Advanced bioinspired cellular confinement systems for improving the performance of reinforced soil beds

Yang Zhao , Zheng Lu , Abdollah Tabaroei , Chuxuan Tang , Yinuo Feng , Hailin Yao

Biogeotechnics ›› 2025, Vol. 3 ›› Issue (3) : 100160

PDF (16830KB)
Biogeotechnics ›› 2025, Vol. 3 ›› Issue (3) :100160 DOI: 10.1016/j.bgtech.2024.100160
Research article
research-article

Advanced bioinspired cellular confinement systems for improving the performance of reinforced soil beds

Author information +
History +
PDF (16830KB)

Abstract

With the major developments that occurred during the past 40 years in the geotechnical engineering field, the usage of reinforcements in soils has been very common to improve the ultimate bearing capacity and reduce the footing settlements. These reinforcements consist of geogrids, geotextiles, geocells, etc., all of which are in the geosynthetic family. Among these geosynthetic families, geocell performs better in soil-reinforced beds. In this study, we proposed the nine types of bioinspired geocells to improve the soil beds. For this purpose, a total of twenty numerical models were calculated via FLAC3D after validating the laboratory model tests in the literature. The numerical results demonstrated that, except for the circular type, the performance of other geocell forms regarding increased bearing capacity was nearly identical. Regarding diffusion angles, only the circular and honeycomb geocells exhibited larger diffusion angles. The opening pocket diameter more significantly influenced the stress and strain of geocells. Geocells with nearly circular shapes, such as circular, honeycomb, hexagonal, and square, typically demonstrated higher confining stresses within the geocell walls. Conversely, for shapes that deviate from the circular form, such as diamond, re-entrant, and double V-shaped designs, the irregularity of the pocket shape could cause an uneven distribution of confining stresses, potentially leading to higher normal deformations at some specific areas and stress concentration at the wall joints.

Keywords

Bioinspired geocells / Gecell reinforcement / Bearing capacity / Numerical simulation

Cite this article

Download citation ▾
Yang Zhao, Zheng Lu, Abdollah Tabaroei, Chuxuan Tang, Yinuo Feng, Hailin Yao. Advanced bioinspired cellular confinement systems for improving the performance of reinforced soil beds. Biogeotechnics, 2025, 3(3): 100160 DOI:10.1016/j.bgtech.2024.100160

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yang Zhao: Writing - original draft, Visualization, Validation, Software, Methodology, Investigation, Data curation. Zheng Lu: Supervision, Resources, Project administration, Methodology, Funding acquisition, Conceptualization. Abdollah Tabaroei: Writing - review & editing, Visualization, Formal analysis. Chuxuan Tang: Writing - review & editing, Formal analysis, Data curation. Yinuo Feng: Data curation, Visualization. Hailin Yao: Supervision, Methodology, Funding acquisition.

Data Availability

The data analyzed in this study are available from the corresponding author upon request.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The research described in this paper was financially supported by the Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences (No. SKLGME-JBGS2403), the National Natural Science Foundation of China (No. 42477205), and the Hubei Provincial Innovation Group Project (No. 2023AFA019).

References

[1]

Arab Mohamed, G., Omar, M., Alotaibi, E., Mostafa, O., Naeem, M., & Badr, O. (2020). Bio-inspired 3D-printed honeycomb for soil reinforcement. Geo-Congress 2020, 262-271.

[2]

Banerjee, S., Manna, B., & Shahu, J. T. (2024). Behaviour of geocell reinforcement in a multi-layered flexible pavement under repeated loading. International Journal of Geosynthetics and Ground Engineering, 10(3), 34. https://doi.org/10.1007/s40891-024-00541-7

[3]

Bathurst, R. J., & Karpurapu, R. (1993). Large-scale triaxial compression testing of geocell-reinforced granular soils. Geotechnical Testing Journal, 16(3), 296-303. https://doi.org/10.1520/GTJ10050J

[4]

Beju, Y. Z., & Mandal, J. N. (2016). Compression creep test on expanded polystyrene (EPS) geofoam. International Journal of Geotechnical Engineering, 10(4), 401-408. https://doi.org/10.1080/19386362.2016.1155260

[5]

Benessalah, I., Sadek, M., Villard, P., & Arab, A. (2020). Undrained triaxial compression tests on three-dimensional reinforced sand: Effect of the geocell height. European Journal of Environmental and Civil Engineering, 1-12. https://doi.org/10.1080/19648189.2020.1728581

[6]

Bolton, M. D. (1986). The strength and dilatancy of sands. Géotechnique, 36(1), 65-78. https://doi.org/10.1680/geot.1986.36.1.65

[7]

Demirdöğen, S., Gürbüz, A., & Yünkül, K. (2024). Performance of eccentrically loaded strip footings on geocell-reinforced soil. Geotextiles and Geomembranes. https://doi.org/10.1016/j.geotexmem.2023.12.007

[8]

Evirgen, B., Kara, H. O., Ucun, M. S., Gültekin, A. A., Tos, M., & Öztürk, V. (2023). The effect of the geometrical properties of geocell reinforcements between a two-layered road structure under overload conditions. Case Studies in Construction Materials. https://doi.org/10.1016/j.cscm.2023.e02793

[9]

Gedela, R., Kalla, S., Sudarsanan, N., & Karpurapu, R. (2021). Assessment of load distribution mechanism in geocell reinforced foundation beds using digital imaging correlation techniques. Transportation GeotechnicsArticle 100664. https://doi.org/10.1016/j.trgeo.2021.100664

[10]

Gedela, R., & Karpurapu, R. (2021). Laboratory and numerical studies on the performance of geocell reinforced base layer overlying soft subgrade. International Journal of Geosynthetics and Ground Engineering, 7(1), 1-18. https://doi.org/10.1007/s40891-020-00249-4

[11]

Ghasemzadeh, H., Jafarzadeh, M., & Ahmadi, S. (2024). Dominant elastoplastic behavior of geocell-reinforced sand subjected to cyclic loading under large-scale triaxial tests. Soil Dynamics and Earthquake Engineering, 176, Article 108281. https://doi.org/10.1016/j.soildyn.2023.108281

[12]

Ghazavi, M., Torghabeh, N. V., & Dehkordi, P. F. (2024). Analysis of twin large circular footings on a geocell-reinforced bed using response surface method. International Journal of Geomechanics, 24(4), Article 04024032. https://doi.org/10.1061/IJGNAI.GMENG-7956

[13]

Haiyang, Z., Fan, Y., Chen, P., & Yingyao, C. (2024). Seismic performances of the wrapped retaining wall backfilled with polypropylene fiber reinforced rubber-sand mixture. Geotextiles and Geomembranes, 52(4), 542-553. https://doi.org/10.1016/j.geotexmem.2024.02.001

[14]

Hu, D., Song, B., Dang, L., & Zhang, Z. (2018). Effect of strain rate on mechanical properties of the bamboo material under quasi-static and dynamic loading condition. Composite Structures, 200, 635-646. https://doi.org/10.1016/j.compstruct.2018.05.107

[15]

Kapor, M., Skejić A., Medić S., & Balić A. (2023). DIC assessment of foundation soil response for different reinforcement between base and soft subgrade layer - Physical modeling. Geotextiles and Geomembranes, 51(3), 390-404. https://doi.org/10.1016/j.geotexmem.2023.01.003

[16]

Latha, G. M., Venkateswarlu, H., & Krishna, A. (2024). Geocell Anchor Cage for enhanced load support in soil structures. Construction and Building Materials, 425, Article 135998. https://doi.org/10.1016/j.conbuildmat.2024.135998

[17]

Lee, N., Horstemeyer, M. F., Rhee, H., Nabors, B., Liao, J., & Williams, L. N. (2014). Hierarchical multiscale structure-property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak. Journal of the Royal Society Interface, 11(96), Article 20140274. https://doi.org/10.1098/rsif.2014.0274

[18]

Li, S., Wang, Z., & Stutz, H. H. (2023). State-of-the-art review on plant-based solutions for soil improvement. Biogeotechnics, 1(3), Article 100035. https://doi.org/10.1016/j.bgtech.2023.100035

[19]

Lu, L., Chen, B., Wang, Z., Wang, S., & Arai, K. (2024). Study on seismic stability and performance of reconstruction embankment using geogrid reinforced soil technology. Transportation Geotechnics, 44. https://doi.org/10.1016/j.trgeo.2023.101148

[20]

Mukherjee, S., & Sivakumar Babu, G. L. (2023). Three-dimensional numerical modeling of geogrid reinforced foundations. Computers and Geotechnics, 158. https://doi.org/10.1016/j.compgeo.2023.105397

[21]

Mukherjee, S., & Sivakumar Babu, G. L. (2024). The behavior of horizontal anchor foundations embedded in sand under uplift and lateral loads. International Journal of Geomechanics, 24(6), https://doi.org/10.1061/ijgnai.Gmeng-9059

[22]

Murcia Morales, M., Gomez Ramos, M. J., Parrilla Vazquez, P., Diaz Galiano, F. J., Garcia Valverde, M., Gamiz Lopez, V., et al. (2020). Distribution of chemical residues in the beehive compartments and their transfer to the honeybee brood. Sci Total Environ, 710, Article 136288. https://doi.org/10.1016/j.scitotenv.2019.136288

[23]

Onyekwena, C. C., Li, Q., Alvi, I. H., Ghaffar, A., & Zhang, X. (2023). Geomechanical performances of geocell reinforced retaining wall backfilled with magnesia-based cement stabilized marine fill. Marine Georesources Geotechnology, 1-17. https://doi.org/10.1080/1064119x.2023.2211060

[24]

Parsa, M., Bagheripour, M. H., Nasrollahi, S. M., & Presti, D. L. (2024). Reinforcement mechanism and the stress-strain behaviors of geocells made by non-woven geotextile. Transportation Geotechnics, 47. https://doi.org/10.1016/j.trgeo.2024.101275

[25]

Qi, C., Jiang, F., & Yang, S. (2021). Advanced honeycomb designs for improving mechanical properties: A review. Composites Part B: Engineering, 227. https://doi.org/10.1016/j.compositesb.2021.109393

[26]

Song, F., Chen, W., Nie, Y., & Ma, L. (2021). Evaluation of required stiffness and strength of cellular geosynthetics. Geosynthetics International, 1-36. https://doi.org/10.1680/jgein.21.00032

[27]

Song, F., Jin, Y., Liu, H., & Liu, J. (2020). Analyzing the deformation and failure of geosynthetic-encased granular soil in the triaxial stress condition. Geotextiles and Geomembranes, 48(6), 886-896. https://doi.org/10.1016/j.geotexmem.2020.06.007

[28]

Song, F., Liu, H., Yang, B., & Zhao, J. (2019). Large-scale triaxial compression tests of geocell-reinforced sand. Geosynthetics International, 26(4), 388-395. https://doi.org/10.1680/jgein.19.00019

[29]

Song, X., Tan, Y., & Lu, Y. (2024). Microscopic analyses of the reinforcement mechanism of plant roots in different morphologies on the stability of soil slopes under heavy rainfall. Catena, 241, Article 108018. https://doi.org/10.1016/j.catena.2024.108018

[30]

Tafreshi, S. N. M., & Dawson, A. R. (2010). Comparison of bearing capacity of a strip footing on sand with geocell and with planar forms of geotextile reinforcement. Geotextiles and Geomembranes, 28(1), 72-84. https://doi.org/10.1016/j.geotexmem.2009.09.003

[31]

Venkateswarlu, H., & Latha, G. M. (2025). Unveiling the reinforcement benefits of innovative textured geogrids. Geotextiles and Geomembranes, 53(1), 21-40. https://doi.org/10.1016/j.geotexmem.2024.08.008

[32]

Venkateswarlu, H., SaiKumar, A., & Latha, G. M. (2023). Sand-geogrid interfacial shear response revisited through additive manufacturing. Geotextiles and Geomembranes, 51(4), 95-107. https://doi.org/10.1016/j.geotexmem.2023.04.001

[33]

Wang, H., Gao, G., Meguid, M. A., Cheng, Y. P., & Zhang, L. (2024). Exploring the influence of size-related factors on geocell-reinforced soil response using coupled continuum-discontinuum analysis. Geotextiles and Geomembranes. https://doi.org/10.1016/j.geotexmem.2023.12.008

[34]

Wu, Y., Liu, Q., Fu, J., Li, Q., & Hui, D. (2017). Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels. Composites Part B: Engineering, 121, 122-133. https://doi.org/10.1016/j.compositesb.2017.03.030

[35]

Xu, Z., Qi, H., Gao, P., Wang, S., Liu, X., & Ma, Y. (2024). Biomimetic design of soil- engaging components: A review. Biomimetics, 9(6), 358. https://doi.org/10.3390/biomimetics9060358

[36]

Yin, C., He, J., Gowi, A. A. K., Li, Z., & Zhou, C. (2024). Effective stiffness matrix calculation of geocell layer and reinforcement mechanism analysis of geocell reinforced embankment. Geotextiles and Geomembranes, 52(4), 704-724. https://doi.org/10.1016/j.geotexmem.2024.03.010

[37]

Yue, M., Qu, L., Zhou, S., Wu, D., Chen, Z., & Wen, H. (2024). Dynamic response characteristics of shaking table model tests on the gabion reinforced retaining wall slope under seismic action. Geotextiles and Geomembranes, 52(2), 167-183. https://doi.org/10.1016/j.geotexmem.2023.10.001

[38]

Zhang, W., Huang, R., Xiang, J., & Zhang, N. (2024). Recent advances in bio-inspired geotechnics: From burrowing strategy to underground structures. Gondwana Research, 130, 1-17. https://doi.org/10.1016/j.gr.2023.12.018

[39]

Zhang, W., Yin, S., Yu, T. X., & Xu, J. (2019). Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb. International Journal of Impact Engineering, 125, 163-172. https://doi.org/10.1016/j.ijimpeng.2018.11.014

[40]

Zhang, X., Yoo, C., Chen, J.-F., & Gu, Z.-A. (2022). Numerical modeling of floating geosynthetic-encased stone column-supported embankments with basal reinforcement. Geotextiles and Geomembranes, 50(4), 720-736. https://doi.org/10.1016/j.geotexmem.2022.03.012

[41]

Zhang, Y., Wang, J., Wang, C., Zeng, Y., & Chen, T. (2018). Crashworthiness of bionic fractal hierarchical structures. Materials Design, 158, 147-159. https://doi.org/10.1016/j.matdes.2018.08.028

[42]

Zhao, Y., Lu, Z., Liu, J., Yao, H., Tang, C., Nie, Y., et al. (2024). Creep behavior and viscoelastic-plastic models for polymer-blend HDPE geocell sheets based on the stepped isothermal method. Geotextiles and Geomembranes, 52(1), 132-144. https://doi.org/10.1016/j.geotexmem.2023.09.008

[43]

Zhao, Y., Lu, Z., Liu, J., Ye, L., Xu, W., & Yao, H. (2023a). Effect of cohesion of infill materials on the performance of geocell-reinforced cohesive soil subgrade. Geomechanics and Engineering, 33(3), 301-315. https://doi.org/10.12989/gae.2023.33.3.301

[44]

Zhao, Y., Lu, Z., Liu, J., Zhang, J., & Yao, H. (2023b). Influence of different infill materials on the performance of geocell-reinforced cohesive soil beds. Scientific Reports, 13(1), https://doi.org/10.1038/s41598-023-39580-x

[45]

Zhao, Y., Lu, Z., Yao, H., Ye, L., Cheng, M., Tang, C., et al. (2024). A regression model for predicting the subgrade modulus of geocell-reinforced sand beds. International Journal of Geomechanics, 24(1), https://doi.org/10.1061/ijgnai.Gmeng-7378

[46]

Zhao, Y., Lu, Z., Yao, H., Zhang, J., Yuan, X., Cui, Y., et al. (2021). Development and mechanical properties of HDPE/PA6 blends: Polymer-blend geocells. Geotextiles and Geomembranes, 49(6), 1600-1612. https://doi.org/10.1016/j.geotexmem.2021.08.002

[47]

Zhao, Y., Xiao, H., Chen, L., Chen, P., Lu, Z., Tang, C., et al. (2025). Application of the non-linear three-component model for simulating accelerated creep behavior of polymer-alloy geocell sheets. Geotextiles and Geomembranes, 53(1), 70-80. https://doi.org/10.1016/j.geotexmem.2024.09.005

AI Summary AI Mindmap
PDF (16830KB)

52

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/