Human-robot object handover: Recent progress and future direction

Haonan Duan , Yifan Yang , Daheng Li , Peng Wang

Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (1) : 100145 -100145.

PDF (1683KB)
Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (1) : 100145 -100145. DOI: 10.1016/j.birob.2024.100145
Review
research-article

Human-robot object handover: Recent progress and future direction

Author information +
History +
PDF (1683KB)

Abstract

Human-robot object handover is one of the most primitive and crucial capabilities in human-robot collaboration. It is of great significance to promote robots to truly enter human production and life scenarios and serve human in numerous tasks. Remarkable progressions in the field of human-robot object handover have been made by researchers. This article reviews the recent literature on human-robot object handover. To this end, we summarize the results from multiple dimensions, from the role played by the robot (receiver or giver), to the end-effector of the robot (parallel-jaw gripper or multi-finger hand), to the robot abilities (grasp strategy or motion planning). We also implement a human-robot object handover system for anthropomorphic hand to verify human-robot object handover pipeline. This review aims to provide researchers and developers with a guideline for designing human-robot object handover methods.

Keywords

Human-robot interactions / Object handover

Cite this article

Download citation ▾
Haonan Duan, Yifan Yang, Daheng Li, Peng Wang. Human-robot object handover: Recent progress and future direction. Biomimetic Intelligence and Robotics, 2024, 4(1): 100145-100145 DOI:10.1016/j.birob.2024.100145

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (91748131, 62006229 and 61771471), the Strategic Priority Research Program of Chinese Academy of Science (XDB32050106), and the InnoHK Project.

References

[1]

Haonan Duan, Peng Wang, Yayu Huang, Guangyun Xu, Wei Wei, Xiaofei Shen, Robotics dexterous grasping: The methods based on point cloud and deep learning, Front. Neurorobot. 15 (2021) 658280.

[2]

Valerio Ortenzi, Akansel Cosgun, Tommaso Pardi, Wesley P Chan, Eliz-abeth Croft, Dana Kulić, Object handovers: a review for robotics, IEEE Trans. Robot. 37 (6) (2021) 1855-1873.

[3]

Francesca Cini V. Ortenzi P. Corke, MJSR Controzzi, On the choice of grasp type and location when handing over an object, Science Robotics 4 (27) (2019) eaau9757.

[4]

Jianzhi Lyu, Philipp Ruppel, Norman Hendrich, Shuang Li, Michael Görner, Jianwei Zhang, Efficient and collision-free human-robot collaboration based on intention and trajectory prediction, IEEE Trans. Cogn. Dev. Syst.(2022).

[5]

Yujiao Cheng, Liting Sun, Changliu Liu, Masayoshi Tomizuka, Towards efficient human-robot collaboration with robust plan recognition and trajectory prediction, IEEE Robot. Autom. Lett. 5 (2) (2020) 2602-2609.

[6]

Aaron Edsinger, Charles C. Kemp, Human-robot interaction for coopera-tive manipulation: Handing objects to one another, in: RO-MAN 2007-the 16th IEEE International Symposium on Robot and Human Interactive Communication, IEEE, 2007, pp. 1167-1172.

[7]

Arash Ajoudani, Andrea Maria Zanchettin, Serena Ivaldi, Alin Albu-Schäffer, Kazuhiro Kosuge, Oussama Khatib, Progress and prospects of the human-robot collaboration, Auton. Robots 42 (2018) 957-975.

[8]

Esben H. Østergaard,Welcome to industry 5.0, 2018, Retrieved Febr, 5: 2020.

[9]

Aude Billard, Danica Kragic, Trends and challenges in robot manipulation, Science 364 (6446) (2019) eaat8414.

[10]

Amit Kumar Pandey, Rachid Alami, Towards human-level semantics understanding of human-centered object manipulation tasks for hri: Reasoning about effect, ability, effort and perspective taking, Int. J. Soc. Robot. 6 (2014) 593-620.

[11]

Afonso Castro, Filipe Silva,Vitor Santos, Trends of human-robot collabo-ration in industry contexts: Handover, learning, and metrics, Sensors 21 (12) (2021)4113.

[12]

Nicole Robinson, Brendan Tidd, Dylan Campbell, Dana Kulić, Peter Corke, Robotic vision for human-robot interaction and collaboration: A survey and systematic review, ACM Trans. Hum.-Robot Interact. 12 (1) (2023) 1-66.

[13]

Junming Fan, Pai Zheng, Shufei Li, Vision-based holistic scene understand-ing towards proactive human-robot collaboration, Robot. Comput.-Integr. Manuf. 75 (2022) 102304.

[14]

Shufei Li, Pai Zheng, Sichao Liu, Zuoxu Wang, Xi Vincent Wang, Lianyu Zheng, Lihui Wang, Proactive human-robot collaboration: Mutual-cognitive, predictable, and self-organising perspectives, Robot. Comput.-Integr. Manuf. 81 (2023) 102510.

[15]

Francesco Semeraro, Alexander Griffiths, Angelo Cangelosi, Human-robot collaboration and machine learning: A systematic review of recent research, Robot. Comput.-Integr. Manuf. 79 (2023) 102432.

[16]

Michael I. Jordan, Tom M. Mitchell, Machine learning: Trends, perspectives, and prospects, Science 349 (6245) (2015) 255-260.

[17]

Arturo Daniel Sosa-Ceron, Hugo Gustavo Gonzalez-Hernandez, Jorge An-tonio Reyes-Avendaño, Learning from demonstrations in human-robot collaborative scenarios: A survey, Robotics 11 (6) (2022) 126.

[18]

Nourhan Abdulazeem, Yue Hu, Human factors considerations for quan-tifiable human states in physical human-robot interaction: A literature review, Sensors 23 (17) (2023).

[19]

Marco Käppler, Ilshat Mamaev, Hosam Alagi, Thorsten Stein, Barbara Deml, Optimizing human-robot handovers: the impact of adaptive transport methods, Front. Robot. AI 10 (2023).

[20]

Alexander Calvert, Wesley Chan, Tin Tran, Sara Sheikholeslami, Rhys Newbury, Akansel Cosgun, Elizabeth Croft, Comparing subjective per-ceptions of robot-to-human handover trajectories, 2022, arXiv preprint arXiv:2211.08733.

[21]

Alap Kshirsagar, Rahul Kumar Ravi, Hadas Kress-Gazit, Guy Hoffman, Timing-specified controllers with feedback for human-robot handovers, in: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), IEEE, 2022, pp. 1313-1320.

[22]

Alap Kshirsagar, Guy Hoffman, Armin Biess, Evaluating guided policy search for human-robot handovers, IEEE Robot. Autom. Lett. 6 (2) (2021) 3933-3940.

[23]

Richard S. Sutton, Andrew G. Barto, Reinforcement Learning:An Introduction, MIT Press, 2018.

[24]

Chen Wang, Claudia Pérez-D’Arpino, Danfei Xu, Li Fei-Fei, Karen Liu, Silvio Savarese, Co-gail: Learning diverse strategies for human-robot collaboration,in:Conference on Robot Learning, PMLR, 2022, pp. 1279-1290.

[25]

Matija Mavsar, Aleš Ude, RoverNet: Vision-based adaptive human-to-robot object handovers, in: 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids), IEEE, 2022, pp. 858-864.

[26]

Sepp Hochreiter, Jürgen Schmidhuber, Long short-term memory, Neural Comput. 9 (8) (1997) 1735-1780.

[27]

Kushal Kedia, Prithwish Dan, Atiksh Bhardwaj, Sanjiban Choudhury, Man-iCast: Collaborative manipulation with cost-aware human forecasting, 2023, arXiv preprint arXiv:2310.13258.

[28]

Min Wu, Bertram Taetz, Yanhao He, Gabriele Bleser, Steven Liu, An adaptive learning and control framework based on dynamic movement primitives with application to human-robot handovers, Robot. Auton. Syst. 148 (2022) 103935.

[29]

Mohamed Djeha, Antonin Dallard, Ahmed Zermane, Pierre Gergondet, Ab-derrahmane Kheddar, Human-robot handovers using task-space quadratic programming, in: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), IEEE, 2022, pp. 518-523.

[30]

Nuno F. Duarte, Aude Billard, José Santos-Victor, The role of object physical properties in human handover actions: Applications in robotics, IEEE Trans. Cogn. Dev. Syst. (2022).

[31]

Linda Lastrico, Nuno Ferreira Duarte, Alessandro Carfì, Francesco Rea, Alessandra Sciutti, Fulvio Mastrogiovanni, José Santos-Victor, Expressing and inferring action carefulness in human-to-robot handovers, 2023, arXiv preprint arXiv:2310.00465.

[32]

Yik Lung Pang, Alessio Xompero, Changjae Oh, Andrea Cavallaro, To-wards safe human-to-robot handovers of unknown containers, in: 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), IEEE, 2021, pp. 51-58.

[33]

Zichen Yan, Wei He, Yuanhang Wang, Liang Sun, Xinbo Yu, Probabilis-tic motion prediction and skill learning for human-to-cobot dual-arm handover control, IEEE Trans. Neural Netw. Learn. Syst. (2022).

[34]

Andrew Choi, Mohammad Khalid Jawed, Jungseock Joo, Preemptive mo-tion planning for human-to-robot indirect placement handovers, in: 2022 International Conference on Robotics and Automation, ICRA, IEEE, 2022, pp. 4743-4749.

[35]

Wei Yang, Chris Paxton, Arsalan Mousavian, Yu-Wei Chao, Maya Cakmak, Dieter Fox, Reactive human-to-robot handovers of arbitrary objects, in: 2021 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2021, pp. 3118-3124.

[36]

Wei Yang, Balakumar Sundaralingam, Chris Paxton, Iretiayo Akinola, Yu-Wei Chao, Maya Cakmak, Dieter Fox, Model predictive control for fluid human-to-robot handovers, in: 2022 International Conference on Robotics and Automation, ICRA, IEEE, 2022, pp. 6956-6962.

[37]

Sammy Christen, Wei Yang, Claudia Pérez-D’Arpino, Otmar Hilliges, Dieter Fox, Yu-Wei Chao,Learning human-to-robot handovers from point clouds, in:Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 9654-9664.

[38]

Sammy Christen, Lan Feng, Wei Yang, Yu-Wei Chao, Otmar Hilliges, Jie Song,SynH2R: Synthesizing hand-object motions for learning human-to-robot handovers, 2023, arXiv preprint arXiv:2311.05599.

[39]

Gu Zhang, Hao-Shu Fang, Hongjie Fang, Cewu Lu, Flexible handover with real-time robust dynamic grasp trajectory generation, 2023, arXiv preprint arXiv:2308.15622.

[40]

Lirui Wang, Yu Xiang, Wei Yang, Arsalan Mousavian, Dieter Fox, Goal-auxiliary actor-critic for 6d robotic grasping with point clouds, in: Conference on Robot Learning, PMLR, 2022, pp. 70-80.

[41]

Po-Kai Chang, Jui-Te Huang, Yu-Yen Huang, Hsueh-Cheng Wang, Learn-ing end-to-end 6dof grasp choice of human-to-robot handover using affordance prediction and deep reinforcement learning, in: 2022 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2022.

[42]

Ching-I Huang, Yu-Yen Huang, Jie-Xin Liu, Yu-Ting Ko, Hsueh-Cheng Wang, Kuang-Hsing Chiang, Lap-Fai Yu, Fed-HANet: Federated visual grasping learning for human robot handovers, IEEE Robot. Autom. Lett.(2023).

[43]

Haonan Duan, Peng Wang, Yiming Li, Daheng Li, Wei Wei, Learning human-to-robot dexterous handovers for anthropomorphic hand, IEEE Trans. Cogn. Dev. Syst. (2022).

[44]

Ayan Mazhitov, Togzhan Syrymova, Zhanat Kappassov, Matteo Rubagotti, Human-robot handover with prior-to-pass soft/rigid object classification via tactile glove, Robot. Auton. Syst. 159 (2023) 104311.

[45]

Paramin Neranon, Tanapong Sutiphotinun, A human-inspired control strategy for improving seamless robot-to-human handovers, Appl. Sci. 11 (10) (2021) 4437.

[46]

Gojko Perovic, Francesco Iori, Angela Mazzeo, Marco Controzzi, Egidio Falotico, Adaptive robot-human handovers with preference learning, IEEE Robot. Autom. Lett. (2023).

[47]

Francesco Iori, Gojko Perovic, Francesca Cini, Angela Mazzeo, Egidio Falotico, Marco Controzzi, DMP-based reactive robot-to-human handover in perturbed scenarios, Int. J. Soc. Robot. 15 (2) (2023) 233-248.

[48]

Marta Lagomarsino, Marta Lorenzini, Merryn Dale Constable, Elena De Momi, Cristina Becchio, Arash Ajoudani, Maximising coefficiency of human-robot handovers through reinforcement learning, IEEE Robot. Autom. Lett. (2023).

[49]

Meiying Qin, Jake Brawer, Brian Scassellati, Task-oriented robot-to-human handovers in collaborative tool-use tasks, in: 2022 31st IEEE International Conference on Robot and Human Interactive Communication, (RO-MAN), 2022.

[50]

Paola Ardón, Maria E Cabrera, Eric Pairet, Ronald PA Petrick, Subramanian Ramamoorthy, Katrin S Lohan, Maya Cakmak, Affordance-aware han-dovers with human arm mobility constraints, IEEE Robot. Autom. Lett. 6 (2) (2021) 3136-3143.

[51]

Chongxi Meng, Tianwei Zhang, Tin lun Lam, Fast and comfortable inter-active robot-to-human object handover, in: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, IEEE, 2022, pp. 3701-3706.

[52]

Daniel Lehotsky, Albert Christensen, Dimitrios Chrysostomou, Optimizing robot-to-human object handovers using vision-based affordance infor-mation, in: IEEE International Conference on Imaging Systems and Techniques (IST 2023), IEEE, 2023.

[53]

Albert Daugbjerg Christensen, Daniel Lehotský, Marius Willemoes Jø rgensen, Dimitrios Chrysostomou, Learning to segment object affor-dances on synthetic data for task-oriented robotic handovers, in: The 33rd British Machine Vision Conference, British Machine Vision Association, 2022.

[54]

Javier Laplaza, Albert Pumarola, Francesc Moreno-Noguer, Alberto Sanfe-liu, Attention deep learning based model for predicting the 3D human body pose using the robot human handover phases, in: 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), IEEE, 2021, pp. 161-166.

[55]

Salih Ertug Ovur, Yiannis Demiris, Naturalistic robot-to-human bimanual handover in complex environments through multi-sensor fusion, IEEE Trans. Autom. Sci. Eng. (2023).

[56]

Antonis Sidiropoulos, Yiannis Karayiannidis, Zoe Doulgeri, Human-robot collaborative object transfer using human motion prediction based on cartesian pose dynamic movement primitives, in: 2021 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2021, pp. 3758-3764.

[57]

Zheyu Zhuang, Yizhak Ben-Shabat, Jiahao Zhang, Stephen Gould, Robert Mahony, GoferBot: A visual guided human-robot collaborative assembly system, in: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, IEEE, 2022, pp. 8910-8917.

[58]

Jordan Nowak, Philippe Fraisse, Andrea Cherubini, Jean-Pierre Daures, Assistance to older adults with comfortable robot-to-human handovers, in: 2022 IEEE International Conference on Advanced Robotics and Its Social Impacts, ARSO, IEEE, 2022, pp. 1-6.

[59]

Fabian C. Weigend, Xiao Liu, Heni Ben Amor, Probabilistic differentiable filters enable ubiquitous robot control with smartwatches, 2023, arXiv preprint arXiv:2309.06606.

[60]

Dong Liu, Xianwei Wang, Ming Cong, Yu Du, Qiang Zou, Xiaomin Zhang, Object transfer point predicting based on human comfort model for human-robot handover, IEEE Trans. Instrum. Meas. 70 (2021) 1-11.

[61]

Wei He, Jiashu Li, Zichen Yan, Fei Chen, Bidirectional human-robot bimanual handover of big planar object with vertical posture, IEEE Trans. Autom. Sci. Eng. 19 (2) (2021) 1180-1191.

[62]

Marco Costanzo, Giuseppe De Maria, Ciro Natale, Handover control for human-robot and robot-robot collaboration, Front. Robot 8 (2021) 672995.

[63]

Yuwei Du, Xin Zhang, Mattia Leonori, Pietro Balatti, Jing Jin, Qiang Wang, Arash Ajoudani, Bi-directional human-robot handover using a novel supernumerary robotic system, in: 2023 IEEE International Conference on Advanced Robotics and Its Social Impacts, ARSO, IEEE, 2023, pp. 153-158.

[64]

Javier Laplaza, Nicolás Rodríguez, José Enrique Domínguez-Vidal, Fer-nando Herrero, Sergi Hernández, Alejandro López, Alberto Sanfeliu, Anaís Garrell, IVO robot: A new social robot for human-robot collaboration, in: 2022 17th ACM/IEEE International Conference on Human-Robot Interaction, HRI, IEEE, 2022, pp. 860-864.

[65]

J.P. Marques Silva, Karem A. Sakallah. GRASP-a new search algorithm for satisfiability, in: Proceedings of International Conference on Computer Aided Design, IEEE, 1996, pp. 220-227.

[66]

Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick,Ross Girshick, Mask r-cnn, in:Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2961-2969.

[67]

Andy Zeng, Shuran Song, Kuan-Ting Yu, Elliott Donlon, Francois R Hogan, Maria Bauza, Daolin Ma, Orion Taylor, Melody Liu, Eudald Romo, et al., Robotic pick-and-place of novel objects in clutter with multi-affordance grasping and cross-domain image matching, Int. J. Robot. Res. 41 (7)(2022) 690-705.

[68]

Richard Bellman, A Markovian decision process, J. Math. Mech. (1957) 679-684.

[69]

Hado Van Hasselt, Arthur Guez, David Silver,Deep reinforcement learning with double q-learning, in:Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30, 2016.

[70]

Charles Ruizhongtai Qi, Li Yi, Hao Su, Leonidas J Guibas, Pointnet++: Deep hierarchical feature learning on point sets in a metric space, Adv. Neural Inf. Process. Syst. 30 (2017).

[71]

Jirong Liu, Ruo Zhang, Hao-Shu Fang, Minghao Gou, Hongjie Fang, Chenxi Wang, Sheng Xu, Hengxu Yan, Cewu Lu,Target-referenced reactive grasping for dynamic objects, in:Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 8824-8833.

[72]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, Illia Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).

[73]

Matija Mavsar, Barry Ridge, Jun Morimoto, Aleš Ude, et al., Simulation-aided handover prediction from video using recurrent image-to-motion networks, IEEE Trans. Neural Netw. Learn. Syst. (2022).

[74]

Jürgen Schmidhuber, Deep learning in neural networks: An overview, Neural Netw. 61 (2015) 85-117.

[75]

Wei Mao, Miaomiao Liu, Mathieu Salzmann, History repeats itself: Hu-man motion prediction via motion attention,in:Computer Vision-ECCV 2020: 16 th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XIV 16, Springer, 2020, pp. 474-489.

[76]

Xiao Liu, Geoffrey Clark, Joseph Campbell, Yifan Zhou, Heni Ben Amor, Enhancing state estimation in robots: A data-driven approach with differentiable ensemble kalman filters, 2023, arXiv preprint arXiv:2308. 09870.

[77]

Scott Fujimoto, Herke Hoof, David Meger, Addressing function approx-imation error in actor-critic methods, in: International Conference on Machine Learning, PMLR, 2018, pp. 1587-1596.

[78]

Manfred Morari, Jay H. Lee, Model predictive control: past, present and future, Comput. Chem. Eng. 23 (4-5) (1999) 667-682.

[79]

Arsalan Mousavian, Clemens Eppner, Dieter Fox, 6-dof graspnet: Vari-ational grasp generation for object manipulation,in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 2901-2910.

[80]

Matteo Saveriano, Fares J Abu-Dakka, Aljaž Kramberger, Luka Peternel, Dynamic movement primitives in robotics: A tutorial survey, Int. J. Robot. Res. (2021) 02783649231201196.

[81]

Yansong Wu, Lingyun Chen, Ignacio Perez Mahiques, Zhenshan Bing, Fan Wu, Alois Knoll, Sami Haddadin,Learning Dynamic Robot-to-Robot Object Handover.

[82]

Monica Sileo, Michelangelo Nigro, Domenico D Bloisi, Francesco Pierri, Vision based robot-to-robot object handover, in: 2021 20th International Conference on Advanced Robotics, ICAR, IEEE, 2021, pp. 664-669.

[83]

Yunfei Li, Chaoyi Pan, Huazhe Xu, Xiaolong Wang, Yi Wu, Efficient bimanual handover and rearrangement via symmetry-aware actor-critic learning, in: 2023 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2023, pp. 3867-3874.

[84]

Binghao Huang, Yuanpei Chen, Tianyu Wang, Yuzhe Qin, Yaodong Yang, Nikolay Atanasov, Xiaolong Wang, Dynamic handover: Throw and catch with bimanual hands, 2023, arXiv preprint arXiv:2309.05655.

[85]

Ruolin Ye, Wenqiang Xu, Zhendong Xue, Tutian Tang, Yanfeng Wang, Cewu Lu, H2O: A benchmark for visual human-human object handover analysis,in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 15762-15771.

[86]

Noah Wiederhold, Ava Megyeri, DiMaggio Paris, Sean Banerjee, Natasha Kholgade Banerjee, HOH: Markerless multimodal human-object-human handover dataset with large object count, 2023, arXiv preprint arXiv:2310.00723.

[87]

Alap Kshirsagar, Raphael Fortuna, Zhiming Xie, Guy Hoffman, Dataset of bimanual human-to-human object handovers, Data Brief(2023) 109277.

[88]

Noah Wiederhold, Mingjun Li, Nikolas Lamb, DiMaggio Paris, Alaina Tulskie, Sean Banerjee, Natasha Kholgade Banerjee, Studying how ob-ject handoff orientations relate to subject preferences on handover, in: 2023 IEEE International Conference on Advanced Robotics and Its Social Impacts, ARSO, IEEE, 2023, pp. 40-45.

[89]

Jan Leusmann, Carl Oechsner, Johanna Prinz, Robin Welsch, Sven Mayer, A database for kitchen objects: Investigating danger perception in the context of human-robot interaction,in: Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, 2023, pp. 1-9.

[90]

Leimin Tian, Kerry He, Shiyu Xu, Akansel Cosgun, Dana Kulic, Crafting with a robot assistant: Use social cues to inform adaptive handovers in human-robot collaboration,in: Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction, 2023, pp. 252-260.

[91]

Alessio Xompero, Yik Lung Pang, Timothy Patten, Ahalya Prabhakar, Berk Calli, Andrea Cavallaro, Audio-visual object classification for human-robot collaboration, in: ICASSP Audio-visual object classification for human-robot collaboration,in: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, IEEE,2022, pp. 9137-9141.

[92]

Nuno Ferreira Duarte, Mirko Raković, José Santos-Victor, Robot learning physical object properties from human visual cues: A novel approach to infer the fullness level in containers, in: 2022 International Conference on Robotics and Automation, ICRA, IEEE, 2022, pp. 10375-10381.

[93]

Nuno Ferreira Duarte, Mirko Raković, José Santos-Victor, Learning motor resonance in human-human and human-robot interaction with coupled dynamical systems, in: 2021 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2021, pp. 3662-3668.

[94]

Parag Khanna, Mårten Björkman, Christian Smith, A multimodal data set of human handovers with design implications for human-robot handovers, 2023, arXiv preprint arXiv:2304.02154.

[95]

Yu-Wei Chao, Chris Paxton, Yu Xiang, Wei Yang, Balakumar Sundar-alingam, Tao Chen, Adithyavairavan Murali, Maya Cakmak, Dieter Fox, Handoversim: A simulation framework and benchmark for human-to-robot object handovers, in: 2022 International Conference on Robotics and Automation, ICRA, IEEE, 2022, pp. 6941-6947.

[96]

Erwin Coumans, Yunfei Bai, PyBullet, a Python module for physics simulation for games, robotics and machine learning, 2016-2021, http://pybullet.org.

[97]

Ilshat Mamaev, David Kretsch, Hosam Alagi, Björn Hein, Grasp detection for robot to human handovers using capacitive sensors, in: 2021 IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2021, pp. 12552-12558.

[98]

Mohammadhadi Mohandes, Behnam Moradi, Kamal Gupta, Mehran Mehrandezh, Robot to human object handover using vision and joint torque sensor modalities, in:International Conference on Robot Intelligence Technology and Applications, Springer, 2022, pp. 109-124.

[99]

Parag Khanna, Mårten Björkman, Christian Smith, Human inspired grip-release technique for robot-human handovers, in: 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids), IEEE, 2022, pp. 694-701.

[100]

Afonso Castro, Joel Baptista, Filipe Silva, Vitor Santos, Classification of handover interaction primitives in a COBOT-human context with a deep neural network, J. Manuf. Syst. 68 (2023) 289-302.

[101]

Weitian Wang, Rui Li, Yi Chen, Yi Sun, Yunyi Jia, Predicting human intentions in human-robot hand-over tasks through multimodal learning, IEEE Trans. Autom. Sci. Eng. 19 (3) (2021) 2339-2353.

[102]

Javier Laplaza, Anaís Garrell, Francesc Moreno-Noguer, Alberto Sanfeliu, Context and intention for 3D human motion prediction: Experimentation and user study in handover tasks, in: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), IEEE, 2022, pp. 630-635.

[103]

Rhys Newbury, Akansel Cosgun, Tysha Crowley-Davis, Wesley P Chan, Tom Drummond, Elizabeth A Croft, Visualizing robot intent for object handovers with augmented reality, in: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), IEEE, 2022, pp. 1264-1270.

[104]

Ernst Niedermeyer, F.H. Lopes da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 2005.

[105]

Roberto Merletti, Philip J. Parker, Electromyography: Physiology, Engi-neering, and Non-Invasive Applications, vol. 11, John Wiley & Sons, 2004.

[106]

Jianzhi Lyu, Alexander Ma `ye, Michael Görner, Philipp Ruppel, An-dreas K Engel, Jianwei Zhang, Coordinating human-robot collaboration by EEG-based human intention prediction and vigilance control, Front. Neurorobot. 16 (2022) 1068274.

[107]

Sara Cooper, Samuel FP Fensome, Dimitrios Kourtis, Stuart Gow, Mauro Dragone, An EEG investigation on planning human-robot handover tasks, in: 2020 IEEE International Conference on Human-Machine Systems, ICHMS, IEEE, 2020, pp. 1-6.

[108]

Kerry He, Pradeepsundar Simini, Wesley P. Chan, Dana Kulić, Elizabeth Croft, Akansel Cosgun, On-the-go robot-to-human handovers with a mobile manipulator, in: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), IEEE, 2022, pp. 729-734.

[109]

Valerio Ortenzi, Maija Filipovica, Diar Abdlkarim, Tommaso Pardi, Chie Takahashi, Alan M Wing, Massimiliano Di Luca, Katherine J Kuchenbecker, Robot, pass me the tool: handle visibility facilitates task-oriented handovers, in: 2022 17th ACM/IEEE International Conference on Human-Robot Interaction, HRI, IEEE, 2022, pp. 256-264.

[110]

Haziq Razali, Yiannis Demiris, Multitask variational autoencoding of human-to-human object handover, in: 2021 IEEE/RSJ International Con-ference on Intelligent Robots and Systems, IROS, IEEE, 2021, pp. 7315-7320.

[111]

James Male, Gorkem Anil Al, Arya Shabani, Uriel Martinez-Hernandez, Multimodal sensor-based human-robot collaboration in assembly tasks, in: 2022 IEEE International Conference on Systems, Man, and Cybernetics, SMC, IEEE, 2022, pp. 1266-1271.

[112]

Vivek Gupte, Dan R. Suissa, Yael Edan, Optometrist’s algorithm for personalizing robot-human handovers, 2023, arXiv preprint arXiv:2308. 15007.

[113]

Pallavi Tilloo, Jesse Parron, Omar Obidat, Michelle Zhu, Weitian Wang, A POMDP-based robot-human trust model for human-robot collabora-tion, in: 2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, CYBER, IEEE, 2022, pp. 1009-1014.

[114]

Alexandra Weidemann, Nele Rußwinkel, The role of frustration in human-robot interaction-what is needed for a successful collabora-tion? Front. Psychol. 12 (2021) 707.

[115]

Tair Faibish, Alap Kshirsagar, Guy Hoffman, Yael Edan, Human preferences for robot eye gaze in human-to-robot handovers, Int. J. Soc. Robot. 14 (4)(2022) 995-1012.

[116]

Muhammad Akmal Bin Mohammed Zaffir, Takahiro Wada, Presenting human-robot relative hand position using a multi-step vibrotactile stimu-lus for handover task,in: Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction, 2023, pp. 426-430.

[117]

Dorothea Langer, Franziska Legler, Philipp Kotsch, André Dettmann, Angelika C Bullinger, I let go now! Towards a voice-user interface for handovers between robots and users with full and impaired sight, Robotics 11 (5) (2022) 112.

[118]

Gianluca Corsini, Martin Jacquet, Hemjyoti Das, Amr Afifi, Daniel Sidobre, Antonio Franchi, Nonlinear model predictive control for human-robot handover with application to the aerial case, in: 2022 IEEE/RSJ Inter-national Conference on Intelligent Robots and Systems, IROS, IEEE, 2022, pp. 7597-7604.

[119]

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al., A survey of large language models, 2023, arXiv preprint arXiv:2303.18223.

[120]

Ceng Zhang, Junxin Chen, Jiatong Li, Yanhong Peng, Zebing Mao, Large language models for human-robot interaction: A review, Biomim. Intell. Robot. (2023) 100131.

[121]

Bowen Zhang, Harold Soh, Large language models as zero-shot human models for human-robot interaction, 2023, arXiv preprint arXiv:2303. 03548.

[122]

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al., Rt-2: Vision-language-action models transfer web knowledge to robotic control, 2023, arXiv preprint arXiv:2307.15818.

[123]

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowd-hery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al., Palm-e: An embodied multimodal language model, 2023, arXiv preprint arXiv:2303.03378.

AI Summary AI Mindmap
PDF (1683KB)

332

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/