Eco-geotechnics under climate change: A state-of-the-art review

Charles Wang Wai Ng , Qi Zhang , Haowen Guo , Junjun Ni , Yuchen Wang , Anthony Kwan Leung , Chao Zhou

Biogeotechnics ›› 2026, Vol. 4 ›› Issue (1) : 100158

PDF (7754KB)
Biogeotechnics ›› 2026, Vol. 4 ›› Issue (1) :100158 DOI: 10.1016/j.bgtech.2024.100158
Review article
research-article

Eco-geotechnics under climate change: A state-of-the-art review

Author information +
History +
PDF (7754KB)

Abstract

Global climate change has exacerbated extreme weather events, such as intense rainfall and heat waves, resulting in the deterioration of geotechnical earthen structures. To address the urgent need for sustainable development, eco-friendly solutions are being explored, with vegetation emerging as a vital natural engineer. Despite the potential of vegetation, traditional practices often limit its role to aesthetics, overlooking the engineering benefits of plant roots. This paper introduces the new interdisciplinary field of eco-geotechnics, which integrates soil mechanics, ecology, botany, and atmospheric sciences, etc. to enhance geotechnical infrastructure. By focusing on atmosphere-plant-soil interactions, this review highlights how plants contribute to the stability of earthen infrastructure through root reinforcement and hydrological benefits. This paper also reviews recent advancements in constitutive modelling of vegetated soils, particularly focusing on a novel eco-unsaturated soil model. It discusses experimental testing of vegetated soils and their wide applications. Critical research gaps are identified in terms of the effects of extreme weather on root systems, soil cracking dynamics, ecological restoration in contaminated areas, and the synergistic effects of vegetation with sustainable soil stabilisers. Additionally, the use of smart monitoring techniques based on a combination of remote sensing and machine learning is proposed to assess vegetation-soil interactions in real-time. By integrating ecological and geotechnical processes, a comprehensive framework is recommended for future research directions in eco-geotechnics, which will ultimately facilitate the development of resilient engineering solutions that can withstand the challenges posed by climate change. The insights gained will be invaluable for improving the sustainability of geotechnical practices and enhancing the resilience of infrastructures in a changing climate.

Keywords

Eco-geotechnics / Vegetation / Unsaturated soil / Climate change

Cite this article

Download citation ▾
Charles Wang Wai Ng, Qi Zhang, Haowen Guo, Junjun Ni, Yuchen Wang, Anthony Kwan Leung, Chao Zhou. Eco-geotechnics under climate change: A state-of-the-art review. Biogeotechnics, 2026, 4(1): 100158 DOI:10.1016/j.bgtech.2024.100158

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Charles Wang Wai Ng: Supervision, Project administration, Funding acquisition, Conceptualization. Qi Zhang: Writing - original draft, Investigation, Formal analysis. Haowen Guo: Writing - original draft, Validation, Investigation, Formal analysis. Junjun Ni: Writing - review & editing, Writing - original draft, Supervision, Project administration, Funding acquisition, Conceptualization. Yuchen Wang: Writing - original draft, Validation, Investigation, Data curation. Anthony Kwan Leung: Supervision, Project administration, Conceptualization. Chao Zhou: Supervision, Project administration, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors are thankful for the Collaborative Research Fund (Grant No. C5033-23GF) and the Areas of Excellence (AoE) Scheme Fund (Grant No. AoE/E-603/18) awarded by the Hong Kong Research Grants Council under the Government of Hong Kong SAR, China. The corresponding author also would like to thank the National Natural Science Foundation of China (Grant Nos. 52308342 and U2340227) and the Fundamental Research Funds for the Central Universities (Grant Nos. RF1028623071 and 2242024k30066).

References

[1]

Albalasmeh, A. A., & Ghezzehei, T. A. (2014). Interplay between soil drying and root exudation in rhizosheath development. Plant and Soil, 374, 739-751. https://doi.org/10.1007/s11104-013-1910-y

[2]

Albright, W. H., Benson, C. H., Gee, G. W., Roesler, A. C., Abichou, T., Apiwantragoon, P., Lyles, B. F., & Rock, S. A. (2004). Field water balance of landfill covers. Journal of Environmental Quality, 33, 2317-2332. https://doi.org/10.2134/jeq2004.2317

[3]

Aravena, J. E., Berli, M., Ghezzehei, T. A., & Tyler, S. W. (2011). Effects of root-induced compaction on rhizosphere hydraulic properties - X-ray microtomography imaging and numerical simulations. Environmental Science Technology, 45(2), 425-431. https://doi.org/10.1021/es102566j

[4]

Bast, A., Wilcke, W., Graf, F., Lüscher, P., & Gärtner, H. (2014). The use of mycorrhiza for eco-engineering measures in steep alpine environments: Effects on soil aggregate formation and fine-root development. Earth Surface Processes and Landforms, 39(13), 1753-1763. https://doi.org/10.1002/esp.3557

[5]

Been, K., & Jefferies, M. G. (1985). A state parameter for sands. Géotechnique, 35(2), 99-112. https://doi.org/10.1680/geot.1985.35.2.99

[6]

Bian, Y., Chen, Y. B., Zhan, L. T., Guo, H. W., Ke, H., Wang, Y. Z., Wang, Q. Y., Gao, Y. F., & Gao, Y. Q. (2024). Effects of enzyme-induced carbonate precipitation technique on multiple heavy metals immobilization and unconfined compressive strength improvement of contaminated sand. Science of The Total Environment, 947, Article 174409. https://doi.org/10.1016/j.scitotenv.2024.174409

[7]

Boldrin, D., Leung, A. K., & Bengough, A. G. (2018). Hydrologic reinforcement induced by contrasting woody species during summer and winter. Plant and Soil, 427, 369-390. https://doi.org/10.1007/s11104-018-3640-7

[8]

Boldrin, D., Leung, A. K., Bengough, A. G., & Jones, H. G. (2019). Potential of thermal imaging in soil bioengineering to assess plant ability for soil water removal and air cooling. Ecological Engineering, 141, Article 105599. https://doi.org/10.1016/j.ecoleng.2019.105599

[9]

Boldrin, D., Bengough, A. G., Lin, Z., & Loades, K. W. (2021). Root age influences failure location in grass species during mechanical testing. Plant and Soil, 461, 457-469. https://doi.org/10.1007/s11104-020-04824-6

[10]

Boldrin, D., Leung, A. K., & Bengough, A. G. (2021). Hydro-mechanical reinforcement of contrasting woody species: A full-scale investigation of a field slope. Géotechnique, 71(11), 970-984. https://doi.org/10.1680/jgeot.19.SiP.018

[11]

Bordoni, M., Vivaldi, V., Giarola, A., Valentino, R., Bittelli, M., & Meisina, C. (2024). Comparison between mechanical and hydrological reinforcement effects of cultivated plants on shallow slope stability. Science of the Total Environment, 912, 168999.

[12]

Cai, X. L., Lou, Z. Y., Shimaoka, T., Nakayama, H., Ying, Z., Xiaoyan, C., Komiya, T., Ishizaki, T., & Zhao, Y. Z. (2010). Characteristics of environmental factors and their effects on CH4 and CO2 emissions from a closed landfill: An ecological case study of Shanghai. Waste Management, 30(3), 446-451. https://doi.org/10.1016/j.wasman.2009.09.047

[13]

Chen, G., Weil, R. R., & Hill, R. L. (2014). Effects of compaction and cover crops on soil least limiting water range and air permeability. Soil and Tillage Research, 136, 61-69. https://doi.org/10.1016/j.still.2013.09.004

[14]

Cheng, Q., Gu, Y. D., Tang, C. S., Zhang, X. Y., & Shi, B. (2023). Desiccation cracking behaviour of a vegetated soil incorporating planting density. Canadian Geotechnical Journal, 61(1), 165-173.

[15]

Chiu, C. F., & Ng, C. W. W. (2003). A state-dependent elasto-plastic model for saturated and unsaturated soils. Géotechnique, 53(9), 809-829. https://doi.org/10.1680/geot.2003.53.9.809

[16]

Clarke, J. M., & Townley-Smith, T. F. (1986). Heritability and relationship to yield of excised-leaf water retention in durum wheat. Crop Science, 26(2), 289-292. https://doi.org/10.2135/cropsci1986.0011183X002600020016x

[17]

Dafalias, Y. F. (1986). Bounding surface plasticity. I: Mathematical foundation and hypoplasticity. Journal of Engineering Mechanics, 112(9), 966-987. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:9(966)

[18]

Duan, X., Zeng, L., & Sun, X. (2019). Generalized stress framework for unsaturated soil: demonstration and discussion. Acta Geotechnica, 14, 1459-1481. https://doi.org/10.1007/s11440-018-0739-1

[19]

Ehrmann, J., & Ritz, K. (2014). Plant: soil interactions in temperate multi-cropping production systems. Plant and Soil, 376, 1-29. https://doi.org/10.1007/s11104-013-1921-8

[20]

Feddes, R. A., Kowalik, P. J., & Zaradny, H. (1978). Simulation of field water use and crop yield. New York: John Wiley & Sons.

[21]

Feng, S., Liu, H. W., & Ng, C. W. W. (2020). Analytical analysis of the mechanical and hydrological effects of vegetation on shallow slope stability. Computers and Geotechnics, 118, Article 103335. https://doi.org/10.1016/j.compgeo.2019.103335

[22]

Feng, S., Liu, H. W., & Ng, C. W. W. (2019). Analytical solutions for one-dimensional water flow in vegetated layered soil. International Journal of Geomechanics, 19, Article 04018191. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001343

[23]

Foresta, V., Capobianco, V., & Cascini, L. (2020). Influence of grass roots on shear strength of pyroclastic soils. Canadian Geotechnical Journal, 57(9), 1320-1334. https://doi.org/10.1139/cgj-2019-0142

[24]

Gabr, M. A., Akran, M., & Taylor, H. M. (1995). Effect of simulated roots on the permeability of silty soil. Geotechnical Testing Journal, 18(1), 112-115. https://doi.org/10.1520/GTJ10127J

[25]

Gallipoli, D., Gens, A., Sharma, R., & Vaunat, J. (2003a). An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour. Géotechnique, 53(1), 123-135. https://doi.org/10.1680/geot.2003.53.1.123

[26]

Gallipoli, D., Wheeler, S. J., & Karstunen, M. (2003b). Modelling the variation of degree of saturation in a deformable unsaturated soil. Géotechnique, 53(1), 105-112. https://doi.org/10.1680/geot.2003.53.1.105

[27]

Gens, A., Sánchez, M., & Sheng, D. (2006). On constitutive modelling of unsaturated soils. Acta Geotechnica, 1, 137-147. https://doi.org/10.1007/s11440-006-0013-9

[28]

Ghestem, M., Sidle, R. C., & Stokes, A. J. B. (2011). The influence of plant root systems on subsurface flow: implications for slope stability. Bioscience, 61, 869-879. https://doi.org/10.1525/bio.2011.61.11.6

[29]

Ghestem, M., Veylon, G., Bernard, A., Vanel, Q., & Stokes, A. (2014). Influence of plant root system morphology and architectural traits on soil shear resistance. Plant and Soil, 377, 43-61. https://doi.org/10.1525/bio.2011.61.11.6

[30]

GIA (2022). Herbal medicines - Global market trajectory & analytics. Global Industry Analysts, Inc., California.

[31]

Gish, T. J., & Jury, W. A. (1983). Effect of plant roots and root channels on solute transport. Transactions of the American Society of Agricultural and Biological Engineers, 26(2), 440-444. https://doi.org/10.13031/2013.33955

[32]

Hao, H., Di, H., Jiao, X., Wang, J., Guo, Z., & Shi, Z. (2020). Fine roots benefit soil physical properties key to mitigate soil detachment capacity following the restoration of eroded land. Plant and Soil, 446(1), 487-501. https://doi.org/10.1007/s11104-019-04353-x

[33]

Huat, B. B. K., Ali, F. H. J., & Low, T. H. (2006). Water infiltration characteristics of unsaturated soil slope and its effect on suction and stability. Geotechnical and Geological Engineering, 24(5), 1293-1306. https://doi.org/10.1007/s10706-005-1881-8

[34]

Jotisankasa, A., & Sirirattanachat, T. (2017). Effects of grass roots on soil-water retention curve and permeability function. Canadian Geotechnical Journal, 54(11), 1612-1622. https://doi.org/10.1139/cgj-2016-0281

[35]

Kamchoom, V., Boldrin, D., Leung, A. K., Sookkrajang, C., & Likitlersuang, S. (2022). Biomechanical properties of the growing and decaying roots of Cynodon dactylon. Plant and Soil, 471, 193-210. https://doi.org/10.1007/s11104-021-05207-1

[36]

Karr, L., Harre B. & Hakonson, T.E. (1999). Infiltration control landfill cover demonstration at Marine Corps Base, Hawaii. Technical Report TR-2108-ENV, Naval Facilities Engineering Service Center, Port Hueneme, CA.

[37]

Karthika, K. S., Rashmi, I., & Parvathi, M. S. (2018). Biological functions, uptake and transport of essential nutrients in relation to plant growth. Plant Nutrients and Abiotic Stress Tolerance, 1-49. https://doi.org/10.1007/978-981-10-9044-8_1

[38]

Kim, J. H., Fourcaud, T., Jourdan, C., Maeght, J. L., Mao, Z., Metayer, J., & Stokes, A. (2017). Vegetation as a driver of temporal variations in slope stability: The impact of hydrological processes. Geophysical Research Letters, 44(10), 4897-4907. https://doi.org/10.1002/2017GL073174

[39]

Leung, A. K., Kamchoom, V., & Ng, C. W. W. (2017). Influences of root-induced soil suction and root geometry on slope stability: A centrifuge study. Canadian Geotechnical Journal, 54(3), 291-303. https://doi.org/10.1139/cgj-2015-0263

[40]

Leung, A. K., Garg, A., & Ng, C. W. W. (2015a). Effects of plant roots on soil-water retention and induced suction in vegetated soil. Engineering Geology, 193, 183-197. https://doi.org/10.1016/j.enggeo.2015.04.017

[41]

Leung, A. K., Garg, A., Coo, J. L., Ng, C. W. W., & Hau, B. C. H. (2015b). Effects of the roots of Cynodon dactylon and Shefflera heptaphylla on water infiltration rate and soil hydraulic conductivity. Hydrological Processes, 29(15), 3342-3354. https://doi.org/10.1002/hyp.10452

[42]

Lee, J. T., Shih, C. Y., & Hsu, Y. S. (2023). Root biomechanical features and wind erosion resistance of three native leguminous psammophytes for coastal dune restoration. Ecological Engineering, 191, Article 106966. https://doi.org/10.1016/j.ecoleng.2023.106966

[43]

Li, C., Cheng, Q., Tang, C., Gu, Y., Cui, L., & Guo, H. (2024). Effects of layer thickness on desiccation cracking behaviour of a vegetated soil. Biogeotechnics, 2(2), Article 100068. https://doi.org/10.1016/j.bgtech.2023.100068

[44]

Li, X. S. (2005). Modelling of hysteresis response for arbitrary wetting/drying paths. Computers and Geotechnics, 32(2), 133-137. https://doi.org/10.1016/j.compgeo.2004.12.002

[45]

Li, Y., & Ghodrati, M. (1994). Preferential transport of nitrate through soil columns containing root channels. Soil Science Society of America Journal, 58, 653-659. https://doi.org/10.2136/sssaj1994.03615995005800030003x

[46]

Liang, T., Knappett, J. A., Bengough, A. G., & Ke, Y. X. (2017). Small-scale modelling of plant root systems using 3D printing, with applications to investigate the role of vegetation on earthquake-induced landslides. Landslides, 14, 1747-1765. https://doi.org/10.1007/s10346-017-0802-2

[47]

Liu, H. W., Feng, S., Garg, A., & Ng, C. W. W. (2018). Analytical solutions of pore-water pressure distributions in a vegetated multi-layered slope considering the effects of roots on water permeability. Computers and Geotechnics, 102, 252-261. https://doi.org/10.1016/j.compgeo.2018.06.003

[48]

Löbmann, M. T., Geitner, C., Wellstein, C., & Zerbe, S. (2020). The influence of herbaceous vegetation on slope stability-A review. Earth-Science Reviews, 209, Article 103328. https://doi.org/10.1016/j.earscirev.2020.103328

[49]

Lu, J., Zhang, Q., Werner, A. D., Li, Y., Jiang, S., & Tan, Z. (2020). Root-induced changes of soil hydraulic properties-A review. Journal of Hydrology, 589, Article 125203. https://doi.org/10.1007/s11104-014-2121-x

[50]

Marx, W., Haunschild, R., & Bornmann, L. (2021). Heat waves: A hot topic in climate change research. Theoretical and Applied Climatology, 146(1), 781-800. https://doi.org/10.1007/s00704-021-03758-y

[51]

Melchior, S. (1997). In-situ studies of the performance of landfill caps (compacted soil liners, geomembranes, geosynthetic clay liners and capillary barriers). Land Contamination Reclamation, 5(3), 209-216.

[52]

Ng, C.W.W., Kamchoom, V., Leung, A.K., et al. (2016c). A novel system for simulating water transportation in porous medium (in Chinese). China Patent, CN103424345B.

[53]

Ng, C. W. W., Kamchoom, V., & Leung, A. K. (2016d). Centrifuge modelling of the effects of root geometry on transpiration-induced suction and stability of vegetated slopes. Landslides, 13, 925-938. https://doi.org/10.1007/s10346-015-0645-7

[54]

Ng, C. W. W., Leung, A. K., Kamchoom, V., & Garg, A. (2014b). A novel root system for simulating transpiration-induced soil suction in centrifuge. Geotechnical Testing Journal, 37(5), 733-747. https://doi.org/10.1520/GTJ20130116

[55]

Ng, C. W. W., Liu, H. W., & Feng, S. (2015a). Analytical solutions for calculating pore-water pressure in an infinite unsaturated slope with different root architectures. Canadian Geotechnical Journal, 52(12), 1981-1992. https://doi.org/10.1139/cgj-2015-0001

[56]

Ng, C.W.W., Xu J. & Chen, R. (2015b). All-weather landfill soil cover system for preventing water infiltration and landfill gas emission. US Patent, US9101968B2.

[57]

Ng, C. W. W. (2017). Atmosphere-plant-soil interactions: theories and mechanisms (in Chinese). Chinese Journal of Geotechnical Journal, 39, 1-47. https://doi.org/10.11779/CJGE201701001

[58]

Ng, C. W. W. (2014). The state-of-the-art centrifuge modelling of geotechnical problems at HKUST. Journal of Zhejiang University Science A, 15(1), 1-21. https://doi.org/10.1631/jzus.A1300217

[59]

Ng, C. W. W., & Leung, A. K. (2012). Measurements of drying and wetting permeability functions using a new stress-controllable soil column. Journal Geotechnical and Geoenvironmental Engineering, 138(1), 58-68. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000560

[60]

Ng, C. W. W., & Pang, Y. W. (2000). Experimental investigations of the soil-water characteristics of a volcanic soil. Canadian Geotechnical Journal, 37(6), 1252-1264. https://doi.org/10.1139/t00-056

[61]

Ng, C. W. W., & Yung, S. Y. (2008). Determination of the anisotropic shear stiffness of an unsaturated decomposed soil. Géotechnique, 58(1), 23-35. https://doi.org/10.1680/geot.2008.58.1.23

[62]

Ng, C. W. W., Leung, A. K., & Woon, K. X. (2014a). Effect of soil density on grass-induced suction distributions in compacted soil subjected to rainfall. Canadian Geotechnical Journal, 51(3), 311-321. https://doi.org/10.1139/cgj-2013-0221

[63]

Ng, C. W. W., Ni, J. J., Leung, A. K., & Wang, Z. J. (2016a). A new and simple water retention model for root-permeated soils. Géotechnique Letters, 6(1), 106-111. https://doi.org/10.1680/jgele.15.00187

[64]

Ng, C. W. W., Ni, J. J., Leung, A. K., Zhou, C., & Wang, Z. J. (2016b). Effects of planting density on tree growth and induced soil suction. Géotechnique, 66(9), 711-724. https://doi.org/10.1680/jgeot.15.P.196

[65]

Ng, C. W. W., Ni, J. J., & Leung, A. K. (2020b). Effects of plant growth and spacing on soil hydrological changes: A field study. Géotechnique, 70(10), 867-881. https://doi.org/10.1680/jgeot.18.P.207

[66]

Ng, C. W. W., Zhang, Q., Zhang, S., Lau, S. Y., Guo, H., & Li, Z. (2024a). A new state- dependent constitutive model for cyclic thermo-mechanical behaviour of unsaturated vegetated soil. Canadian Geotechnical Journal, 61(10), 2155-2179. https://doi.org/10.1139/cgj-2023-0268

[67]

Ng, C. W. W., Zhou, C., & Chiu, C. F. (2020a). Constitutive modelling of state-dependent behaviour of unsaturated soils: An overview. Acta Geotechnica, 15(10), 2705-2725. https://doi.org/10.1007/s11440-020-01014-7

[68]

Ng, C. W. W., Chen, R., Coo, J., Liu, J., Ni, J. J., Chen, Y. M., Zhan, L. T., Guo, H. W., & Lu, B. W. (2019). A novel vegetated three-layer landfill cover system using recycled construction wastes without geomembrane. Canadian Geotechnical Journal, 56(12), 1863-1875. https://doi.org/10.1139/cgj-2017-0728

[69]

Ng, C. W. W., Chowdhury, N., & Wong, J. T. F. (2020c). Effects of ground granulated blast-furnace slag (GGBS) on hydrological responses of Cd-contaminated soil planted with a herbal medicinal plant (Pinellia ternata). Canadian Geotechnical Journal, 57(5), 673-682. https://doi.org/10.1139/cgj-2018-0868

[70]

Ng, C. W. W., Guo, H. W., Ni, J. J., Chen, R., Xue, Q., Zhang, Y. M., Feng, Y., Chen, Z. K., Feng, S., & Zhang, Q. (2024b). Long-term field performance of non-vegetated and vegetated three-layer landfill cover systems using construction waste without geomembrane. Géotechnique, 74(2), 155-173. https://doi.org/10.1680/jgeot.21.00238

[71]

Ng, C. W. W., San So, P., Wong, J. T. F., & Lau, S. Y. (2023). Intercropping of Pinellia ternata (herbal plant) with Sedum alfredii (Cd-hyperaccumulator) to reduce soil cadmium (Cd) absorption and improve yield. Environmental Pollution, 318, Article 120930. https://doi.org/10.1016/j.envpol.2022.120930

[72]

Ng, C. W. W., Zhang, Q., Ni, J., & Li, Z. (2021). A new three-dimensional theoretical model for analysing the stability of vegetated slopes with different root architectures and planting patterns. Computers and Geotechnics, 130, Article 103912. https://doi.org/10.1016/j.compgeo.2020.103912

[73]

Ng, C. W. W., Zhang, Q., Zhou, C., & Ni, J. J. (2022a). Eco-geotechnics for human sustainability. Science China Technological Sciences, 65(12), 2809-2845. https://doi.org/10.1007/s11431-022-2174-9

[74]

Ng, C. W. W., Wang, Y. C., Ni, J. J., & So, P. S. (2022b). Effects of phosphorus-modified biochar as a soil amendment on the growth and quality of Pseudostellaria heterophylla. Scientific Reports, 12(1), 7268. https://doi.org/10.1038/s41598-022-11170-3

[75]

Ng, C. W. W., Wang, Y. C., Ni, J. J., & Tsim, K. W. K. (2022c). Coupled effects of CO2 and biochar amendment on the yield and quality of Pseudostellaria heterophylla. Industrial Crops and Products, 188, Article 115599. https://doi.org/10.1016/j.indcrop.2022.115599

[76]

Ni, J. J., Leung, A. K., & Ng, C. W. W. (2017). Investigation of plant growth and transpiration-induced matric suction under mixed grass-tree conditions. Canadian Geotechnical Journal, 54(4), 561-573. https://doi.org/10.1139/cgj-2016-0226

[77]

Ni, J. J., Leung, A. K., Ng, C. W. W., & Shao, W. (2018a). Modelling hydro-mechanical reinforcements of plants to slope stability. Computers and Geotechnics, 95, 99-109. https://doi.org/10.1016/j.compgeo.2017.09.001

[78]

Ni, J. J., Leung, A. K., & Ng, C. W. W. (2018b). Modelling soil suction changes due to mixed species planting. Ecological Engineering, 117, 1-17. https://doi.org/10.1016/j.ecoleng.2018.02.023

[79]

Ni, J. J., Leung, A. K., & Ng, C. W. W. (2019a). Modelling effects of root growth and decay on soil water retention and permeability. Canadian Geotechnical Journal, 56(7), 1049-1055. https://doi.org/10.1139/cgj-2018-0402

[80]

Ni, J. J., Leung, A. K., & Ng, C. W. W. (2019b). Influences of plant spacing on root tensile strength of Schefflera arboricola and soil shear strength. Landscape and Ecological Engineering, 15(2), 223-230. https://doi.org/10.1007/s11355-019-00374-x

[81]

Ni, J. J., & Ng, C. W. W. (2019). Long-term effects of grass roots on gas permeability in unsaturated simulated landfill covers. Science of the Total Environment, 666, 680-684. https://doi.org/10.1016/j.scitotenv.2019.02.248

[82]

Ni, J. J., Liu, S. S., Huang, Y., & Gao, Y. F. (2024). Temperature and plant root effects on soil hydrological response and slope stability. Computers and Geotechnics, 174, Article 106663. https://doi.org/10.1016/j.compgeo.2024.106663

[83]

Ni, J. J., Zhou, J., Wang, Y., & Guo, H. (2023). Gas permeability and emission in unsaturated vegetated landfill cover with biochar addition. Biochar, 5(1), 47. https://doi.org/10.1007/s42773-023-00246-6

[84]

Nyhan, J. W., Hakonson, T. E., & Drennon, B. J. (1990). A water balance study of two landfill cover designs for semiarid regions. Journal of Environmental Quality, 19, 281-288. https://doi.org/10.2134/jeq1990.00472425001900020014x

[85]

Pallewattha, M., Indraratna, B., Heitor, A., & Rujikiatkamjorn, C. (2019). Shear strength of a vegetated soil incorporating both root reinforcement and suction. Transportation Geotechnics, 18, 72-82. https://doi.org/10.1016/j.trgeo.2018.11.005

[86]

Prasad, R. (1988). A linear root water uptake model. Journal of Hydrology, 99, 297-306. https://doi.org/10.1016/0022-1694(88)90055-8

[87]

Phillips, C. J., & Watson, A. J. (1994). Structural tree root research in New Zealand: A review. Landcare research science series. Manaaki Whenua Press 71 ( No7).

[88]

Pollen-Bankhead, N., & Simon, A. (2010). Hydrologic and hydraulic effects of riparian root networks on streambank stability: Is mechanical root-reinforcement the whole story? Geomorphology, 116(3-4), 353-362. https://doi.org/10.1016/j.geomorph.2009.11.013

[89]

Raats, P. A. C. (1974). Steady flows of water and salt in uniform soil profiles with plant roots. Soil Science Society of America Journal, 38, 717-722. https://doi.org/10.2136/sssaj1974.03615995003800050012x

[90]

Rahardjo, H., Satyanaga, A., Leong, E. C., Santoso, V. A., & Ng, Y. S. (2014). Performance of an instrumented slope covered with shrubs and deep-rooted grass. Soils and Foundations, 54(3), 417-425. https://doi.org/10.1016/j.sandf.2014.04.010

[91]

Romero, E., Gens, A., & Lloret, A. (1999). Water permeability, water retention and microstructure of unsaturated compacted boom clay. Engineering Geology, 54(1-2), 117-127. https://doi.org/10.1016/S0013-7952(99)00067-8

[92]

Russell, A. R., & Khalili, N. (2006). A unified bounding surface plasticity model for unsaturated soils. International Journal for Numerical and Analytical Methods in Geomechanics, 30(3), 181-212. https://doi.org/10.1002/nag.475

[93]

Scanlan, C.A. (2009). Processes and effects of root-induced changes to soil hydraulic properties. PhD Thesis, University of Western Australia, Australia.

[94]

Scanlan, C.A., & Hinz, C. (2010). Insight into the processes and effects of root induced changes to soil hydraulic properties. In: Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, vol. 2, pp. 41-44.

[95]

Scholl, P., Leitner, D., Kammerer, G., Lioskandl, W., Kaul, H. P., & Bodner, G. (2014). Root induced changes of effective 1D hydraulic properties in a soil column. Plant and Soil, 381(1-2), 193-213. https://doi.org/10.1007/s11104-014-2121-x

[96]

Shao, W., Ni, J. J., Leung, A. K., Su, Y., & Ng, C. W. W. (2017). Analysis of plant root- induced preferential flow and pore-water pressure variation by a dual-permeability model. Canadian Geotechnical Journal, 54(11), 1537-1552. https://doi.org/10.1139/cgj-2016-0629

[97]

Sheng, D., Fredlund, D. G., & Gens, A. (2008). A new modelling approach for unsaturated soils using independent stress variables. Canadian Geotechnical Journal, 45(4), 511-534. https://doi.org/10.1139/T07-112

[98]

Shi, Y. K., Mu, X. M., Li, K. R., & Shao, H. B. (2016). Soil characterization and differential patterns of heavy metal accumulation in woody plants grown in coal gangue wastelands in Shaanxi, China. Environmental Science and Pollution Research, 23, 13489-13497. https://doi.org/10.1007/s11356-016-6432-8

[99]

Shwetha, P., & Varija, K. (2015). Soil water retention curve from saturated hydraulic conductivity for sandy loam and loamy sand textured soils. Aquatic Procedia, 4, 1142-1149. https://doi.org/10.1016/j.aqpro.2015.02.145

[100]

Sidle, R. C., & Ochiai, H. (2007). Landslides processes, prediction, and land use water resources monograph 18. Natural resources forum, 31(4), 322-326.

[101]

Sidle, R. C., & Bogaard, T. A. (2016). Dynamic earth system and ecological controls of rainfall-initiated landslides. Earth Science Reviews, 159, 275-291. https://doi.org/10.1016/j.earscirev.2016.05.013

[102]

Sinnathamby, G., Phillips, D. H., Sivakumar, V., & Paksy, A. (2014). Landfill cap models under simulated climate change precipitation: impacts of cracks and root growth. Géotechnique, 64(2), 95-107. https://doi.org/10.1007/s12665-024-11604-3

[103]

Somers, B., & Asner, G. P. (2013). Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests. Remote Sensing of Environment, 136, 14-27. https://doi.org/10.1016/j.rse.2013.04.006

[104]

Song, L., Li, J. H., Zhou, T., & Fredlund, D. G. (2017). Experimental study on unsaturated hydraulic properties of vegetated soil. Ecological Engineering, 103, 207-216. https://doi.org/10.1016/j.ecoleng.2017.04.013

[105]

Sonnenberg, R., Bransby, M. F., Hallett, P. D., Bengough, A. G., Mickovski, S. B., & Davies, M. C. R. (2010). Centrifuge modelling of soil slopes reinforced with vegetation. Canadian Geotechnical Journal, 47(12), 1415-1430. https://doi.org/10.1139/T10-037

[106]

Świtała, B. M., & Wu, W. (2018). Numerical modelling of rainfall-induced instability of vegetated slopes. Géotechnique, 68(6), 481-491. https://doi.org/10.1680/jgeot.16.P.176

[107]

Tang, A. M., & Cui, Y. J. (2009). Modelling the thermomechanical volume change behaviour of compacted expansive clays. Géotechnique, 59(3), 185-195. https://doi.org/10.1680/geot.2009.59.3.185

[108]

Tang, C. S., Shi, B., Cui, Y. J., Liu, C., & Gu, K. (2012). Desiccation cracking behavior of polypropylene fiber-reinforced clayey soil. Canadian Geotechnical Journal, 49(9), 1088-1101. https://doi.org/10.1139/t2012-067

[109]

United States Environmental Protection Agency (USEPA). (1993). Solid waste disposal facility criteria, Technical manual EPA530-R-93-017, Washington, DC.

[110]

van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 4(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

[111]

Vardanega, P. J., & Bolton, M. D. (2013). Stiffness of clays and silts: Normalizing shear modulus and shear strain. Journal of Geotechnical and Geoenvironmental Engineering, 139(9), 1575-1589. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000887

[112]

Vergani, C., & Graf, F. (2016). Soil permeability, aggregate stability and root growth: A pot experiment from a soil bioengineering perspective. Ecohydrology, 9(5), 830-842. https://doi.org/10.1002/eco.1686

[113]

Wahren, A., Feger, K. H., Schwärzel, K., & Münch, A. (2009). Land-use effects on flood generation-considering soil hydraulic measurements in modelling. Advances in Geosciences, 21, 99-107. https://doi.org/10.5194/adgeo-21-99-2009

[114]

Wang, X., Hong, M. M., Huang, Z., Zhao, Y. F., Ou, Y. S., Jia, H. X., & Li, J. (2019). Biomechanical properties of plant root systems and their ability to stabilize slopes in geohazard-prone regions. Soil and Tillage Research, 189, 148-157. https://doi.org/10.1016/j.still.2019.02.003

[115]

Wang, Y. C., Ng, C. W. W., & Ni, J. J. (2023). Interactive effects of ultraviolet irradiation and biochar treatment on the growth and active ingredients of Pseudostellaria heterophylla. Journal of Plant Growth Regulation, 42, 7660-7672. https://doi.org/10.1007/s00344-023-11041-9

[116]

Warren, R. W., Hakonson, T. E., & Bostick, K. V. (1996). Choosing the most effective hazardous waste landfill cover. Remediation Journal, 6(2), 23-41. https://doi.org/10.1002/rem.3440060205

[117]

Wheeler, S. J., Sharma, R. S., & Buisson, M. S. R. (2003). Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils. Géotechnique, 53(1), 41-54. https://doi.org/10.1680/geot.2003.53.1.41

[118]

WHO (2013). WHO traditional medicine strategy: 2014-2023.Switzerland: World Health Organization.

[119]

Woodman, N. D., Smethurst, J. A., Roose, T., Powrie, W., Meijer, G. J., Knappett, J. A., & Dias, T. (2020). Mathematical and computational modelling of vegetated soil incorporating hydraulically-driven finite strain deformation. Computers and Geotechnics, 127, Article 103754. https://doi.org/10.1016/j.compgeo.2020.103754

[120]

Xiong, Y., Ye, G., Zhu, H., Zhang, S., & Zhang, F. (2016). Thermoelastoplastic constitutive model for unsaturated soils. Acta Geotechnica, 11(6), 1287-1302. https://doi.org/10.1007/s11440-016-0462-8

[121]

Xu, C., McDowell, N. G., Fisher, R. A., Wei, L., Sevanto, S., Christoffersen, B. O., Weng, E., & Middleton, R. S. (2019). Increasing impacts of extreme droughts on vegetation productivity under climate change. Nature Climate Change, 9(12), 948-953. https://doi.org/10.1038/s41558-019-0630-6

[122]

Xu, K., Huang, M., Liu, Z., Cui, M., & Li, S. (2023). Mechanical properties and disintegration behavior of EICP-reinforced sea sand subjected to drying-wetting cycles. Biogeotechnics, 1(2), Article 100019. https://doi.org/10.1016/j.bgtech.2023.100019

[123]

Yan, W. M., & Zhang, G. H. (2015). Soil-water characteristics of compacted sandy and cemented soils with and without vegetation. Canadian Geotechnical Journal, 52(9), 1-14. https://doi.org/10.1139/cgj-2014-0334

[124]

Zhan, T. L., Jia, G. W., Chen, Y. M., Fredlund, D. G., & Li, H. (2013). An analytical solution for rainfall infiltration into an unsaturated infinite slope and its application to slope stability analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 37(12), 1737-1760. https://doi.org/10.1002/nag.2106

[125]

Zhang, Q. (2024). Cyclic thermo-hydro-mechanical behaviour of vegetated soil slope under climate change: constitutive and numerical modelling. PhD thesis, The Hong Kong University of Science and Technology, Hong Kong SAR, China.

[126]

Zhou, C., & Ng, C. W. W. (2014). A new and simple stress-dependent water retention model for unsaturated soil. Computers and Geotechnics, 62, 216-222. https://doi.org/10.1016/j.compgeo.2014.07.012

[127]

Lei, M. Y., Cui, Y. F., Ni, J. J., Zhang, G. T., Li, Y., Wang, H., Liu, D. Z., Yi, S. J., Jin, W., & Zhou, L. Q. (2022). Temporal evolution of the hydromechanical properties of soil- root systems in a forest fire in China. Science of the Total Environment, 809, Article 151165. https://doi.org/10.1016/j.scitotenv.2021.151165

AI Summary AI Mindmap
PDF (7754KB)

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/