Progress and prospect of biomimetic optical materials: A review

Dashuang Wang , Tuo Ping , Zhilan Du , Tingye Liu , Yuxin Zhang

Biogeotechnics ›› 2025, Vol. 3 ›› Issue (3) : 100167

PDF (10464KB)
Biogeotechnics ›› 2025, Vol. 3 ›› Issue (3) :100167 DOI: 10.1016/j.bgtech.2025.100167
Review article
research-article

Progress and prospect of biomimetic optical materials: A review

Author information +
History +
PDF (10464KB)

Abstract

Recent advances in bionic optical materials (BOMs) are systematically reviewed, emphasizing bioinspired strategies derived from natural models such as plant epidermis, aquatic organisms, avian plumage, and insect photonic architectures (e.g., butterfly wings and inverse opal structures). These biological systems exhibit sophisticated light manipulation mechanisms, including absorption, scattering, and structural coloration, which have guided the design of novel extinction materials with tunable optical properties. By mimicking hierarchical structures and dynamic light-regulation principles, researchers have developed BOMs exhibiting exceptional broadband extinction performance. Notably, applications in optical sensing and imaging systems are critically discussed, highlighting their role in enhancing camera sensitivity and adaptive optical sensor design. Furthermore, this review identifies emerging trends in nanofabrication, machine learning-assisted optimization, and biohybrid material systems. The integration of cross-disciplinary approaches is projected to accelerate the development of multifunctional BOMs, paving the way for breakthroughs in adaptive optics, environmental monitoring, and intelligent photonic devices. In the future, the integration of BOMs and distributed fiber optic sensing technology is expected to realize the whole-life optical monitoring of pile foundation structural health, and promote the development of geotechnical engineering in the direction of intelligence and high precision.

Keywords

Bionic / Structural design / Optical material / Polarized light

Cite this article

Download citation ▾
Dashuang Wang, Tuo Ping, Zhilan Du, Tingye Liu, Yuxin Zhang. Progress and prospect of biomimetic optical materials: A review. Biogeotechnics, 2025, 3(3): 100167 DOI:10.1016/j.bgtech.2025.100167

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Dashuang Wang: Writing - review & editing, Writing - original draft, Software, Resources, Methodology, Investigation. Tuo Ping: Supervision, Software, Resources, Project administration, Conceptualization. Zhilan Du: Validation, Software, Methodology. Tingye Liu: Visualization, Software. Yuxin Zhang: Project administration, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors gratefully acknowledge the financial support provided by Graduate Scientific Research and Innovation Foundation of Chongqing, China (CYB22007, CYS22005), Projects (No. 2020CDJXZ001) supported by the Fundamental Research Funds for the Central Universities, the Technology Innovation and Application Development Special Project of Chongqing (Z20211350 and Z20211351), Scientific Research Project of Chongqing Ecological Environment Bureau (No. CQEE2022-STHBZZ118).

References

[1]

Bai, J., He, D., Dang, B., Liu, K., Yang, Z., Wang, J., & Yang, Y. (2024). Full van der Waals ambipolar ferroelectric configurable optical hetero-synapses for in-sensor computing. Advanced Materials, 36(50), https://doi.org/10.1002/adma.202401060

[2]

Bernhard, C. G., Miller, W. H., & Møller, A. R. (1965). The insect corneal nipple array. Acta Physiologica Scandinavica, 63, 1-79.

[3]

Cai, R., Zheng, W., Yang P. a, Rao J. s, Huang, X., Wang, D. S., & Zhang, Y. X. (2022). Microstructure, electromagnetic properties, and microwave absorption mechanism of SiO2-MnO-Al2O3 based manganese ore powder for electromagnetic protection. Molecules, 27(12), 3758. https://doi.org/10.3390/molecules27123758

[4]

Cao, A., Wang, J., Pang, H., Zhang, M., Shi, L., Deng, Q., & Hu, S. (2017). Multifocal Microlens for bionic compound eye. Proceedings of SPIE, 10460(000), 6.

[5]

Cao, A., Wang, J., Pang, H., Zhang, M., Shi, L., Deng, Q., & Hu, S. (2018). Design and fabrication of a multifocal bionic compound eye for imaging. Bioinspiration Biomimetics, 13(2), https://doi.org/10.1088/1748-3190/aaa901

[6]

Catania, B. (1990). From electronics to photonics and from photonics to bionics. Elettrotecnica, 77(7), 607-623 Retrieved from ://WOS:A1990EB03600004.

[7]

Chang, X., Duan, Z. W., Wang, D. S., Wang, S. S., Lin, Z., Ma, B., & Wu, K. M. (2023). High-entropy spinel ferrites with broadband wave absorption synthesized by simple solid-phase reaction. Molecules, 28(8), 3468. https://doi.org/10.3390/molecules28083468

[8]

Chen, J., Chen, Y., Zhao, H., & Ma, T. (2023a). Development of neural-network-based stereo bionic compound eyes with fiber bundles. Concurrency and Computation- Practice Experience, 35(2), https://doi.org/10.1002/cpe.7464

[9]

Chen, Y., Jin, X., Lu, J., Li, S., Li, C., Yu, C., & Li, F. (2024b). Enzyme-photodynamic adaptive bionic periosteum for bone revitalization. Advanced Functional Materials, 34(21), https://doi.org/10.1002/adfm.202314120

[10]

Chen, T. M., Jin, Y., Lv, H. Y., Yang, A. T., Liu, M. Y., Chen, B., & Chen, Q. (2020). Applications of lithium-ion batteries in grid-scale energy storage systems. Transactions of Tianjin University, 26(3), 208-217. https://doi.org/10.1007/s12209-020-00236-w

[11]

Chen, H., Zhang, X., Zhou, T., Hou, A., Liang, J., Ma, T., & Gao, A. (2024a). A tunable hydrophilic-hydrophobic, stimulus responsive, and robust iridescent structural color bionic film with chiral photonic crystal nanointerface. Small, 20(37), https://doi.org/10.1002/smll.202311283

[12]

Chen, T., Zhu, L., Chen, J., Tang, X., & Li, K. H. (2023b). Optical millinewton force sensors based on GaN devices integrated with bionic-structured PMDS films. IEEE Transactions on Electron Devices, 70(7), 3828-3832. https://doi.org/10.1109/ted.2023.3279301

[13]

Dai, M., Chen, H., Feng, R., et al. (2018). A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric Schottky junction. ACS nano, 12(8), 8739-8747. https://doi.org/10.1021/acsnano.8b04931

[14]

Deng, Z., Lv, J., Liu, X., & Hou, Y. (2023). Bionic design model for co-creative product innovation based on deep generative and BID. International Journal of Computational Intelligence Systems, 16(1), https://doi.org/10.1007/s44196-023-00187-9

[15]

Dong, L., Xue, B., Wei, G., Yuan, S., Chen, M., Liu, Y., & Wang, P. (2024). Highly promising 2D/1D BP-C/CNT bionic opto-olfactory co-sensory artificial synapses for multisensory integration. Advanced Science, 11(29), https://doi.org/10.1002/advs.202403665

[16]

Dong, S., Zhang, B., & Xu, H. (2024). Improve anti-glare ability of helicopters based on the anti-reflective structure of bionic moth eyes. Materials Research Express, 11(7), https://doi.org/10.1088/2053-1591/ad65b9

[17]

Du, Z. L., Wang, D. S., Fu, H. Y., Liu, X. D., Yi, S., Rao, J. S., & Zhang, Y. X. (2023). Enhanced microwave absorption performance of α-FeOOH nanorods on carbon aerogel powder. ACS Applied Nano Materials, 6(22), 20700-20709. https://doi.org/10.1021/acsanm.3c03521

[18]

Du, Z. L., Wang, D. S., Zhang, X. F., Yi, Z. Y., Tang, J. H., Yang, P. A., & Zhang, Y. X. (2023). Core-shell structured SiO2@NiFe LDH composite for broadband electromagnetic wave absorption. International Journal of Molecular Sciences, 24(1), 504. https://doi.org/10.3390/ijms24010504

[19]

Duan, G., Zhang, C., Yang, D., & Wang, Z. (2022). Theoretical design of a bionic spatial 3D-arrayed multifocal metalens. Biomimetics, 7(4), https://doi.org/10.3390/biomimetics7040200

[20]

Fan, L. Q., Ai, H. L., Jiao, M. Y., Li, Y., Jin, Y. H., Fu, Y. R., & Cheng, J. Y. (2024). Low- frequency and dual-band microwave absorption properties of novel VB-group disulphides (3R-TaS2) nanosheets. Nano Materials Science, 6(5), 635-646. https://doi.org/10.1016/j.nanoms.2024.05.011

[21]

Fan, B., Yang, S., Wang, L., & Xu, M. (2024). Spatially resolved defect characterization and fidelity assessment for complex and arbitrary irregular 3D printing based on 3D P-OCT and GCode. Sensors, 24(11), https://doi.org/10.3390/s24113636

[22]

Fernando, N., Swaminathan, J., Hernandez, F. C. R., Priyadarshana, G., Sandaruwan, C., Yang, W., & Ajayan, P. M. (2021). Pseudobrookite based heterostructures for efficient electrocatalytic hydrogen evolution. Materials Reports: Energy, 1(2), Article 100020. https://doi.org/10.1016/j.matre.2021.100020

[23]

Gerwick, W. H., & Lang, N. J. (1977). Structural, chemical and ecological studies on iridescence in iridaea (rhodophyta) 1. Journal of Phycology, 13(2), 121-127. https://doi.org/10.1111/j.1529-8817.1977.tb02898.x

[24]

Gorzelak, P., Salamon, M. A., Lach, R., Loba, M., & Ferré B. (2014). Microlens arrays in the complex visual system of Cretaceous echinoderms. Nature Communications, 5(1), 3576. https://doi.org/10.1038/ncomms4576

[25]

Gu, W., Cheng, G., & Wan, Y. J. (2010). Singularity analysis of a novel 3SPS+PS bionic parallel processing platform based on Grassmann line geometry, Proc. SPIE 7655, 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, 76550Z. https://doi.org/10.1117/12.866803

[26]

Han, Y., Li, X., Li, X., Zhou, Z., & Li, J. (2022). Recognition and detection of wide field bionic compound eye target based on cloud service network. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.865130

[27]

Hao, Q., Wang, Z., Cao, J., & Zhang, F. (2018). A hybrid bionic image sensor achieving FOV extension and foveated imaging. Sensors, 18(4), https://doi.org/10.3390/s18041042

[28]

He, Y., Liu, H., Luo, J., Li, N., Zhang, Z., Gan, J., & Yang, Z. (2024). Liquid crystal elastomer actuators enhanced by tapered optical fibers for controllable bending directions and amplitudes. Advanced Materials Technologies, 9(13), https://doi.org/10.1002/admt.202400073

[29]

Hinton, H. E., & Gibbs, D. F. (1969). Diffraction gratings in phalacrid beetles. Nature, 221(5184), 953-954. https://doi.org/10.1038/221953a0

[30]

Hu, H., Chen, C. P., Li, G., Jin, Z., Chu, Q., Han, B., & Zou, S. P. (2024). Bionic vision processing for epiretinal implant-based metaverse. ACS Applied Optical Materials, 2(7), 1269-1276. https://doi.org/10.1021/acsaom.3c00431

[31]

Jen, Y. J., Lakhtakia, A., Yu, C. W., Lin, C. F., Lin, M. J., Wang, S. H., & Lai, J. R. (2011). Biologically inspired achromatic waveplates for visible light. Nature communications, 2(1), 363. https://doi.org/10.1038/ncomms1358

[32]

Jia, B., Liu, C., Zhang, Y., Tan, Y., Tian, X., Cui, Y., & Deng, Y. (2024). Light-responsive soft robot integrating actuation and function based on laser cutting. Micromachines, 15(4), https://doi.org/10.3390/mi15040534

[33]

Jiang X.-j, Lu X.-l, Pan J.-l, & Zhang S.-q (2015). Design and preparation of plant bionic materials based on optical and infrared features simulation. Spectroscopy and Spectral Analysis, 35(7), 1835-1839. https://doi.org/10.3964/j.issn.1000-0593(2015)07-1835-05

[34]

Ke, X. L., Mu, X. J., Chen, S. Y., Zhang, Z. X., Zhou, J. H., Chen, Y. L., & Miao, L. (2023). Reduced graphene oxide reinforced PDA-Gly-PVA composite hydrogel as strain sensors for monitoring human motion. Soft Science, 3(3), 21. https://doi.org/10.20517/ss.2023.14

[35]

Kim, S. D., Park, K., Lee, S., Kum, J., Kim, Y., An, S., & Son, D. (2023). Injectable and tissue-conformable conductive hydrogel for MRI-compatible brain-interfacing electrodes. Soft Science, 3(2), 18. https://doi.org/10.20517/ss.2023.08

[36]

Kong, L., Xu, Z., & Xu, M. (2018, 2019 Jun 26-29). Research and design of functional microstructures with directional transport for bionic microfluidics. Paper presented at the 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT) - Micro- and Nano-Optics, Catenary Optics, and Subwavelength Electromagnetics, Chengdu, PEOPLES R CHINA.

[37]

Lai, J., Zeng, B., Liu, J., Zhang, J., Pei, W., Zhou, Y., & Tong, Y. (2024). Current research status of ionic polymer-metal composites in applications of low-voltage actuators. Materials Advances, 5(11), 4601-4617. https://doi.org/10.1039/d4ma00040d

[38]

Li, Y., Chen, Z., Chen, Y., Yang, H., Lu, J., Li, Z., & Luo, J. (2023c). A smart bionic finger for subsurface tactile tomography. Cell Reports Physical Science, 4(2), https://doi.org/10.1016/j.xcrp.2023.101257

[39]

Li, F., Gao, Y., Zhong, K., Wu, H., Cui, X., & Kuang, G. (2016). Ray-matrix analysis for integrative ommatidium of bionic optical compound eyes. Optik, 127(1), 60-62. https://doi.org/10.1016/j.ijleo.2015.09.255

[40]

Li, L., Li, S., Wang, W., Zhang, J., Li, Y., Deng, Q., & Huo, N. (2024d). Adaptative machine vision with microsecond-level accurate perception beyond human retina. Nature Communications, 15(1), https://doi.org/10.1038/s41467-024-50488-6

[41]

Li, K. L., Liu, X. Y., & Zhang, Y. X. (2023a). Synthesis and application of biomimetic material inspired by diatomite. Biogeotechnics, 1(3), Article 100037. https://doi.org/10.1016/j.bgtech.2023.100037

[42]

Li, X. H., Ran, F. T., Yang, F., Long, J., & Shao, L. (2021). Advances in MXene films: Synthesis, assembly, and applications. Transactions of Tianjin University, 27(3), 217-247. https://doi.org/10.1007/s12209-021-00282-y

[43]

Li, S., Shi, Y., Zhang, X., Zhou, M., Zhang, B., Zhou, L., & Guo, J. (2024f). Weakly coupled photonic flexible sensors based on sodium polyacrylate. Sensors and Actuators a- Physical, 377. https://doi.org/10.1016/j.sna.2024.115731

[44]

Li, K. L., Teng, H., Dai, X. J., Wang, Y., Wang, D. S., Zhang, X. F., & Zhang, Y. X. (2022). Atomic scale modulation strategies and crystal phase transition of flower-like CoAl layered double hydroxides for supercapacitors. Crystengcomm, 24(11), 2081-2088. https://doi.org/10.1039/d1ce01736e

[45]

Li, G., Xu, W., Qu, H., Tian, D., Zhong, H., & Li, H. (2024b). Selective wetting and transport of systemic pesticides on bionic stomatal surface regulated by host-guest interaction. Chemical Engineering Journal, 488. https://doi.org/10.1016/j.cej.2024.150878

[46]

Li, Z., Xu, N., Zhang, X., Peng, X., & Song, Y. (2023d). Motion control method of bionic robot dog based on vision and navigation information. Applied Sciences, 13(6), https://doi.org/10.3390/app13063664

[47]

Li, M. D., Yang, Y. J., Zhang, S. A., Chen, X. D., Yin, H. S., & Zhu, L. P. (2023b). Effects of sorbitol and sucrose on soybean-urease induced calcium carbonate precipitate. Biogeotechnics, 1(4), Article 100052. https://doi.org/10.1016/j.bgtech.2023.100052

[48]

Li, L., Zhang, C., Wang, J., Cong, X., Ling, Z., Jia, Z., & Cheng, Y. (2024e). Stiffener and staggered-square honeycomb structure design for lobster eye x ray micro pore optics. Optics Letters, 49(15), 4413-4416. https://doi.org/10.1364/ol.533211

[49]

Li, D. M., Zheng, X., Gu, H., Xuan, X. B., Liu, B., Feng, H. Q., & Zhang, F. H. (2024a). Gradient honeycomb metastructure with broadband microwave absorption and effective mechanical resistance. Nano Materials Science, 6(4), 456-466. https://doi.org/10.1016/j.nanoms.2023.09.005

[50]

Li, J., Zhou, Y., Li, Y., Yan, C., Zhao, X.-G., Xin, W., & Liu, Y. (2024c). Perceiving the spectrum of pain: wavelength-sensitive visual nociceptive behaviors in monolayer MoS2-based optical synaptic devices. ACS Photonics, 11(11), 4578-4587. https://doi.org/10.1021/acsphotonics.4c00877

[51]

Liang, D., Xiang, K., Du, J.-W., Yang, J.-N., & Wang, X.-Y. (2014). Biomimetic optical system using polymer lenses with tunable focus. Optical Engineering, 53(10), https://doi.org/10.1117/1.Oe.53.10.105101

[52]

Liao, Y., Wang, D. S., Zhu, W. R., Du, Z. L., Gong, F. B., Ping, T., & Liu, X. Y. (2024). C/ Co3O4/diatomite composite for microwave absorption. Molecules, 29(18), 4336. https://doi.org/10.3390/molecules29184336

[53]

Lin, Y., Ren, L., Yang, X., & Yuan, H. (2024). Design and application of bionic camouflage materials simulating spectral reflection characteristics of plants: a review. Applied Sciences-Basel, 14(11), https://doi.org/10.3390/app14114404

[54]

Lin, Y.-T., Wu, C.-H., Syu, W.-L., Ho, P.-C., Tseng, Z.-L., Yang, M.-C., & Liu, T.-Y. (2022). Replica of bionic nepenthes peristome-like and anti-fouling structures for self-driving water and raman-enhancing detection. Polymers, 14(12), https://doi.org/10.3390/polym14122465

[55]

Liu, X., Cai, C., Ji, K., Hu, X., Xiong, L., & Qi Z.-m (2023c). Prototype optical bionic microphone with a dual-channel Mach-Zehnder interferometric transducer. Sensors, 23(9), https://doi.org/10.3390/s23094416

[56]

Liu, J., Chu, J., Zhang, R., Liu, R., & Fu, J. (2023a). Wide field of view and full Stokes polarization imaging using metasurfaces inspired by the stomatopod eye. Nanophotonics, 12(6), 1137-1146. https://doi.org/10.1515/nanoph-2022-0712

[57]

Liu, W., Ding, F., Yang, W., You, W., Zhang, L., & He, W. (2024c). A transdermal prion- bionics supermolecule as a RAB3A antagonist for enhancing facial youthfulness. Advanced Science, 11(30), https://doi.org/10.1002/advs.202308764

[58]

Liu, Q., Guan, L., Li, B., Wang, J., & Chu, J. K. (2014). The impact of typical aerosol types on polarization sensitive spectral for bionic micro-nano polarization sensor. Key Engineering Materials, 609-610, 988-992.

[59]

Liu, H., Li, D., Zhang, M., Wan, J., Liu, S., Zhu, H., & Liu, Q. (2024a). A cross-modal semantic alignment and feature fusion method for bionic drone and bird recognition. Remote Sensing, 16(17), https://doi.org/10.3390/rs16173121

[60]

Liu, Y., Wang, H., Ho, J., Ng, R. C., et al. (2019). Structural color three-dimensional printing by shrinking photonic crystals. Nature communications, 10(1), 4340. https://doi.org/10.1038/s41467-019-12360-w

[61]

Liu, J., Wang, K., Yang, H., & Sun, N. (2024b). Visual privacy-preserving coding for video intelligence applications: A compressed sensing mechanism via bee-eye bionic vision. IEEE Transactions on Cognitive and Developmental Systems, 16(3), 1186-1197. https://doi.org/10.1109/tcds.2023.3338609

[62]

Liu, M., Yu, L., Li, Y., Ma, Y., An, S., Zheng, J., & Gao, P. (2023b). Bionic plasmonic nanoarrays excited by radially polarized vector beam for metal-enhanced fluorescence. Nanomaterials, 13(7), https://doi.org/10.3390/nano13071237

[63]

Luo, X., Chen, C., He, Z., Wang, M., Pan, K., Dong, X., & Huang, W. (2024a). A bionic self- driven retinomorphic eye with ionogel photosynaptic retina. Nature Communications, 15(1), https://doi.org/10.1038/s41467-024-47374-6

[64]

Luo, X., Deng, W., Sheng, F., Ren, X., Zhao, Z., Zhao, C., & Jie, J. (2024b). Bionic scotopic adaptation transistors for nighttime low illumination imaging. ACS nano, 18(21), 13726-13737. https://doi.org/10.1021/acsnano.4c01663

[65]

Lyu, C., Hu, X., Deng, Y., Tian, J., Xiao, Y., Ge, C., & Jin, J. (2023). Bionic slipping perception based on FBG static-dynamic sensing point. IEEE Transactions on Instrumentation and Measurement, 72. https://doi.org/10.1109/tim.2023.3268441

[66]

Niu, J., Xu, X., Pan, Y., & Duan, Z. (2024). An investigation of a biomimetic optical system and an evaluation model for the qualitative analysis of laser interference visual levels. Biomimetics, 9(4), https://doi.org/10.3390/biomimetics9040220

[67]

Pang, X., Li, B., Gao, S., & Liu, G. (2024). Thermal stability and weather resistance of a bionic lotus multiscale micro-nanostructure TiC/TiN-Ni/Mo spectral selective absorber based on laser cladding-induced melt foaming. ACS Applied Materials Interfaces, 16(6), 7860-7874. https://doi.org/10.1021/acsami.3c17960

[68]

Parker, A. R., McPhedran, R. C., McKenzie, D. R., Botten, L. C., & Nicorovici, N. A. P. (2001). Aphrodite’s iridescence. Nature, 409(6816), 36-37. https://doi.org/10.1038/35051168

[69]

Peng, Y., Zhang, J., Zhou, X., Chen, C., Guo, T., Yan, Q., & Wu, C. (2024). Metalens in improving imaging quality: Advancements, challenges, and prospects for future display. Laser Photonics Reviews, 18(4), https://doi.org/10.1002/lpor.202300731

[70]

Prakash, S., Josephine, H. H., Priya, S., & Batumalay, M. (2024). Bionic hand movements recognition: A unified framework with attention-guided ROI identification and the bionic fusion net approach. International Journal of Advanced Computer Science and Applications, 15(6), 998-1008.

[71]

Qi, L. G., Jin, Y. H., Li, H. N., Dong, Y. P., & Xie, C. (2020). The role of solvent in tautomer solvate crystallization: A case of 6-amino-1,3-dimethyl-5-nitrosouracil. Transactions of Tianjin University, 26(6), 458-469. https://doi.org/10.1007/s12209-020-00247-7

[72]

Qin, X., Yang, K., Liang, Y., Fan, H., Du, X., Liang, H., & Zhao, D. (2024). Few-mode optical fiber-based flexible pressure feedback tentacle doped with fluorescence temperature pointer. Measurement Science and Technology, 35(11), https://doi.org/10.1088/1361-6501/ad688f

[73]

Qiu, Y., Jia, X., Shan, Z., Wang, D., Yang, J., Wang, Z., & Song, H. (2024). Construction of biomimetic textures and modification of self-lubrication mechanisms on the surface of sulfonated polyether ether ketone films. Journal of Materials Science, 59(36), 16932-16946. https://doi.org/10.1007/s10853-024-10202-9

[74]

Qiu, Y., Kang, G., Cheng, X., & Wu, J. (2023). Cross-scale light absorption properties of surface bionic microstructures for spacecraft stealth. Aerospace, 10(6), https://doi.org/10.3390/aerospace10060561

[75]

Qu, Z. W., Wang, Y., Yang, P. A., Zheng, W., Li, N., Bai, J. Y., & Zhang, Y. X. (2022). Enhanced electromagnetic wave absorption properties of ultrathin MnO2 nanosheet- decorated spherical flower-shaped carbonyl iron powder. Molecules, 27(1), 135. https://doi.org/10.3390/molecules27010135

[76]

Rundel, P. W., Dillon, M. O., Palma, B., Mooney, H. A., Gulmon, S. L., & Ehleringer, J. R. (1991). The phytogeography and ecology of the coastal Atacama and Peruvian deserts. Aliso: A Journal of Systematic and Floristic Botany, 13(1), 1-49. https://doi.org/10.5642/aliso.19911301.02

[77]

Schiff, H., Manning, R. B., & Abbott, B. C. (1986). Structure and optics of ommatidia from eyes of stomatopod crustaceans from different luminous habitats. The Biological Bulletin, 170(3), 461-480. https://doi.org/10.2307/1541855

[78]

Shen, L. B., Jiang, Y. X., Tian, L. P., & Chen, M. Q. (2022). Damage self-healing method of composite structures based on bionic optical fiber. Optical Materials Express, 12(8), 3060-3070. https://doi.org/10.1364/ome.464316

[79]

Shen, H., Zhou, X., Bai, A., Ren, X., & Zhang, Y. (2013). Ecdysone receptor gene from the freshwater prawn Macrobrachium nipponense: identification of different splice variants and sexually dimorphic expression, fluctuation of expression in the molt cycle and effect of eyestalk ablation. General and Comparative Endocrinology, 193, 86-94. https://doi.org/10.1016/j.ygcen.2013.07.014

[80]

Shi, H., Cheng, Y. Y., & Kang, P. (2021). Metal oxide/nitrogen-doped carbon catalysts enables highly efficient CO2 electroreduction. Transactions of Tianjin University, 27(3), 269-277. https://doi.org/10.1007/s12209-021-00287-7

[81]

Silva, A. C. D., Paterson, T. E., & Minev, I. R. (2023). Electro-assisted assembly of conductive polymer and soft hydrogel into core-shell hybrids. Soft Science, 3(1), 3. https://doi.org/10.20517/ss.2022.25

[82]

Song, X. M., Pan, Y. C., Han, C. B., Liu, C. X., Yalikun, Y., Yan, H., & Yang, Y. (2024). A triboelectric nanogenerator based on a spiral rotating shaft for efficient marine energy harvesting of the hydrostatic pressure differential. Materials Reports: Energy, 4(3), Article 100280. https://doi.org/10.1016/j.matre.2024.100280

[83]

Su, K., Zou, Q., Zhou, J., Zou, L., Li, H., Wang, T., & Wang, P. (2015b). High-sensitive and high-efficient biochemical analysis method using a bionic electronic eye in combination with a smartphone-based colorimetric reader system. Sensors and Actuators B- Chemical, 216, 134-140. https://doi.org/10.1016/j.snb.2015.04.052

[84]

Su, K., Zou, Q., Hu, N., Wang, P., & Ieee. (2015a, 2015 Aug 25-29). High-Sensitive and High-Efficient Biochemical Analysis Method Using a Bionic Electronic Eye in Combination with a Smartphone-based Colorimetric Reader System. Paper presented at the 37th Annual International Conference of the IEEE-Engineering-in-Medicine- and-Biology-Society (EMBC), Milan, ITALY.

[85]

Sun, K., Wang, Z., Liu, Q., Chen, H., & Cui, W. (2023a). Low-cost distributed optical waveguide shape sensor based on WTDM applied in bionics. Sensors, 23(17), https://doi.org/10.3390/s23177334

[86]

Sun, Q., Yang, X., Shu, T., Yang, X. F., Qiao, M., Wang, D. S., & Yao, K. X. (2023b). In Situ Synthesis of C-N@NiFe2O4@MXene/Ni nanocomposites for efficient electromagnetic wave absorption at an ultralow thickness level. Molecules, 28(1), 233. https://doi.org/10.3390/molecules28010233

[87]

Tan, X., Xia, X., Qiu, L., Wang, L., & Li, B. (2021). Analysis of mechanical characteristics of bionic artificial skin using different suturing patterns. Applied Bionics and Biomechanics, 2021. https://doi.org/10.1155/2021/6696612

[88]

Vigneron, J. P., Rassart, M., Vértesy, Z., Kertész, K., Sarrazin, M., Biró L. P., & Lousse, V. (2005). Optical structure and function of the white filamentary hair covering the edelweiss bracts. Physical Review E, 71(1), Article 011906. https://doi.org/10.1103/PhysRevE.71.011906

[89]

Vukusic, P., Hallam, B., & Noyes, J. (2007). Brilliant whiteness in ultrathin beetle scales. Science, 315(5810), 348. https://doi.org/10.1126/science.1134666

[90]

Vukusic, P., Sambles, J. R., & Lawrence, C. R. (2004). Structurally assisted blackness in butterfly scales. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(suppl_4), S237-S239. https://doi.org/10.1098/rsbl.2003.0150

[91]

Wan, Y., Wang, P., Huang, F., Yuan, J., Li, D., Chen, K., & Yao, Y. (2021). Bionic optical physical unclonable functions for authentication and encryption. Journal of Materials Chemistry C, 9(38), 13200-13208. https://doi.org/10.1039/d1tc02883a

[92]

Wang, Y., Deng, J., Zhang, S., Li, H., Chen, W., & Liu, Y. (2022e). Design of a linear-rotary ultrasonic motor for optical focusing inspired by the bionic motion principles of the earthworms. International Journal of Smart and Nano Materials, 13(2), 346-365. https://doi.org/10.1080/19475411.2022.2084173

[93]

Wang, X.-Y., Du, J.-W., & Zhu, S.-Q. (2017). Symmetrical optical imaging system with bionic variable-focus lens for off-axis aberration correction. Optics Communications, 398, 77-84. https://doi.org/10.1016/j.optcom.2017.04.044

[94]

Wang, D. S., Hu, Y. Z., Cui, Z. Y., Yang, P. X., Du, Z. L., Hou, Y., & Zhang, Y. X. (2023a). Sulfur vacancy regulation and multipolarization of NixCo1S nanowires-decorated biotemplated structures to promote microwave absorption. Journal of Colloid and Interface Science, 646, 991-1001. https://doi.org/10.1016/j.jcis.2023.05.112

[95]

Wang, D. S., Mukhtar, A., Humayun, M., Wu, K. M., Du, Z. L., Wang, S. S., & Zhang, Y. X. (2022a). A critical review on nanowire-motors: Design, mechanism and applications. Chemical Record, 22(8), Article e202200016. https://doi.org/10.1002/tcr.202200016

[96]

Wang, Y., Shi, C., Xu, H., Zhang, Y., & Yu, W. (2021). A compact bionic compound eye camera for imaging in a large field of view. Optics and Laser Technology, 135. https://doi.org/10.1016/j.optlastec.2020.106705

[97]

Wang, L., Wang, L., Liu, G., Ge, C., Tang, X., & Yang, N. (2022b). Study on microstructure and stimuli-responsive optical characteristics of wing scales of Madagascan sunset moth. Journal of Nanophotonics, 16(2), https://doi.org/10.1117/1.Jnp.16.026009

[98]

Wang, L., Wang, W., Wang, L., Liu, G., Ge, C., Yang, N., & Li, P. (2022d). Study on fine structure and optical response characteristics of wing scales of Papilio paris. Journal of Optics-India, 51(4), 874-883. https://doi.org/10.1007/s12596-021-00808-6

[99]

Wang, Z., Wu, Y., Chen, L., Bakhtiyari, A. N., Yu, W., Qi, D., & Zheng, H. (2025). Spatial light assisted femtosecond laser direct writing of a bionic superhydrophobic Fresnel microlens arrays. Optics and Laser Technology, 180. https://doi.org/10.1016/j.optlastec.2024.111451

[100]

Wang, D. S., Yang, P. X., Hu, Y. Z., Cui, Z. Y., Du, Z. L., Yang, P. A., & Zhang, Y. X. (2023b). 1D-3D biological template loaded NiCo nanowires at high temperatures as a broadband, lightweight electromagnetic wave absorbing material. Powder Technology, 426. https://doi.org/10.1016/j.powtec.2023.118670

[101]

Wang, L., Wang, L., Liu, G., Yang, N., Ge, C., Xu, K., & Wang, W. (2022c). Study on the Optical Stealth Characteristics of Micro/Nano Structure of Morpho Menelaus Wing Scales. Rare Metal Materials and Engineering, 51(5), 1926-CP1923.

[102]

Welch, V., Lousse, V., Deparis, O., Parker, A., & Vigneron, J. P. (2007). Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius (Curculionidae). Physical Review E—Statistical. Nonlinear and Soft Matter Physics, 75(4), Article 041919. https://doi.org/10.1103/PhysRevE.75.041919

[103]

Whitney, H. M., Kolle, M., Andrew, P., Chittka, L., Steiner, U., & Glover, B. J. (2009). Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science, 323(5910), 130-133. https://doi.org/10.1126/science.1166256

[104]

Wu, L., Yuan, X., Tang, Y., Wageh, S., Al-Hartomy, O. A. A., Al-Sehemi, A. G. G., & Qin, Y. (2023). MXene sensors based on optical and electrical sensing signals: From biological, chemical, and physical sensing to emerging intelligent and bionic devices. Photonix, 4(1), https://doi.org/10.1186/s43074-023-00091-7

[105]

Xing, Z., Zogona, D., Wu, T., Pan, S., & Xu, X. (2023). Applications, challenges and prospects of bionic nose in rapid perception of volatile organic compounds of food. Food Chemistry, 415. https://doi.org/10.1016/j.foodchem.2023.135650

[106]

Xu, X. Q., Yang, L., Zheng, W., Zhang, H., Wu, F. S., Tian, Z. H., & Sun, Z. M. (2022). MXenes with applications in supercapacitors and secondary batteries: A comprehensive review. Materials Reports: Energy, 2(1), Article 100080. https://doi.org/10.1016/j.matre.2022.100080

[107]

Xu, K., & Ye, H. (2020). Preparation and optimization of biomimetic materials simulating solar spectrum reflection characteristics of natural leaves. Journal of Materials Science, 55(27), 12848-12863. https://doi.org/10.1007/s10853-020-04942-7

[108]

Xu, C. X., Zhu, G. P., Liu, Y. J., Sun, X. W., Li, X., Liu, J. P., & Cui, Y. P. (2007). Optical function of bionic nanostructure of ZnO. New Journal of Physics, 9. https://doi.org/10.1088/1367-2630/9/10/381

[109]

Yang, S., Chen, G., Megens, M., Ullal, C. K., Han, Y. J., Rapaport, R.,... Aizenberg, J. (2005). Functional biomimetic microlens arrays with integrated pores. Advanced Materials, 17(4), 435-438. https://doi.org/10.1002/adma.200401002

[110]

Yang, Y., Liu, Z., Hu, B., Man, Y., & Wu, W. (2010). Bionic composite material simulating the optical spectra of plant leaves. Journal of Bionic Engineering, 7, S43-S49. https://doi.org/10.1016/s1672-6529(09)60216-x

[111]

Yang, X., Shu, T., Yang, X. F., Qiao, M., Wang, D. S., Li, X. H., & Yao, K. X. (2022). MOFs- derived three-phase microspheres: Morphology preservation and electromagnetic wave absorption. Molecules, 27(15), https://doi.org/10.3390/molecules27154773

[112]

Yoshida, A., Motoyama, M., Kosaku, A., & Miyamoto, K. (1997). Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas. Zoological science, 14(5), 737-741. https://doi.org/10.2108/zsj.14.737

[113]

Yu, W. Y., & Ouyang, Q. (2011). A visual tracing control platform based on multi-axis linear drive. Advanced Materials Research, 311-313, 1462-1470.

[114]

Yu, Y., Wang, Z. J., & Guo, M. F. (2014). A biologically motivated flight control system for PAVs. Applied Mechanics and Materials, 461, 165-171.

[115]

Zhang, Y. F., Cai, R., Wang, D. S., Li, K. L., Sun, Q., Xiao, Y. T., & Yang, P. A. (2022c). Lightweight, Low-Cost Co2SiO4@diatomite core-shell composite material for high- efficiency microwave absorption. Molecules, 27(3), https://doi.org/10.3390/molecules27031055

[116]

Zhang, H., & Lee, S. (2022b). Robot bionic vision technologies: A review. Applied Sciences- Basel, 12(16), https://doi.org/10.3390/app12167970

[117]

Zhang, X. F., Li, R. H., Feng, X. Y., Pang, X., He, X., Jin, Z. L., & Zhang, Y. X. (2023a). Influence of Li+/Al3+ on the corrosion behavior of Li-Al layered double hydroxides (LDHs) film on LA51 magnesium alloys. Journal of Magnesium and Alloys, 11(3), 1083-1093. https://doi.org/10.1016/j.jma.2022.03.019

[118]

Zhang, C. Z., Li, K. L., Sun, T., Liu, X. Y., Dai, X. J., Zhou, Q., & Zhang, Y. X. (2024a). Biomimetic sea urchin-like nano-ferrite structures for microwave absorption. ACS Applied Nano Materials, 7(3), 3001-3011. https://doi.org/10.1021/acsanm.3c05360

[119]

Zhang, X. F., Liu, S. P., Du, Z. L., Yin, C. Q., Dai, X. J., Wang, D. S., & Liu, X. Y. (2024b). Active release of diatomite-MgAl-layered double hydroxide nanostructures on corrosive inhibitors to effectively suppresses corrosion of LA51 alloy. Progress in Organic Coatings, 194. https://doi.org/10.1016/j.porgcoat.2024.108569

[120]

Zhang, C. Z., Wang, D. S., Dong, L. C., Li, K. L., Zhang, Y. F., Yang, P. A., & Zhang, Y. X. (2022a). Microwave absorption of α-Fe2O3@diatomite composites. International Journal of Molecular Sciences, 23(16), 9362. https://doi.org/10.3390/ijms23169362

[121]

Zhang, Y., Xu, H., Liu, Y., Zhou, X., Wu, D., & Yu, W. (2023b). Advanced biomimetic multispectral curved compound eye camera for aerial multispectral imaging in a large field of view. Biomimetics, 8(7), 556. https://doi.org/10.3390/biomimetics8070556

[122]

Zhang, W., Zhang, D., Fan, T., Ding, J., Gu, J., Guo, Q., & Ogawa, H. (2006). Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates. Bioinspiration & Biomimetics, 1(3), 89. https://doi.org/10.1088/1748-3182/1/3/003

[123]

Zhang, G. H., Zhang, C. K., Ma, Y. N., Wang, Z., Wang, S., Xu, C., & Wang, D. S. (2017). Trace determination of thiram using SERS-active hollow sea-urchin gold nanoparticles. Journal of Nanoparticle Research, 19(4), https://doi.org/10.1007/s11051-017-3839-1

[124]

Zhao, W., Zhang, Y., Jiao, Y., Sun, H., Miao, N., Han, D., & Zhang, Y. (2024). Bionic compound eye based on a flexible fresnel lens array. Laser Optoelectronics Progress, 61(5), https://doi.org/10.3788/lop230563

[125]

Zheng, W., Ye, W. X., Yang, P. A., Wang, D. S., Xiong, Y. T., Liu, Z. Y., & Zhang, Y. X. (2022). Recent progress in iron-based microwave absorbing composites: A review and prospective. Molecules, 27(13), 4117. https://doi.org/10.3390/molecules27134117

[126]

Zhou, L. P., Xu, P., & Qin, F. X. (2022). Enhanced thermal conductivity and microwave dielectric properties by mesostructural design of multiphase nanocomposite. Nano Materials Science, 4(2), 133-138. https://doi.org/10.1016/j.nanoms.2021.08.002

[127]

Zhu, Q., Cai, Y., Zeng, X., Long, H., Zhu, Y., Zeng, L., & Lu, X. (2023a). Bionic ultrafast imaging for multi-FOV and wide time range. Acta Photonica Sinica, 52(1), https://doi.org/10.3788/gzxb20235201.0111001

[128]

Zhu, W. R., Wang, D. S., Du, Z. L., Liao, Y., Zhang, K., Xie, S., & Liu, X. Y. (2023b). Three- dimensional biotemplate-loaded nickel sulfide vacancies engineered to promote the absorption of electromagnetic waves. Nanoscale, 16(1), 474-487. https://doi.org/10.1039/d3nr05275c

AI Summary AI Mindmap
PDF (10464KB)

62

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/