 100154 -100154. DOI: 10.1016/j.birob.2024.100154
Review
research-article

Bioinspiration review of Aquatic Unmanned Aerial Vehicle (AquaUAV)

Author information +
History +
PDF (1891KB)

Abstract

The performance of Aquatic Unmanned Aerial Vehicle (AquaUAV) has always been limited so far and far from practical applications, due to insufficient propulsion, large-resistance structure etc. Aerial-aquatic amphibians in nature may facilitate the development of AquaUAV since their excellent amphibious locomotion capabilities evolved under long-term natural selection. This article will take four typical aerial-aquatic amphibians as representatives, i.e., gannet, cormorant, flying fish and flying squid. We summarized the multi-mode locomotion process of common aerial-aquatic amphibians and the evolutionary trade-offs they have made to adapt to amphibious environments. The four typical propulsion mechanisms were investigated, which may further inspire the propulsion design of the AquaUAV. And their morphological models could guide the layout optimization. Finally, we reviewed the state of art in AquaUAV to validate the potential value of our bioinspiration, and discussed the future prospects.

Keywords

Aerial-aquatic amphibians / Multi-mode locomotion trade-offs / Propulsion mechanism / Morphological design

Cite this article

Download citation ▾
Xinyang Wang, Jiawei Zhao, Xuan Pei, Tianmiao Wang, Taogang Hou, Xingbang Yang. Bioinspiration review of Aquatic Unmanned Aerial Vehicle (AquaUAV). Biomimetic Intelligence and Robotics, 2024, 4(2): 100154-100154 DOI:10.1016/j.birob.2024.100154

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research was supported by the National Science Foundation of China (62103035), Beijing Natural Science Foundation (3222016), the China Postdoctoral Science Foundation (2021M690337), and the Young Elite Scientists Sponsorship Program by CAST (2022QNRC001). We sincerely thank Prof. Hiroshi Ohizumi from Tokai University for sharing the privately recorded video of the flying squid.

References

[1]

V. Peftiev, VPK Belarusi na poroge, Vestnik Vozdushnogo Flota 28 (1999) 26.

[2]

X. Yang, T. Wang, J. Liang, G. Yao, M. Liu, Survey on the novel hy-brid aquatic-aerial amphibious aircraft: Aquatic unmanned aerial vehicle (AquaUAV), Prog. Aerosp. Sci. 74 (2015) 131-151.

[3]

Z. Zeng, C. Lyu, Y. Bi, Y. Jin, D. Lu, L. Lian, Review of hybrid aerial underwater vehicle: Cross-domain mobility and transitions control, Ocean Eng. 248 (2022) 110840.

[4]

X. Wang, X. Yang, J. Zhao, X. Pei, H. Su, T. Wang, T. Hou, Aquatic un-manned aerial vehicles (AquaUAV): Bionic prototypes, key technologies, analysis methods, and potential solutions, Sci. China Technol. Sci. 66 (8)(2023) 2308-2331.

[5]

G. Yao, Y. Li, H. Zhang, Y. Jiang, T. Wang, F. Sun, X. Yang, Review of hybrid aquatic-aerial vehicle (HAAV): Classifications, current status, applications, challenges and technology perspectives, Prog. Aerosp. Sci. 139 (2023) 100902.

[6]

X. Wang, X. Pei, R. Zhu, T. Hou, X. Yang, Cavity-membrane-based water-jet bio-inspired thruster with multidirectional accelerating capability, IEEE/ASME Trans. Mechatronics (2023) 1-12, http://dx.doi.org/10.1109/TMECH.2023.3340885.

[7]

R. Siddall, M. Kovač, Launching the AquaMAV: Bioinspired design for aerial-aquatic robotic platforms, Bioinspiration Biomimetics 9 (3) (2014) 031001.

[8]

R. Müller, N. Abaid, J.B. Boreyko, C. Fowlkes, A.K. Goel, C. Grimm, S. Jung, B. Kennedy, C. Murphy, N.D. Cushing, et al., Biodiversifying bioinspiration, Bioinspiration and Biomimetics 13 (5) (2018) 053001.

[9]

H. Duan, X. Xu, Y. Deng, Z. Zeng, Unmanned aerial vehicle recognition of maritime small-target based on biological eagle-eye vision adaptation mechanism, IEEE Trans. Aerosp. Electron. Syst. (2021).

[10]

K. Low, T. Hu, S. Mohammed, J. Tangorra, M. Kovac, Perspectives on bio-logically inspired hybrid and multi-modal locomotion, Bioinspir. Biomim. 10 (2) (2015).

[11]

D. Shealer, Foraging behaviour and food of seabirds, in: E.A. Schreiber, J. Burger (Eds.), Biology of Marine Birds, CRC Press, Boca Raton, FL, 2002, pp. 137-178.

[12]

S. Nelson, B. Nelson, The Sulidae: Gannets and Boobies, (vol. 154) Oxford University Press, USA, 1978.

[13]

I. Marine, Seabird foraging tactics and water clarity: Are plunge divers really in the clear? Mar. Ecol. Prog. Ser 49 (1988) 1-9.

[14]

E.A. Schreiber, J. Burger, Biology of Marine Birds, CRC Press, 2001.

[15]

R. DeLorenzo, The Loch Ness monster, gannets, and Boyle’s law, J. Chem. Educ. 66 (7) (1989) 570.

[16]

D.N. Lee, P.E. Reddish, Plummeting gannets: A paradigm of ecological optics, Nature 293 (5830) (1981) 293-294.

[17]

L.B. Spear, D.G. Ainley, Flight behaviour of seabirds in relation to wind direction and wing morphology, Ibis 139 (2) (1997) 221-233.

[18]

M. Denny, Air and Water:the Biology and Physics of Life’s Media, Princeton University Press, 1993.

[19]

P. Daoust, G. Dobbin, R.A. RCF, S. Dawson, Descriptive anatomy of the subcutaneous air diverticula in the Northern Gannet Morus bassanus, Seabird 21 (2008) 64-76.

[20]

Y. Ropert-Coudert, F. Daunt, A. Kato, P.G. Ryan, S. Lewis, K. Kobayashi, Y. Mori, D. Grémillet, S. Wanless, Underwater wingbeats extend depth and duration of plunge dives in northern gannets Morus bassanus, J. Avian Biol. 40 (4) (2009) 380-387.

[21]

Y. Ropert-Coudert, D. Grémillet, P. Ryan, A. Kato, Y. Naito, Y. Le Maho, Between air and water: The plunge dive of the Cape Gannet Morus capensis, Ibis 146 (2) (2004) 281-290.

[22]

S. Wanless, J. Okill, Body measurements and flight performance of adult and juvenile gannets Morus bassanus, Ring. Migr. 15 (2) (1994) 101-103.

[23]

S. Zimmerman, A. Abdelkefi, Review of marine animals and bioinspired robotic vehicles: Classifications and characteristics, Prog. Aerosp. Sci. 93 (2017) 95-119.

[24]

J. Bédard, Evolution and characteristics of the Atlantic Alcidae, in: The Atlantic Alcidae: the Evolution, Distribution and Biology of the Auks Inhabiting the Atlatic Ocean and Adhjacent Water Areas, vol. 6, Academit Press, 1985, pp. 1-51.

[25]

D. Schmid, D. Grémillet, B. Culik, Energetics of underwater swimming in the great cormorant (Phalacrocorax carbo sinensis), Mar. Biol. 123 (4)(1995) 875-881.

[26]

G. Ribak, D. Weihs, Z. Arad, How do cormorants counter buoyancy during submerged swimming? J. Exp. Biol. 207 (12) (2004) 2101-2114.

[27]

G. Ribak, D. Weihs, Z. Arad, Submerged swimming of the great cormorant Phalacrocorax carbo sinensis is a variant of the burst-and-glide gait, J. Exp. Biol. 208 (20) (2005) 3835-3849.

[28]

F. Quintana, R.P. Wilson, P. Yorio, Dive depth and plumage air in wettable birds: The extraordinary case of the imperial cormorant, Mar. Ecol. Prog. Ser. 334 (2007) 299-310.

[29]

Y. Dong, J. Liang, X. Yang, J. Huang, X. Xue, Y. Fan, Modeling and simula-tion of cormorant’s webbed-feet assisted take-off from water surface, in: 2017 IEEE International Conference on Robotics and Biomimetics, ROBIO, IEEE, 2017, pp. 1659-1664.

[30]

J. Davenport, How and why do flying fish fly? Rev. Fish Biol. Fish. 4 (2)(1994) 184-214.

[31]

H. Hertel, Structure, Form, Movement, Reinhold, 1966.

[32]

A. Azuma, The Biokinetics of Flying and Swimming, American Institute of Aeronautics and Astronautics Inc., Reston, VA, 2006.

[33]

C. Breder, On the structural specilization of flying fishes from the standpoint of aerodynamics, Copeia 1930 (4) (1930) 114-121.

[34]

F. Fish, Wing design and scaling of flying fish with regard to flight performance, J. Zool. 221 (3) (1990) 391-403.

[35]

P.R. Bandyopadhyay, Flying fish sculls to taxi and perturbs wing lift with travelling waves to land, in: Fluids Engineering Division Summer Meeting, vol. 50282, American Society of Mechanical Engineers, 2016, V01AT04A001. X. Wang, J. Zhao, X. Pei et al.

[36]

H. Park, H. Choi, Aerodynamic characteristics of flying fish in gliding flight, J. Exp. Biol. 213 (19) (2010) 3269-3279.

[37]

R. Piper, Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals,vol. 125, Greenwood Press, London, 2007.

[38]

C.M. Breder, Field Observations on Flying Fishes:A Suggestion of Methods, New York Zoological Society, 1929.

[39]

C.M. Breder Jr., The locomotion of fishes, Zoologica 4 (1926) 159-291.

[40]

C.L. Hubbs, Observations on the flight of fishes, with a statistical study of the flight of the cypselurinae and remarks on the evolution of the flight of fishes, 1933.

[41]

H. Hertel, M. Katz, Take-off and flight of the flying fish, in: Structure-Form-Movement, Reinhold Publishing Company, New York, 1966, pp. 218-224.

[42]

S. Vogel, Flow-assisted mantle cavity refilling in jetting squid, Biol. Bull. 172 (1) (1987) 61-68.

[43]

W. Johnson, P. Soden, E. Trueman, A study in jet propulsion: An analysis of the motion of the squid, Loligo vulgaris, J. Exp. Biol. 56 (1) (1972) 155-165.

[44]

E.E. Ruppert, R.D. Barnes, R.S. Fox, Invertebrate Zoology: A Functional Evolutionary Approach, (no. 592 RUPi) 2004

[45]

E. Anderson, M.E. Demont, The locomotory function of the fins in the squid Loligo pealei, Mar. Freshw. Behav. Physiol. 38 (3) (2005) 169-189.

[46]

L. Maddock, Q. Bone, J.M. Rayner, et al., The Mechanics and Physiology of Animal Swimming, Cambridge University Press, 1994.

[47]

R. O’dor, The forces acting on swimming squid, J. Exp. Biol. 137 (1) (1988) 421-442.

[48]

R.D. Barnes, et al., Invertebrate Zoology , fifth ed., WB Saunders company, 1987.

[49]

K. Muramatsu, J. Yamamoto, T. Abe, K. Sekiguchi, N. Hoshi, Y. Sakurai, Sakurai, Oceanic squid do fly, Mar. Biol. 160 (5) (2013) 1171-1175.

[50]

R. O’Dor, J. Stewart, W. Gilly, J. Payne, T.C. Borges, T. Thys, Squid rocket science: How squid launch into air, Deep Sea Res. II: Top. Stud. Oceanogr. 95 (2013) 113-118.

[51]

F. Jabr, Flight of the squid, Sci. Am. 303 (4) (2010) 28.

[52]

R. O’Dor, S. Mendon,Analysis of sthenoteuthis oualaniensis flying be-haviour from recorded video, in:Cephalopod International Advisory Council Conference, vol. 122, 2015, p. 13.

[53]

S. Maciá, M.P. Robinson, P. Craze, R. Dalton, J.D. Thomas, New obser-vations on airborne jet propulsion (flight) in squid, with a review of previous reports, J. Molluscan Stud. 70 (3) (2004) 297-299.

[54]

L.C. Johansson, B.S.W. Aldrin, Kinematics of diving Atlantic puffins (Frater-cula arctica L.): Evidence for an active upstroke, J. Exp. Biol. 205 (3) (2002) 371-378.

[55]

C.A. Hui, Penguin swimming. I. Hydrodynamics Physiol. Zool. 61 (4)(1988) 333-343.

[56]

C. VAN DAM,Drag-reduction characteristics of aft-swept wing tips, in:4th Applied Aerodynamics Conference, 1986, p. 1824.

[57]

C.P. van Dam, Efficiency characteristics of crescent-shaped wings and caudal fins, Nature 325 (6103) (1987) 435-437.

[58]

C.W. Burkett, Reductions in induced drag by the use of aft swept wing tips, Aeronaut. J. 93 (930) (1989) 400-405.

[59]

C. Van Dam, P. Vijgen, B. Holmes, Experimental investigation on the effect of crescent planform on lift and drag, J. Aircraft 28 (11) (1991) 713-720.

[60]

C. Van Dam, P. Vijgen, B. Holmes, Aerodynamic characteristics of crescent and elliptic wings at high angles of attack, J. Aircraft 28 (4) (1991) 253-260.

[61]

P. Liu, N. Bose, Hydrodynamic characteristics of a lunate shape oscillating propulsor, Ocean Eng. 26 (6) (1999) 519-530.

[62]

C. Pennycuick, Flight of auks (Alcidae) and other northern seabirds compared with southern procellariiformes: Ornithodolite observations, J. Exp. Biol. 128 (1) (1987) 335-347.

[63]

J.P. Croxall, Seabirds: Feeding Ecology and Role in Marine Ecosystems, 1987.

[64]

C. Pennycuick, Flight of seabirds, in: Seabirds: Feeding Ecology and Role in Marine Ecosystems, Cambridge University Press, Cambridge, 1987, pp. 43-62.

[65]

C. Pennycuick, Adapting skeletal muscle to be efficient, in: Efficiency and Economy in Animal Physiology, Cambridge University Press Cambridge, 1991, pp. 33-42.

[66]

C.J. Pennycuick, Newton Rules Biology. A Physical Approach to Biological Problems, Oxford University Press, 1992.

[67]

J.R. Lovvorn, D.A. Croll, G.A. Liggins, Mechanical versus physiological determinants of swimming speeds in diving Brunnich’s guillemots, J. Exp. Biol. 202 (13) (1999) 1741-1752.

[68]

T.M. Williams, Swimming by sea otters: Adaptations for low energetic cost locomotion, J. Comp. Physiol. A 164 (6) (1989) 815-824.

[69]

G. Ribak, D. Weihs, Z. Arad, Water retention in the plumage of diving great cormorants Phalacrocorax carbo sinensis, J. Avian Biol. 36 (2) (2005) 89-95.

[70]

D. Grémillet, C. Chauvin, R.P. Wilson, Y. Le Maho, S. Wanless, Unusual feather structure allows partial plumage wettability in diving great cormorants Phalacrocorax carbo, J. Avian Biol. 36 (1) (2005) 57-63.

[71]

L.C. Johansson, R.Å. Norberg, Delta-wing function of webbed feet gives hydrodynamic lift for swimming propulsion in birds, Nature 424 (6944)(2003) 65-68.

[72]

L.C. Johansson, U.M.L. Norberg, Asymmetric toes aid underwater swimming, Nature 407 (6804) (2000) 582-583.

[73]

L.C. Johansson, U. Lindhe Norberg, Lift-based paddling in diving grebe, J. Exp. Biol. 204 (10) (2001) 1687-1696.

[74]

J. Huang, J. Liang, T. Wang, H. Chen, J. Li, X. Yang, Numerical analysis of the body, webbed-feet, and wings during cormorant’s take off, in: 2018 IEEE International Conference on Robotics and Biomimetics, ROBIO, IEEE, 2018, pp. 94-99.

[75]

J. Huang, X. Gong, Z. Wang, X. Xue, X. Yang, J. Liang, D. Zhang, The kinematics analysis of webbed feet during cormorants’ swimming, in: 2016 IEEE International Conference on Robotics and Biomimetics, ROBIO, IEEE, 2016, pp. 301-306.

[76]

J. Huang, J. Li, H. Chen, X. Yang, J. Liang, T. Wang, Design and cfd based simulation analysis of a biotic webbed feet propulsion mechanism for hydroplaning, in: 2018 IEEE International Conference on Robotics and Biomimetics, ROBIO, IEEE, 2018, pp. 83-87.

[77]

J. Huang, Y. Sun, T. Wang, T.C. Lueth, J. Liang, X. Yang, Fluid-structure interaction hydrodynamics analysis on a deformed bionic flipper with non-uniformly distributed stiffness, IEEE Robot. Autom. Lett. 5 (3) (2020) 4657-4662.

[78]

T. Hou, X. Yang, H. Su, B. Jiang, L. Chen, T. Wang, J. Liang, Design and experiments of a squid-like aquatic-aerial vehicle with soft morphing fins and arms, in: 2019 International Conference on Robotics and Automation, ICRA, IEEE, 2019, pp. 4681-4687.

[79]

K.E. Korsmeyer, J.F. Steffensen, J. Herskin, Energetics of median and paired fin swimming, body and caudal fin swimming, and gait transition in parrotfish (Scarus schlegeli) and triggerfish (Rhinecanthus aculeatus), J. Exp. Biol. 205 (9) (2002) 1253-1263.

[80]

C. Zhou, K. Low, Design and locomotion control of a biomimetic under-water vehicle with fin propulsion, IEEE/ASME Trans. Mechatronics 17 (1)(2011) 25-35.

[81]

P. Duraisamy, R.K. Sidharthan, M.N. Santhanakrishnan, Design, modeling, and control of biomimetic fish robot: A review, J. Bion. Eng. 16 (6) (2019) 967-993.

[82]

X. Wang, X. Pei, X. Wang, T. Hou, Bionic robot manta ray based on dielec-tric elastomer actuator, in: 2023 International Conference on Frontiers of Robotics and Software Engineering, FRSE, IEEE, 2023, pp. 387-392.

[83]

J. Davenport, Wing-loading, stability and morphometric relationships in flying fish (Exocoetidae) from the north-eastern Atlantic, J. Mar. Biol. Assoc. United Kingdom 72 (1) (1992) 25-39.

[84]

J.J. Videler, Fish Swimming, vol. 10, Springer Science & Business Media, 1993.

[85]

R.W. Blake, Fish Locomotion, CUP Archive, 1983.

[86]

P.W. Webb, Form and function in fish swimming, Sci. Am. 251 (1) (1984) 72-83.

[87]

M. Lishthill, Introduction to the scaling of aerial locomotion, in: Scale Effects in Animal Locomotion, Academic Press, 1977, pp. 365-404.

[88]

R. Alexander, Size and Shape, Edward Arnold, London, 1971.

[89]

D. Weihs, A hydrodynamical analysis of fish turning manoeuvres, Proc.R. Soc. Lond. Ser. B. 182 (1066) (1972) 59-72.

[90]

W.M. Saidel, G.F. Strain, S.K. Fornari, Characterization of the aerial escape response of the African butterfly fish, Pantodon Buchholzi Peters, Environ. Biol. Fishes 71 (1) (2004) 63-72.

[91]

J.M. Gosline, M.E. DeMont, Jet-propelled swimming in squids, Sci. Am. 252 (1) (1985) 96-103.

[92]

M. Clarke, Evolution of buoyancy and locomotion in recent cephalopods. Paleontology and Neontology of Cephalopoda, Mollusca 12 (1988) 203-213.

[93]

R. O’dor, D. Webber, Invertebrate athletes: Trade-offs between transport efficiency and power density in cephalopod evolution, J. Exp. Biol. 160(1) (1991) 93-112.

[94]

E.J. Anderson, M.E. DeMont, The mechanics of locomotion in the squid Loligo pealei: Locomotory function and unsteady hydrodynamics of the jet and intramantle pressure, J. Exp. Biol. 203 (18) (2000) 2851-2863.

[95]

P. Linden, J. Turner, The formation of ‘optimal’vortex rings, and the efficiency of propulsion devices, J. Fluid Mech. 427 (2001) 61-72.

[96]

D. Weihs, Periodic jet propulsion of aquatic creatures, Fortschritte der Zoologie 24 (2-3) (1977) 171-175.

[97]

M. Gharib, E. Rambod, K. Shariff, A universal time scale for vortex ring formation, J. Fluid Mech. 360 (1998) 121-140.

[98]

H. Jiang, M.A. Grosenbaugh, Numerical simulation of vortex ring for-mation in the presence of background flow with implications for squid propulsion, Theoret. Comput. Fluid Dynam. 20 (2) (2006) 103-123.

[99]

P.S. Krueger, J.O. Dabiri, M. Gharib,The effect of uniform background flow on vortex ring formation and pinch-off, in:APS Division of Fluid Dynamics Meeting Abstracts, vol. 55, 2002, pp. FA-003.

[100]

P.S. Krueger, J.O. Dabiri, M. Gharib, Vortex ring pinchoff in the presence of simultaneously initiated uniform background co-flow, Phys. Fluids 15 (7) (2003) L49-L52.

[101]

E.J. Anderson, M.A. Grosenbaugh,Jet flow in steadily swimming adult squid, J. Exp. Biol. 208 (6) (2005) 1125-1146.

[102]

I.K. Bartol, P.S. Krueger, W.J. Stewart, J.T. Thompson, Hydrodynamics of pulsed jetting in juvenile and adult brief squid lolliguncula brevis: Evidence of multiple jetmodes’ and their implications for propulsive efficiency, J. Exp. Biol. 212 (12) (2009) 1889-1903.

[103]

S. Zimmerman, A. Abdelkefi, Enhanced design considerations on the buckling and dynamics of gannet-inspired systems during water entry, Bioinspiration Biomim. 16 (2) (2020) 026011.

[104]

S. Zimmerman, A. Abdelkefi, Investigations on the buckling and dy-namics of diving-inspired systems when entering water, Bioinspiration Biomimetics 15 (3) (2020) 036015.

[105]

T. Wang, X. Yang, J. Liang, G. Yao, W. Zhao, CFD based investigation on the impact acceleration when a gannet impacts with water during plunge diving, Bioinspiration Biomimetics 8 (3) (2013) 036006.

[106]

J. Liang, X. Yang, T. Wang, G. Yao, W. Zhao, Design and experiment of a bionic gannet for plunge-diving, J. Bionic Eng. 10 (3) (2013) 282-291.

[107]

J. Liang, G. Yao, T. Wang, X. Yang, W. Zhao, G. Song, Y. Zhang, Wing load investigation of the plunge-diving locomotion of a gannet Morus inspired submersible aircraft, Sci. China Technol. Sci. 57 (2) (2014) 390-402.

[108]

T. Hou, X. Yang, T. Wang, J. Liang, S. Li, Y. Fan, Locomotor transition: How squid jet from water to air, Bioinspiration Biomimetics 15 (3) (2020) 036014.

[109]

J. Huang, T. Wang, T.C. Lueth, J. Liang, X. Yang, CFD based investigation on the hydroplaning mechanism of a Cormorant’s webbed foot propulsion, IEEE Access 8 (2020) 31551-31561.

[110]

X. Wang, X. Pei, J. Wu, X. Wang, T. Hou, Design, fabrication and fine-tuning of an aerial-aquatic explosive water-jet thruster with repeatable propulsion capability, in: 2023 IEEE International Conference on Robotics and Biomimetics, ROBIO, IEEE, 2023, pp. 1-6.

[111]

J. Wu, X. Wang, X. Pei, T. Hou, Design and simulation analysis of mantle cavity of jet thruster, in: 2023 International Conference on Frontiers of Robotics and Software Engineering, FRSE, IEEE, 2023, pp. 347-354.

[112]

A. Fabian, Y. Feng, E. Swartz, D. Thurmer, R. Wang, Hybrid aerial underwater vehicle (MIT Lincoln Lab), 2012.

[113]

T. Hou, X. Yang, H. Su, L. Chen, T. Wang, J. Liang, S. Zhang, Design, fabrication and morphing mechanism of soft fins and arms of a squid-like aquatic-aerial vehicle with morphology tradeoff, in: 2019 IEEE Interna-tional Conference on Robotics and Biomimetics, ROBIO, IEEE, 2019, pp. 1020-1026.

[114]

R. Zufferey, A.O. Ancel, A. Farinha, R. Siddall, S.F. Armanini, M. Nasr, R. Brahmal, G. Kennedy, M. Kovac, Consecutive aquatic jump-gliding with water-reactive fuel, Science Robotics 4 (34) (2019).

[115]

R. Siddall, A. Ortega Ancel, M. Kovač, Wind and water tunnel testing of a morphing aquatic micro air vehicle, Interface Focus 7 (1) (2017) 20160085.

[116]

R.J. Lock, R. Vaidyanathan, S.C. Burgess, J. Loveless, Development of a biologically inspired multi-modal wing model for aerial-aquatic robotic vehicles through empirical and numerical modelling of the common guillemot, Uria aalge, Bioinspiration Biomimetics 5 (4) (2010) 046001.

[117]

Y. Chen, H. Wang, E.F. Helbling, N.T. Jafferis, R. Zufferey, A. Ong, K. Ma, N. Gravish, P. Chirarattananon, M. Kovac, et al., A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot, Science Robotics 2 (11)(2017).

[118]

X. Yang, J. Liang, Y. Li, H. Zhang, H. Xiao, Modeling and analysis of variable buoyancy device imitating waterfowl plumage structure, in: The Twenty-First International Offshore and Polar Engineering Conference, OnePetro, 2011.

[119]

X. Yang, T. Wang, J. Liang, G. Yao, Y. Chen, Q. Shen, Numerical analysis of biomimetic gannet impacting with water during plunge-diving, in: 2012 IEEE International Conference on Robotics and Biomimetics, ROBIO, IEEE, 2012, pp. 569-574.

[120]

X. Yang, T. Wang, J. Liang, G. Yao, W. Zhao, Submersible unmanned aerial vehicle concept design study, in: 2013 Aviation Technology, Integration, and Operations Conference, 2013, p. 4422.

[121]

D. Guo, A. Bacciaglia, M. Simpson, C. Bil, P. Marzocca, Design and development a bimodal unmanned system, in: AIAA Scitech 2019 Forum. 2019,p. 2096.

[122]

R.J. Lock, A Biologically-Inspired Multi-Modal Wing for Aerial-Aquatic Robotic Vehicles (Ph.D. thesis), University of Bristol, 2011.

[123]

R.J. Lock, R. Vaidyanathan, S.C. Burgess, Design and experimental ver-ification of a biologically inspired multi-modal wing for aerial-aquatic robotic vehicles, in: 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob, 2012, pp. 681-687, http://dx.doi.org/10.1109/BioRob.2012.6290725.

[124]

R.J. Lock, R. Vaidyanathan, S.C. Burgess, Impact of marine locomotion con-straints on a bio-inspired aerial-aquatic wing: Experimental performance verification, J. Mech. Robot. 6 (1) (2014) 011001.

AI Summary AI Mindmap
PDF (1891KB)

483

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/