Computer-controlled ultra high voltage amplifier for dielectric elastomer actuators

Ardi Wiranata , Zebing Mao , Yu Kuwajima , Yuya Yamaguchi , Muhammad Akhsin Muflikhun , Hiroki Shigemune , Naoki Hosoya , Shingo Maeda

Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (1) : 100139 -100139.

PDF (2578KB)
Biomimetic Intelligence and Robotics ›› 2024, Vol. 4 ›› Issue (1) : 100139 -100139. DOI: 10.1016/j.birob.2023.100139
Research Article
research-article

Computer-controlled ultra high voltage amplifier for dielectric elastomer actuators

Author information +
History +
PDF (2578KB)

Abstract

Soft robotics is a breakthrough technology to support human-robot interactions. The soft structure of a soft robot can increase safety during human and robot interactions. One of the promising soft actuators for soft robotics is dielectric elastomer actuators (DEAs). DEAs can operate silently and have an excellent energy density. The simple structure of DEAs leads to the easy fabrication of soft actuators. The simplicity combined with silent operation and high energy density make DEAs interesting for soft robotics researchers. DEAs actuation follows the Maxwell-pressure principle. The pressure produced in the DEAs actuation depends much on the voltage applied. Common DEAs requires high voltage to gain an actuation. Since the power consumption of DEAs is in the milli-Watt range, the current needed to operate the DEAs can be neglected. Several commercially available DC-DC converters can convert the volt range to the kV range. In order to get a voltage in the 2-3 kV range, the reliable DC-DC converter can be pricy for each device. This problem hinders the education of soft actuators, especially for a newcomer laboratory that works in soft electric actuators. This paper introduces an entirely do-it-yourself (DIY) Ultrahigh voltage amplifier (UHV-Amp) for education in soft robotics. UHV-Amp can amplify 12 V to at a maximum of 4 kV DC. As a demonstration, we used this UHV-Amp to test a single layer of powdered-based DEAs. The strategy to build this educational type UHV-Amp was utilizing a Cockcroft-Walton circuit structure to amplify the voltage range to the kV range. In its current state, the UHV-Amp has the potential to achieve approximately 4 kV. We created a simple platform to control the UHV-Amp from a personal computer. In near future, we expect this easy control of the UHV-Amp can contribute to the education of soft electric actuators.

Keywords

Dielectric elastomer actuators / Electric amplifier / Soft actuators / Soft robotics / Soft actuator education

Cite this article

Download citation ▾
Ardi Wiranata, Zebing Mao, Yu Kuwajima, Yuya Yamaguchi, Muhammad Akhsin Muflikhun, Hiroki Shigemune, Naoki Hosoya, Shingo Maeda. Computer-controlled ultra high voltage amplifier for dielectric elastomer actuators. Biomimetic Intelligence and Robotics, 2024, 4(1): 100139-100139 DOI:10.1016/j.birob.2023.100139

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by Japan Society for the Promotion of Science, Japan for their support under Grants-in-Aid for Scientific Research on Innovative Areas (18H05473), and the JSPS, Japan KAKENHI (21J15489 and 23K13290).

References

[1]

M. Duduta, R.J. Wood, D.R. Clarke, Multilayer dielectric elastomers for fast, programmable actuation without prestretch, Adv. Mater. 28 (2016) 8058-8063, http://dx.doi.org/10.1002/adma.201601842.

[2]

R. Kobayashi, H. Nabae, K. Suzumori, Large torsion thin artificial muscles tensegrity structure for twist manipulation, IEEE Robot. Autom. Lett. 8 (2023) 1207-1214, http://dx.doi.org/10.1109/LRA.2023.3236889.

[3]

Y. Fang, J. Zhang, B. Xu, Z. Mao, C. Li, C. Huang, et al., Raising the speed limit of axial piston pumps by optimizing the suction duct, Chin. J. Mech. Eng. 34 (2021) 105, http://dx.doi.org/10.1186/s10033-021-00624-w.

[4]

V. Cacucciolo, J. Shintake, Y. Kuwajima, S. Maeda, D. Floreano, H. Shea, Stretchable pumps for soft machines, Nature 572 (2019) 516-519, http://dx.doi.org/10.1038/s41586-019-1479-6.

[5]

Z. Mao, T. Iizuka, S. Maeda, Bidirectional electrohydrodynamic pump with high symmetrical performance and its application to a tube actuator, Sensors Actuators A 332 (2021) 113168, http://dx.doi.org/10.1016/j.sna.2021.113168.

[6]

J. Shintake, S. Rosset, B. Schubert, D. Floreano, H. Shea, Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators, Adv. Mater. 28 (2016) 231-238, http://dx.doi.org/10.1002/adma.201504264.

[7]

W. Miao, W. Zou, B. Jin, C. Ni, N. Zheng, Q. Zhao, et al., On demand shape memory polymer via light regulated topological defects in a dynamic covalent network, Nature Commun. 11 (2020) 1-8, http://dx.doi.org/10.1038/s41467-020-18116-1.

[8]

Z. Mao, G. Shimamoto, S. Maeda, Conical frustum gel driven by the marangoni effect for a motor without a stator, Colloids Surf. A (2020) 125561, http://dx.doi.org/10.1016/j.colsurfa.2020.124658.

[9]

Z. Mao, M. Kuroki, Y. Otsuka, S. Maeda, Contraction waves in self-oscillating polymer gels, Extrem. Mech. Lett. 39 (2020) 100830, http://dx.doi.org/10.1016/j.eml.2020.100830.

[10]

H. Shigemune, S. Maeda, V. Cacucciolo, Y. Iwata, E. Iwase, S. Hashimoto, et al., Printed paper robot driven by electrostatic actuator, IEEE Robot. Autom. Lett. 2 (2017) 1001-1007, http://dx.doi.org/10.1109/LRA.2017.2658942.

[11]

N. Hosoya, H. Masuda, S. Maeda, Balloon dielectric elastomer actuator speaker balloon dielectric elastomer actuator speaker, Appl. Acoust. 148 (2019) 238-245, http://dx.doi.org/10.1016/j.apacoust.2018.12.032.

[12]

A. Wiranata, M. Kanno, N. Chiya, H. Okabe, T. Horii, T. Fujie, et al., High-frequency oscillations of low-voltage dielectric elastomer actuators, Appl. Phys. Express 15 (2021) 011002-1-011002-6, http://dx.doi.org/10.35848/1882-0786/ac3d41.

[13]

A. Wiranata, Y. Ishii, N. Hosoya, S. Maeda, Simple and reliable fabrica-tion method for polydimethylsiloxane dielectric elastomer actuators using carbon nanotube powder electrodes, Adv. Energy Mater. 23 (2021) 1-11, http://dx.doi.org/10.1002/adem.202001181.

[14]

G. Belforte, G. Eula, A. Ivanov, S. Sirolli, Soft pneumatic actuators for rehabilitation, Actuators 3 (2014) 84-106, http://dx.doi.org/10.3390/act3020084.

[15]

C. Blanes, M. Mellado, P. Beltran, Novel additive manufacturing pneumatic actuators and mechanisms for food handling grippers, Actuators 3 (2014) 205-225, http://dx.doi.org/10.3390/act3030205.

[16]

D. Marín, J. Llano-viles, Z. Haddi, A. Perera-lluna, J. Fonollosa, D. Mar, System jou rna lp, Sensors Actuators B (2023) 134036, http://dx.doi.org/10.1016/j.birob.2023.100127.

[17]

H. Shigemune, S. Sugano, J. Nishitani, M. Yamauchi, N. Hosoya, S. Hashimoto, et al., Dielectric elastomer actuators with carbon nanotube electrodes painted with a soft brush, Actuators 7 (2018) 1-11, http://dx.doi.org/10.3390/act7030051.

[18]

N. Hosoya, S. Baba, S. Maeda, Hemispherical breathing mode speaker using a dielectric elastomer actuator, J. Acoust. Soc. Am. 138 (2015) EL424-EL428, http://dx.doi.org/10.1121/1.4934550.

[19]

M.W.M. Tan, G. Thangavel, P.S. Lee, Enhancing dynamic actuation perfor-mance of dielectric elastomer actuators by tuning viscoelastic effects with polar crosslinking, NPG Asia Mater. 11 (2019) 62, http://dx.doi.org/10.1038/s41427-019-0147-5.

[20]

T. Murakami, Y. Kuwajima, A. Wiranata, A. Minaminosono, H. Shigemune, Z. Mao, et al., A DIY fabrication approach for ultra - thin focus - tunable liquid lens using electrohydrodynamic pump, Micromachines 12 (2021) 1-10.

[21]

Z. Mao, Y. Asai, A. Yamanoi, Y. Seki, A. Wiranata, A. Minaminosono, Fluidic rolling robot using voltage-driven oscillating liquid, Smart Mater. Struct. 31 (2022) http://dx.doi.org/10.1088/1361-665X/ac895a.

[22]

Z. Mao, Y. Peng, C. Hu, R. Ding, Y. Yamada, S. Maeda, Soft computing-based predictive modeling of flexible electrohydrodynamic pumps, Biomim. Intell. Robot. 3 (2023) 100114, http://dx.doi.org/10.1016/j.birob.2023.100114.

[23]

H. Matsuo, K. Harada, The cascade connection of switching regulators, IEEE Trans. Ind. Appl. IA (1976) 192-198.

[24]

M.D. Seeman, A design methodology for switched-capacitor DC-dc converters, 2009.

[25]

E.M. Ali, N.Z. Yahaya, O.A. Saraereh, Assaf. A.H. Al, B.H. Alqasem, S. Iqbal, et al., Power conversion using analytical model of cockcroft-walton voltage multiplier rectenna, Electron 10 (2021) 1-16, http://dx.doi.org/10.3390/electronics10080881.

[26]

Y.P. Siwakoti, S. Member, F.Z. Peng, F. Blaabjerg, P.C. Loh, G.E. Town, et al., Impedance-source networks for electric power conversion part i : A topological review, IEEE Trans. Power. Electron. 30 (2015) 699-716, http://dx.doi.org/10.1109/TPEL.2014.2313746.

[27]

M. Forouzesh, Y.P. Siwakoti, S.A. Gorji, F. Blaabjerg, B. Lehman, A survey on voltage boosting techniques for step-up DC-dc converters, in: ECCE 2016 IEEE Energy Convers Congr Expo Proc, 2016, http://dx.doi.org/10.1109/ECCE.2016.7854792.

[28]

A. Wiranata, Y. Ohsugi, A. Minaminosono, Z. Mao, H. Kurata, N. Hosoya, et al., A DIY fabrication approach of stretchable sensors using carbon nano tube powder for wearable device, Front. Robot. AI 8 (2021) 1-15, http://dx.doi.org/10.3389/frobt.2021.773056.

[29]

W. Vallejo, C. Diaz-Uribe, C. Fajardo, Do-it-yourself methodology for calorimeter construction based in arduino data acquisition device for introductory chemical laboratories, Heliyon 6 (2020) e03591, http://dx.doi.org/10.1016/j.heliyon.2020.e03591.

[30]

J.P. Grinias, J.T. Whitfield, E.D. Guetschow, R.T. Kennedy, An inexpensive, open-source USB arduino data acquisition device for chemical instrumen-tation, J. Chem. Educ. 93 (2016) 1316-1319, http://dx.doi.org/10.1021/acs.jchemed.6b00262.

[31]

J.H. Shin, S. Choi, Open-source and do-it-yourself microfluidics, Sen-sors Actuators B 347 (2021) 130624, http://dx.doi.org/10.1016/j.snb.2021.130624.

[32]

Š. Kubínová, J. Šlégr, ChemDuino: Adapting arduino for low-cost chem-ical measurements in lecture and laboratory, J. Chem. Educ. 92 (2015) 1751-1753, http://dx.doi.org/10.1021/ed5008102.

[33]

A. Tvarijonaviciute, J.D. Carrillo-Sanchez, C.P. Rubio, M.D. Contreras-Aguilar, A. Muñoz-Prieto, L. Pardo-Marin, et al., Low-cost do-it-yourself (DIY) mannequin for blood collection: A comprehensive evaluation about its use in teaching, Res. Vet. Sci. 148 (2022) 15-20, http://dx.doi.org/10.1016/j.rvsc.2022.04.009.

[34]

J. Tischler, Z. Swank, H.A. Hsiung, S. Vianello, M.P. Lutolf, S.J. Maerkl, An automated do-it-yourself system for dynamic stem cell and organoid culture in standard multi-well plates, Cell Rep. Methods 2 (2022) 100244, http://dx.doi.org/10.1016/j.crmeth.2022.100244.

[35]

K. Aranganadin, Z. Zhang, Y. Lin, P. Chang, H. Hsu, M. Lin, et al., A mini-marx generator powered by a cockcroft - walton voltage multiplier, IEEE Trans. Plasma Sci. 50 (2022) 3393-3399.

[36]

E. Everhart, P. Lorrain, The cockcroft-walton voltage multiplying circuit, Rev. Sci. Instrum. 24 (1953) 221-226, http://dx.doi.org/10.1063/1.1770669.

[37]

D.P. Holl, E.J. Park, P. Polygerinos, G.J. Bennett, C.J. Walsh, The soft robotics toolkit: Shared resources for research and design, Soft Robot. 1 (2014) 224-230, http://dx.doi.org/10.1089/soro.2014.0010.

[38]

J. Brugler, Theoretical performance of voltage multiplier circuits, IEEE J. Solid-State Circuits 6 (1971) 132-135, http://dx.doi.org/10.1109/JSSC.1971.1049670.

[39]

J.D. Cockcroft, ETS. Walton, Experiments with high velocity positive ions email alerting service, in: Proceeding R. Soc. a, Vol. 129, 1930, http://dx.doi.org/10.1098/rspa.1932.0107.

[40]

AMP-20b20, 2023, https://www.matsusada.com/product/amp/hiv/amp/ accessed February 5, 2023).

[41]

Q30-12 n.d, 2023, https://www.digikey.my/en/products/detail/xp-power/Q30-12/5873636 accessed February 6, 2023).

[42]

A30P-5 n.d, 2023, https://www.digikey.my/en/products/detail/xp-power/A30P-5/5873510 accessed February 2, 2023).

[43]

UMHV0550 n.d, 2022, https://www.digikey.jp/ja/products/detail/hvm-technology-inc/UMHV0550/10707950 accessed February 6, 2022).

[44]

URT-5P-5 n.d, 2023, https://www.matsusada.com/product/hvps2/onboard/urt/ accessed February 6, 2023).

[45]

S. Schlatter, P. Illenberger, S. Rosset, Peta-pico-voltron: An open-source high voltage power supply, HardwareX 4 (2018) e00039, http://dx.doi.org/10.1016/j.ohx.2018.e00039.

AI Summary AI Mindmap
PDF (2578KB)

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/