Bio-molding of lunar regolith with bio-carbonized magnesium oxide

Jinquan Shi , Zihao Xiao , Yang Xiao , Hanlong Liu

Biogeotechnics ›› 2025, Vol. 3 ›› Issue (4) : 100159

PDF (11121KB)
Biogeotechnics ›› 2025, Vol. 3 ›› Issue (4) :100159 DOI: 10.1016/j.bgtech.2024.100159
Research article
research-article

Bio-molding of lunar regolith with bio-carbonized magnesium oxide

Author information +
History +
PDF (11121KB)

Abstract

As lunar exploration develops, lunar construction is increasingly prominent and the in-situ lunar regolith molding becomes a technical challenge. This study proposes a lunar regolith molding technology based on biocarbonated magnesium oxide (MgO) with urea pre-hydrolyzed, which has the potential to achieve an unconfined compressive strength (UCS) of approximately 10 MPa after 24 h of curing. The study investigates the physical and mechanical properties of biocarbonated lunar regolith samples with varying urea concentrations, bacterial concentrations, and MgO contents. Scanning electron microscopy (SEM) was employed to examine the microstructural properties of the samples. The results demonstrated that the maximum UCS and E50 were achieved at a urea concentration of 1.0 mol/L, a bacterial concentration of 1.0, and a MgO content of 15%. However, the carbonate content test indicated that the highest urea efficiency was observed at 10% MgO. Microscopic images show that the produced hydromagnesite is the most structured at the urea concentrations of 1.0 mol/L and 2.0 mol/L, corresponding well with the strength performance of the specimens. The pre-hydrolysis method can promote the efficiency of biocarbonated magnesium oxide but it highly depends on the concentration of the produced carbonate. Conclusively, the findings of this study offer a promising avenue for lunar regolith molding.

Keywords

Biocarbonated magnesium oxide / Urea pre-hydrolysis / Lunar regolith / MICP / Carbonation rate

Cite this article

Download citation ▾
Jinquan Shi, Zihao Xiao, Yang Xiao, Hanlong Liu. Bio-molding of lunar regolith with bio-carbonized magnesium oxide. Biogeotechnics, 2025, 3(4): 100159 DOI:10.1016/j.bgtech.2024.100159

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Jinquan Shi: Supervision, Methodology, Investigation, Funding acquisition. Zihao Xiao: Writing - original draft, Investigation. Yang Xiao: Conceptualization. Hanlong Liu: Writing - review & editing, Supervision, Resources, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Hanlong Liu is the Editor-in-chief for Biogeotechnics, Yang Xiao is the Executive Deputy Editor-in-Chief for Biogeotechnics and Jinquan Shi is the Associate Editor for Biogeotechnics, they were not involved in the editorial review or the decision to publish this article.

Acknowledgements

We would like to acknowledge the financial support from the China Postdoctoral Foundation (No. 2024M753841). The assistance from Mr. Zhijun Jiang and Mr. Chunxue Xue in test preparation is also appreciated.

References

[1]

Bannova, O., & Gulacsi, E. (2024). Architectural approach for evaluation of radiation shielding integration in space habitats. Acta Astronautica, 220, 27-36. https://doi.org/10.1016/j.actaastro.2024.04.022

[2]

Bushnell, D.M. 2021. Futures of deep space exploration, commercialization, and colonization: The frontiers of the responsibly imaginable.

[3]

Cai, G. H., Du, Y. J., Liu, S. Y., & Singh, D. N. (2015). Physical properties, electrical resistivity, and strength characteristics of carbonated silty soil admixed with reactive magnesia. Canadian Geotechnical Journal, 52(11), 1699-1713. https://doi.org/10.1139/cgj-2015-0053

[4]

Cao, T., Rolf, J., Wang, Z., Violet, C., & Elimelech, M. (2022). Distinct impacts of natural organic matter and colloidal particles on gypsum crystallization. Water Research, 218, 118500. https://doi.org/10.1016/j.watres.2022.118500

[5]

Chen, Z., Fang, X., Long, K., Shen, C., Yang, Y., & Liu, J. (2021). Using the biocarbonization of reactive magnesia to cure electrolytic manganese residue. Geomicrobiology Journal, 38(8), 709-718. https://doi.org/10.1080/01490451.2021.1939812

[6]

D2166, A. (2016). Unconfined compressive strength of cohesive soil. ASTM D2166/D2166M. West Conshohocken, PA: ASTM.

[7]

Davies, P. J., & Bubela, B. (1973). The transformation of nesquehonite into hydromagnesite. Chemical Geology, 12(4), 289-300. https://doi.org/10.1016/0009-2541(73)90006-5

[8]

De Yoreo, J. J., Gilbert, P. U. P. A., Sommerdijk N. a, J. M., Penn, R. L., Whitelam, S., Joester, D., Zhang, H., Rimer, J. D., Navrotsky, A., Banfield, J. F., Wallace, A. F., Michel, F. M., Meldrum, F. C., Cölfen, H., & Dove, P. M. (2015). Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 349(6247), aaa6760. https://doi.org/10.1126/science.aaa6760

[9]

Dincer, I. (2000). Renewable energy and sustainable development: A crucial review. Renewable and Sustainable Energy Reviews, 4(2), 157-175. https://doi.org/10.1016/S1364-0321(99)00011-8

[10]

Dung, N. T., Hay, R., Lesimple, A., Celik, K., & Unluer, C. (2021). Influence of co2 concentration on the performance of mgo cement mixes. Cement and Concrete Composites, 115, 103826. https://doi.org/10.1016/j.cemconcomp.2020.103826

[11]

Farries, K. W., Visintin, P., Smith, S. T., & Van Eyk, P. (2021). Sintered or melted regolith for lunar construction: State-of-the-art review and future research directions. Construction and Building Materials, 296, 123627. https://doi.org/10.1016/j.conbuildmat.2021.123627

[12]

Gardeh, M. G., Kistanov, A. A., Nguyen, H., Manzano, H., Cao, W., & Kinnunen, P. (2022). Exploring mechanisms of hydration and carbonation of mgo and mg(oh)2 in reactive magnesium oxide-based cements. The Journal of Physical Chemistry C, 126(14), 6196-6206. https://doi.org/10.1021/acs.jpcc.1c10590

[13]

Han, W. B., Ding, L. Y., Zhou, C., Zhou, Y., & Dang, F. (2024). Laser welding study of vacuum sintered hust-1 lunar regolith simulant. Science China-Technological Sciences, 67(9), 2905-2918. https://doi.org/10.1007/s11431-023-2675-0

[14]

Han, X., Jiang, N., Jin, F., Reddy, K. R., Wang, Y., Liu, K., & Du, Y. (2023). Effects of biochar-amended alkali-activated slag on the stabilization of coral sand in coastal areas. Journal of Rock Mechanics and Geotechnical Engineering, 15(3), 760-772. https://doi.org/10.1016/j.jrmge.2022.04.010

[15]

Heiken, G., Vaniman, D., & French, B. M. (1991). Lunar sourcebook: A user's guide to the moon. New York: Cambridge University Press.

[16]

Isachenkov, M., Chugunov, S., Akhatov, I., & Shishkovsky, I. (2021). Regolith-based additive manufacturing for sustainable development of lunar infrastructure - An overview. Acta Astronautica, 180, 650-678. https://doi.org/10.1016/j.actaastro.2021.01.005

[17]

Kuenzel, C., Zhang, F., Ferrándiz-Mas, V., Cheeseman, C. R., & Gartner, E. M. (2018). The mechanism of hydration of mgo-hydromagnesite blends. Cement and Concrete Research, 103, 123-129. https://doi.org/10.1016/j.cemconres.2017.10.003

[18]

Li, Q., Ding, Y., Yu, G., Li, C., Li, F., & Qian, Y. (2003). Fabrication of light-emitting porous hydromagnesite with rosette-like architecture. Solid State Communications, 125(2), 117-120. https://doi.org/10.1016/S0038-1098(02)00710-X

[19]

Li, J., Wang, C., Li, Z., Xie, H., Jiang, M., Yan, X., Xu, X., Feng, Y., & Tong, X. (2024). Morphological characteristics study of chang’e-5 lunar regolith particles for in-situ resource utilization on moon. Journal of Tongji University (Natural Science), 52(8), 1180-1187. https://doi.org/10.11908/j.issn.0253-374x.24230

[20]

Lim, S., Prabhu, V. L., Anand, M., & Taylor, L. A. (2017). Extra-terrestrial construction processes - advancements, opportunities and challenges. Advances in Space Research, 60(7), 1413-1429. https://doi.org/10.1016/j.asr.2017.06.038

[21]

Liu, S., Cao, J., & Cai, G. (2018). Microstructural mechanism of reactive magnesia carbonatedand stabilized silty clays. Rock and Soil Mechanics, 39(05), 1543-1552+1563. https://doi.org/10.16285/j.rsm.2016.1308

[22]

Madhavan Nair, G., Sridhara Murthi, K. R., & Prasad, M. Y. S. (2008). Strategic, technological and ethical aspects of establishing colonies on moon and mars. Acta Astronautica, 63(11), 1337-1342. https://doi.org/10.1016/j.actaastro.2008.05.012

[23]

Martinot, M., Flahaut, J., Besse, S., Quantin-Nataf, C., & Van Westrenen, W. (2020). Mineralogical survey of the anorthositic feldspathic highlands terrane crust using moon mineralogy mapper data. Icarus, 345, 113747. https://doi.org/10.1016/j.icarus.2020.113747

[24]

Marzano I.P., A. a M. Osman M. Al-Tabbaa. Grisolia, and A. 2009. Mechanical performance of different stabilised soils for application in stratified ground.

[25]

Mebratu, D. (1998). Sustainability and sustainable development: Historical and conceptual review. Environmental Impact Assessment Review, 18(6), 493-520. https://doi.org/10.1016/S0195-9255(98)00019-5

[26]

Meurisse, A., Beltzung, J. C., Kolbe, M., Cowley, A., & Sperl, M. (2017). Influence of mineral composition on sintering lunar regolith. Journal of Aerospace Engineering, 30(4), 04017014. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000721

[27]

Meurisse, A., Makaya, A., Willsch, C., & Sperl, M. (2018). Solar 3d printing of lunar regolith. Acta Astronautica, 152, 800-810. https://doi.org/10.1016/j.actaastro.2018.06.063

[28]

Ny/T86-1988. 1988. Method for determination of soil carbonate. The ministry of agriculture of the People's Republic.

[29]

Ogawa, Y., Matsunaga, T., Nakamura, R., Saiki, K., Ohtake, M., Hiroi, T., Takeda, H., Arai, T., Yokota, Y., Yamamoto, S., Hirata, N., Sugihara, T., Sasaki, S., Haruyama, J., Morota, T., Honda, C., Demura, H., Kitazato, K., Terazono, J., & Asada, N. (2011). The widespread occurrence of high-calcium pyroxene in bright-ray craters on the moon and implications for lunar-crust composition. Geophysical Research Letters, 38(17), L17202. https://doi.org/10.1029/2011GL048569

[30]

Omer, A. M. (2008). Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews, 12(9), 2265-2300. https://doi.org/10.1016/j.rser.2007.05.001

[31]

Paassen L.a V. (2009). Biogrout, ground improvement by microbial induced carbonate precipitation. Delft University of Technology.

[32]

Piana, S., & Gale, J. D. (2005). Understanding the barriers to crystal growth: Dynamical simulation of the dissolution and growth of urea from aqueous solution. Journal of the American Chemical Society, 127(6), 1975-1982. https://doi.org/10.1021/ja043395l

[33]

Prestia, J. F. (2017). The future of construction as it applies to the colonization of the moon and mars. Las Vegas: University of Nevada.

[34]

Rothschild, L.J., I.G.P. Lima D. Senesky A. Wipat, and J. Head. 2019b. Myco-architecture off planet: Growing surface structures at destination niac 2018 phase i final report.

[35]

Rothschild L.J., C. Maurer, I.G. Paulino Lima D. Senesky A. Wipat, and J. Head Iii. 2019a. Myco-architecture off planet: Growing surface structures at destination.

[36]

Ruan, S., Qiu, J., Weng, Y., Yang, Y., Yang, E.-H., Chu, J., & Unluer, C. (2019). The use of microbial induced carbonate precipitation in healing cracks within reactive magnesia cement-based blends. Cement and Concrete Research, 115, 176-188. https://doi.org/10.1016/j.cemconres.2018.10.018

[37]

Sachs, J. D. (2012). From millennium development goals to sustainable development goals. The Lancet, 379(9832), 2206-2211. https://doi.org/10.1016/s0140-6736(12)60685-0

[38]

Sharma, R., & Sumbria, R. (2022). Mycelium bricks and composites for sustainable construction industry: A state-of-the-art review. Innovative Infrastructure Solutions, 7(5), 298. https://doi.org/10.1007/s41062-022-00903-y

[39]

She, X., Wang, J., Xu, W., & Xiao, L. (2025). Research on the impact of extraterrestrial lava tube environments on human survival and countermeasures. Space Habitation, 1(1), 100002. https://doi.org/10.1016/j.spaceh.2024.100002.

[40]

Shi, J., Fu, G., Liu, H., & Xiao, Y. (2024). Strength of lunar regolith simulant reinforced by micp. Journal of Civil and Environmental Engineering. https://doi.org/10.11835/j.issn.2096-6717.2024.048

[41]

Taylor, S. L., Jakus, A. E., Koube, K. D., Ibeh, A. J., Geisendorfer, N. R., Shah, R. N., & Dunand, D. C. (2018). Sintering of micro-trusses created by extrusion-3d-printing of lunar regolith inks. Acta Astronautica, 143, 1-8. https://doi.org/10.1016/j.actaastro.2017.11.005

[42]

Toutanji, H.,Glenn-Loper, Becca, & Schrayshuen, Beth (2005). Strength and durability performance of waterless lunar concrete. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit. the American Institute of Aeronautics and Astronautics1436.

[43]

Ulubeyli, S. (2022). Lunar shelter construction issues: The state-of-the-art towards 3d printing technologies. Acta Astronautica, 195, 318-343. https://doi.org/10.1016/j.actaastro.2022.03.033

[44]

Unluer, C., & Al-Tabbaa, A. (2013). Impact of hydrated magnesium carbonate additives on the carbonation of reactive mgo cements. Cement and Concrete Research, 54, 87-97. https://doi.org/10.1016/j.cemconres.2013.08.009

[45]

Wang, J., Li, M., Qi, M., Ge, S., & Dadda, A. (2024a). Micro-macro investigation on bio- cemented sand under different grouting saturation: An effective enhancement method. Geomechanics for Energy and the Environment, 37, 100530. https://doi.org/10.1016/j.gete.2023.100530

[46]

Wang, D.-L., Tang, C.-S., Pan, X.-H., Wang, R., Li, J.-W., Dong, Z.-H., & Shi, B. (2022a). Construction and demolition waste stabilization through a bio-carbonation of reactive magnesia cement for underwater engineering. Construction and Building Materials, 335, 127458. https://doi.org/10.1016/j.conbuildmat.2022.127458

[47]

Wang, R., Tang, C.-S., Pan, X.-H., Wang, D.-L., Dong, Z.-H., & Shi, B. (2022b). Stabilization of dredged sludge using bio-carbonation of reactive magnesia cement method. Acta Geotechnica, 18(3), 1529-1541. https://doi.org/10.1007/s11440-022-01683-6

[48]

Wang, D.-L., Tang, C.-S., Pan, X.-H., Wang, R., Shi, M., Dong, Z.-H., Zhang, Y.-C., & Shi, B. (2023). A novel bio-carbonation method of reactive magnesia with urea pre-hydrolysis for geomaterial stabilisation. Géotechnique, 1-15. https://doi.org/10.1680/jgeot.22.00301

[49]

Wang, R., Tang, C., Pan, X., Wang, D., Dong, Z., Zhang, X., & Lu, X. (2024b). Efficient stabilization of dredged sludge with high water content using an improved bio-carbonation of reactive magnesia cement method. Journal of Rock Mechanics and Geotechnical Engineering, 16(9), 3760-3771. https://doi.org/10.1016/j.jrmge.2023.12.030

[50]

Wang, D.-L., Tang, C.-S., Pan, X.-H., Dong, Z.-H., Wang, R., Zhang, J.-Z., Ji, X.-L., Hu H. -, C., & Shi, B. (2025). Construction and demolition waste stabilization through biocarbonation of reactive magnesia cement: Effect of urea concentration. Journal of Materials in Civil Engineering, 37(1), 04024450. https://doi.org/10.1061/JMCEE7.MTENG-17257

[51]

Warren, P., Raju, N., Ebrahimi, H., Krsmanovic, M., Raghavan, S., Kapat, J., & Ghosh, R. (2022). Effect of sintering temperature on microstructure and mechanical properties of molded martian and lunar regolith. Ceramics International, 48(23, Part B), 35825-35833. https://doi.org/10.1016/j.ceramint.2022.07.329

[52]

Whiffin, V. S. (2004). Microbial caco3 precipitation for the production of biocement. Murdoch University.

[53]

Wu, C., Yu, Z., Shao, R., & Li, J. (2024). A comprehensive review of extraterrestrial construction, from space concrete materials to habitat structures. Engineering Structures, 318, 118723. https://doi.org/10.1016/j.engstruct.2024.118723

[54]

Yi, Y., Lu, K., Liu, S., & Al-Tabbaa, A. (2016). Property changes of reactive magnesia-stabilized soil subjected to forced carbonation. Canadian Geotechnical Journal, 53(2), 314-325. https://doi.org/10.1139/cgj-2015-0135

[55]

Zhao Q. 2014. "Experimental study on soil improvement using microbial induced calcite precipitation (micp). "Doctor, China University of Geosciences (Beijing).

[56]

Zhou, C., Li, X., Gao, Y., & Chen, R. (2025). Parametric design and optimization for lava tubes-like lunar arch habitation with large span. Space Habitation, 1(1), 100001. https://doi.org/10.1016/j.spaceh.2024.100001.

[57]

Zhou, S., Lu, C., Zhu, X., & Li, F. (2021). Preparation and characterization of high-strength geopolymer based on bh-1 lunar soil simulant with low alkali content. Engineering, 7(11), 1631-1645. https://doi.org/10.1016/j.eng.2020.10.016

[58]

Zhou, S. Q., Zhu, X. Y., Lu, C. H., & Li, F. (2022). Synthesis and characterization of geopolymer from lunar regolith simulant based on natural volcanic scoria. Chinese Journal of Aeronautics, 35(1), 144-159. https://doi.org/10.1016/j.cja.2020.06.014

[59]

Zhu, C., Wang, H., Li, G., An, S., Ding, X., Teng, H., & Zhao, L. (2017). Co2 absorption and magnesium carbonate precipitation in mgcl2-nh3-nh4cl solutions: Implications for carbon capture and storage. Minerals, 7(9), https://doi.org/10.3390/min7090172

[60]

Zuo, H. Y., Ni, S. S., & Xu, M. Y. (2023). An assumption of resource utilization for "bio-bricks" in space exploration. Frontiers in Materials, 10. https://doi.org/10.3389/fmats.2023.1155643

AI Summary AI Mindmap
PDF (11121KB)

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/