Diatom-driven activation of in-situ lunar resource utilization for space farming

Dong Liu , Yuxin Zhang

Biogeotechnics ›› 2025, Vol. 3 ›› Issue (4) : 100162

PDF (3074KB)
Biogeotechnics ›› 2025, Vol. 3 ›› Issue (4) :100162 DOI: 10.1016/j.bgtech.2025.100162
Short communication
research-article

Diatom-driven activation of in-situ lunar resource utilization for space farming

Author information +
History +
PDF (3074KB)

Abstract

In this study, we demonstrate that diatoms, through their bioweathering process, can enhance the properties of lunar soil, thereby facilitating the cultivation of crops. Detailedly, diatoms can deconstruct lunar soil minerals to polish the sharp edge of the minerals and release nutrients, and aggregate lunar soil particles for water retention. In addition, diatoms possess a high degree of resilience to space conditions, with the capacity to consume carbon dioxide and release oxygen. Furthermore, they have been observed to utilize human waste as a source of sustenance, thus rendering them a promising candidate for the in situ modification of lunar soil. This study offers valuable insights into the potential for diatoms to contribute to future space habitation and exploration.

Keywords

Diatom / Lunar soil / Bioweathering

Cite this article

Download citation ▾
Dong Liu, Yuxin Zhang. Diatom-driven activation of in-situ lunar resource utilization for space farming. Biogeotechnics, 2025, 3(4): 100162 DOI:10.1016/j.bgtech.2025.100162

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yuxin Zhang: Writing - review & editing, Project administration, Methodology, Investigation, Funding acquisition, Data curation, Conceptualization. Dong Liu: Writing - review & editing, Writing - original draft, Supervision, Software, Resources, Project administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We thank Mr. Rongda Yu for his invaluable help with SEM analysis and Prof. Hong Tang (Center for Lunar and Planetary Sciences, Institute of Geochemistry, CAS) for the lunar soil simulant (CLRS-1/CAS-1). This work was supported by Jiangxi Province Technology Innovation Guidance Project (jxsq2023102218); Science and Technology Planning Project of Guangdong Province, China (Grant no. 2023B1212060048).

References

[1]

Armbrust, E. V. (2009). The life of diatoms in the world's oceans. Nature, 459, 185-192. https://doi.org/10.1038/nature08057

[2]

Caporale, A. G., Palladino, M., De Pascale, S., Duri, L. G., Rouphael, Y., & Adamo, P. (2023). How to make the Lunar and Martian soils suitable for food-production assessing the changes after manure addition and implications for plant growth. Journal of Environmental Management, 325, Article 116455. https://doi.org/10.1016/j.jenvman.2022.116455

[3]

González-Gonzáleza, L. M., Eltanahy, E., & Schenk, P. M. (2019). Assessing the fertilizing potential of microalgal digestates using the marine diatom Chaetoceros muelleri. Algal Research, 41, Article 101534. https://doi.org/10.1016/j.algal.2019.101534

[4]

Hu, D. W., Li, L., Liu, H., Sun, Y., Li, L. Y., Fu, Y. M., & Zhang, H. K. (2014). Design and control of rotating soil-like substrate plant-growing facility based on plant water requirement and computational fluid dynamics simulation. Ecological Engineering, 64, 269-275. https://doi.org/10.1016/j.ecoleng.2013.12.048

[5]

Kang, W. L., He, W. T., Li, L. Y., & Liu, H. (2012). Characteristics of the soil-like substrates produced with a novel technique combining aerobic fermentation and earthworm treatment. Advances in Space Research, 50, 1495-1500. https://doi.org/10.1016/j.asr.2012.06.038

[6]

Noble, S. (2019). The lunar regolith. NASA 0026015 (2019).

[7]

Paul, A. L., Elardo, S. M., & Ferl, R. (2022). Plants grown in Apollo lunar regolith present stress-associated transcriptomes that inform prospects for lunar exploration. Communications Biology, 5, 382. https://doi.org/10.1038/s42003-022-03334-8

[8]

Shamtsyan, M., Velichko, V., Tikhomirov, A., Ushakova, S., Anishchenko, O., & Kulova, I. (2024). Soil-like substrate fertility restoration method in bioregenerative life support systems. BIO Web of Conferences, 130, 02004. https://doi.org/10.1051/bioconf/202413002004

[9]

Xia, Y. T., Yuan, Y., Li, C. X., & Sun, Z. C. (2023). Phosphorus-solubilizing bacteria improve the growth of Nicotiana benthamiana on lunar regolith simulant by dissociating insoluble inorganic phosphorus. Communications Biology, 6, 1039. https://doi.org/10.1038/s42003-023-05391-z

[10]

Yao, Z. K., Feng, J. J., & Liu, H. (2022). Bio weathering improvement of lunar soil simulant improves the cultivated wheat's seedling length. Acta Astronautica, 193, 1-8. https://doi.org/10.1016/j.actaastro.2021.12.055

[11]

Yuan, P., & Liu, D. (2021). Proposing a potential strategy concerning Mineral-enhanced Biological Pump (MeBP) for improving Ocean Iron Fertilization (OIF). Applied Clay Science, 207, Article 106096. https://doi.org/10.1016/j.clay.2021.106096

[12]

Zhang, P., Dai, W., Niu, R., Zhang, G., Liu, G. H., Liu, X., Bo, Z., Wang, Z., Zheng, H. B., Liu, C. B., et al. (2023). Overview of the lunar in situ resource utilization techniques for future lunar missions. Space: Science Technology, 3, Article 0037. https://doi.org/10.34133/space.0037

[13]

Zhang, E. Q., Li, Y. X., Wang, Y. W., Liu, D., Cong, Y., Liu, J. H., Tang, K. X., Jiao, N. Z., & Zheng, Q. (2024). Synergistic CO2 removal via enhanced olivine weathering and diatom growth in the ocean. Ocean-Land-Atmosphere Research, 3, Article 0047. https://doi.org/10.34133/olar.0047

[14]

Zhang, Q., Liu, D., Tan, W. F., Jiang, G. J., Zheng, T. H., Yan, Y. P. (2022). Use of diatom in rice planting and cultivation method of rice in symbiosis with diatom. United States Patent. US11732234B1.

[15]

Zhong, Y., Low, J. X., Zhu, Q., Jiang, Y. W., Yu, X. W., Wang, X. Y., Zhang, F., Shang, W. W., Long, R., Yao, Y. F., et al. (2023). In situ resource utilization of lunar soil for highly efficient extraterrestrial fuel and oxygen supply. National Science Review, 10(2), https://doi.org/10.1093/nsr/nwac200

[16]

Zong, K. Q., Wang, Z. C., Li, J. W., He, Q., Li, Y. H., Becker, H., Zhang, W., Hu, Z. C., He, T., Cao, K. A., et al. (2022). Bulk compositions of the Chang'E-5 lunar soil: Insights into chemical homogeneity, exotic addition, and origin of landing site basalts. Geochimica et Cosmochimica Acta, 335, 284-296. https://doi.org/10.1016/j.gca.2022.06.037

AI Summary AI Mindmap
PDF (3074KB)

63

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/