Kitchen waste bone-driven enzyme-induced calcium phosphate precipitation under microgravity for space biocementation

Zhen Yan , Kazunori Nakashima , Chikara Takano , Satoru Kawasaki

Biogeotechnics ›› 2026, Vol. 4 ›› Issue (1) : 100156

PDF (5409KB)
Biogeotechnics ›› 2026, Vol. 4 ›› Issue (1) :100156 DOI: 10.1016/j.bgtech.2024.100156
Research article
research-article

Kitchen waste bone-driven enzyme-induced calcium phosphate precipitation under microgravity for space biocementation

Author information +
History +
PDF (5409KB)

Abstract

This study validates the feasibility of extracting calcium and phosphorus from kitchen waste bones for crude enzyme-induced calcium phosphate precipitation (EICPP) under both normal and microgravity conditions. The experimental results demonstrate no significant differences in the degree of reaction and characteristics of precipitation between these environments. By leveraging local resources, reducing material transport costs, and addressing waste management challenges, this research underscores the potential for extraterrestrial construction, thereby enhancing sustainability in space environments. These findings offer promising insights for the application of space biocementation, particularly during the expansion phase of human settlements.

Keywords

Space exploration / In-situ resource utilization (ISRU) / Biocement / Enzyme-induced calcium phosphate precipitation (EICPP) / Crude enzyme / Waste bone

Cite this article

Download citation ▾
Zhen Yan, Kazunori Nakashima, Chikara Takano, Satoru Kawasaki. Kitchen waste bone-driven enzyme-induced calcium phosphate precipitation under microgravity for space biocementation. Biogeotechnics, 2026, 4(1): 100156 DOI:10.1016/j.bgtech.2024.100156

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zhen Yan: Writing - review & editing, Writing - original draft, Visualization, Investigation, Funding acquisition. Kazunori Nakashima: Resources. Chikara Takano: Resources. Satoru Kawasaki: Resources, Funding acquisition, Data curation.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by JSPS KAKENHI, Grant Number JP22H01581, and was partly supported by JST SPRING, Grant Number JPMJSP2119.

Data statement

All the experimental data that support the findings of this study are available from the corresponding author upon reasonable request through email.

References

[1]

Almajed, A., Abbas, H., Arab, M., Alsabhan, A., Hamid, W., & Al-Salloum, Y. (2020). Enzyme-induced carbonate precipitation (EICP)-based methods for ecofriendly stabilization of different types of natural sands. Journal of Cleaner Production, 274, Article 122627. https://doi.org/10.1016/j.jclepro.2020.122627

[2]

Anand, M., Crawford, I. A., Balat-Pichelin, M., Abanades, S., van Westrenen, W., Péraudeau, G.,... Seboldt, W. (2012). A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications. Planetary and Space Science, 74, 42-48. https://doi.org/10.1016/j.pss.2012.08.012

[3]

Arokiasamy, P., Al Bakri Abdullah, M. M., Abd Rahim, S. Z., Luhar, S., Sandu, A. V., Jamil, N. H., & Nabiałek, M. (2022). Synthesis methods of hydroxyapatite from natural sources: A review. Ceramics International, 48, 14959-14979. https://doi.org/10.1016/j.ceramint.2022.03.064

[4]

Avramenko, M., Nakashima, K., Takano, C., & Kawasaki, S. (2023). Eco-friendly soil stabilization method using fish bone as cement material. Science of the Total Environment, 900, Article 165823. https://doi.org/10.1016/j.scitotenv.2023.165823

[5]

Avramenko, M., Nakashima, K., Takano, C., & Kawasaki, S. (2024A). Ecofriendly solidification of sand using microbially induced calcium phosphate precipitation. Scientific Reports, 14, 12412. https://doi.org/10.1038/s41598-024-63016-9

[6]

Belobrajdic, B., Melone, K., & Diaz-Artiles, A. (2021B). Planetary extravehicular activity (EVA) risk mitigation strategies for long-duration space missions. Npj Microgravity, 7, 1-9. https://doi.org/10.1038/s41526-021-00144-w

[7]

Bian, Y., Chen, Y., Zhan, L., Guo, H., Ke, H., Wang, Y.,... Gao, Y. (2024). Effects of enzyme-induced carbonate precipitation technique on multiple heavy metals immobilization and unconfined compressive strength improvement of contaminated sand. Science of the Total Environment, 947, Article 174409. https://doi.org/10.1016/j.scitotenv.2024.174409

[8]

Borisova, T. (2019). Express assessment of neurotoxicity of particles of planetary and interstellar dust. Npj Microgravity, 5, 1-5. https://doi.org/10.1038/s41526-019-0062-7

[9]

Borum-Nicholas, L., & Wilson, O. C. (2003B). Surface modification of hydroxyapatite. Part I. Dodecyl alcohol. Biomaterials, 24, 3671-3679. https://doi.org/10.1016/S0142-9612(03)00239-4

[10]

Brungs, S., Egli, M., Wuest, S. L., Christianen, P. C. M., van, Loon,... Hemmersbach, R. (2016). Facilities for simulation of microgravity in the ESA ground-based facility programme. Microgravity Science and Technology, 28, 191-203. https://doi.org/10.1007/s12217-015-9471-8

[11]

Cain, J. R. (2010). Lunar dust: The hazard and astronaut exposure risks. Earth Moon Planets, 107, 107-125. https://doi.org/10.1007/s11038-010-9365-0

[12]

Charrière, E., Terrazzoni, S., Pittet, C., Mordasini, Ph., Dutoit, M., Lemaı̂tre, J., & Zysset, Ph. (2001). Mechanical characterization of brushite and hydroxyapatite cements. Biomaterials, 22, 2937-2945. https://doi.org/10.1016/S0142-9612(01)00041-2

[13]

Cogan, D., Cleary, J., Fay, C., Rickard, A., Jankowski, K., Phelan, T.,... Diamond, D. (2014). The development of an autonomous sensing platform for the monitoring of ammonia in water using a simplified Berthelot method. Analytical Methods, 6, 7606-7614. https://doi.org/10.1039/C4AY01359J

[14]

Colwell, J. E., Batiste, S., Horányi, M., Robertson, S., & Sture, S. (2007). Lunar surface: Dust dynamics and regolith mechanics. Reviews of Geophysics, 45. https://doi.org/10.1029/2005RG000184.

[15]

Cuccurullo, A., Gallipoli, D., Bruno, A. W., Augarde, C., Hughes, P., & La Borderie, C. (2022). Earth stabilisation via carbonate precipitation by plant-derived urease for building applications. Geomechanics for Energy and the Environment, 30, Article 100230. https://doi.org/10.1016/j.gete.2020.100230

[16]

Cui, M. J., Zhou, J. N., Lai, J. J., Huang, M., & Zhang, Z. C. (2024). Seawater-based soybean urease for calcareous sand biomineralization. Acta Geotechnica. https://doi.org/10.1007/s11440-024-02358-0

[17]

da Rocha, D. N., da Silva, M. H. P., de Campos, J. B., Marçal, R. L. S. B., Mijares, D. Q., Coelho, P. G., & Cruz, L. R. (2018). Kinetics of conversion of brushite coatings to hydroxyapatite in alkaline solution. Journal of Materials Research and Technology, 7, 479-486. https://doi.org/10.1016/j.jmrt.2018.02.002

[18]

Dallas, J. A., Raval, S., Alvarez Gaitan, J. P., Saydam, S., & Dempster, A. G. (2020). The environmental impact of emissions from space launches: A comprehensive review. Journal of Cleaner Production, 255, Article 120209. https://doi.org/10.1016/j.jclepro.2020.120209

[19]

De Micco, V., et al. (2023). Perspectives for plant biology in space and analogue environments. Npj Microgravity, 9, 1-10. https://doi.org/10.1038/s41526-023-00315-x

[20]

De Pascale, S., et al. (2021). Biology and crop production in space environments: Challenges and opportunities. Life Sciences in Space Research, 29, 30-37. https://doi.org/10.1016/j.lssr.2021.02.005

[21]

DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36, 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029

[22]

Dikshit, R., Dey, A., Gupta, N., Varma, S. C., Venugopal, I., Viswanathan, K., & Kumar, A. (2021). Space bricks: From LSS to machinable structures via MICP. Ceramics International, 47, 14892-14898. https://doi.org/10.1016/j.ceramint.2020.07.309

[23]

Ding, S., Dasgupta, R., & Tsuno, K. (2014). Sulfur concentration of martian basalts at sulfide saturation at high pressures and temperatures - Implications for deep sulfur cycle on Mars. Geochimica et Cosmochimica Acta, 131, 227-246. https://doi.org/10.1016/j.gca.2014.02.003

[24]

Ding, L., Zhou, R., Yu, T., & Zhang, K. (2024). Lunar rock investigation and tri-aspect characterization of lunar farside regolith by a digital twin. Nature Communications, 15, 2098. https://doi.org/10.1038/s41467-024-46233-8

[25]

Dong, J., & Liu, X. (2022). Application of improved enzyme induced calcium carbonate precipitation (EICP) technology in surface protection of earthen sites. Journal of Cultural Heritage, 54, 146-154. https://doi.org/10.1016/j.culher.2022.01.016

[26]

Engelschiøn, V. S., Eriksson, S. R., Cowley, A., Fateri, M., Meurisse, A., Kueppers, U., & Sperl, M. (2020). EAC-1A: A novel large-volume lunar regolith simulant. Scientific Reports, 10, 5473. https://doi.org/10.1038/s41598-020-62312-4

[27]

Furutaka, K., Monma, H., Okura, T., & Takahashi, S. (2006). Characteristic reaction processes in the system brushite-NaOH solution. Journal of the European Ceramic Society, 26, 543-547. https://doi.org/10.1016/j.jeurceramsoc.2005.07.016

[28]

Gaillard, F., Michalski, J., Berger, G., McLennan, S. M., & Scaillet, B. (2013). Geochemical reservoirs and timing of sulfur cycling on Mars. Space Science Reviews, 174, 251-300. https://doi.org/10.1007/s11214-012-9947-4

[29]

Gleaton, J., Lai, Z., Xiao, R., Chen, Q., & Zheng, Y. (2019). Microalga-induced biocementation of martian regolith simulant: Effects of biogrouting methods and calcium sources. Construction and Building Materials, 229, Article 116885. https://doi.org/10.1016/j.conbuildmat.2019.116885

[30]

Gleaton, J., Lai, Z., Xiao, R., Zhang, K., Chen, Q., & Zheng, Y. (2022). Optimization of mechanical strength of biocemented Martian regolith simulant soil columns. Construction and Building Materials, 315, Article 125741. https://doi.org/10.1016/j.conbuildmat.2021.125741

[31]

Gowthaman, S., Yamamoto, M., Nakashima, K., Ivanov, V., & Kawasaki, S. (2021). Calcium phosphate biocement using bone meal and acid urease: An eco-friendly approach for soil improvement. Journal of Cleaner Production, 319, Article 128782. https://doi.org/10.1016/j.jclepro.2021.128782

[32]

Guan, D., Zhou, Y., Shahin, M. A., Khodadadi Tirkolaei, H., & Cheng, L. (2023). Assessment of urease enzyme extraction for superior and economic bio-cementation of granular materials using enzyme-induced carbonate precipitation. Acta Geotechnica, 18, 2263-2279. https://doi.org/10.1007/s11440-022-01727-x

[33]

Halevy, I., Zuber, M. T., & Schrag, D. P. (2007). A sulfur dioxide climate feedback on early Mars. Science, 318, 1903-1907. https://doi.org/10.1126/science.1147039

[34]

He, J., Yang, F., Qi, Y. S., Fang, C. H., Yan, B. Y., Zhang, Y.,... Gao, Y. F. (2022). Improvement in silty sand with enzyme-induced carbonate precipitation: Laboratory model experiment. Acta Geotechnica, 17, 2895-2905. https://doi.org/10.1007/s11440-021-01361-z

[35]

Hecht, M., Hoffman, J., Rapp, D., & Ponce, A. (2021). Mars oxygen ISRU experiment (MOXIE). Space Science Reviews, 217, 9. https://doi.org/10.1126/sciadv.abp8636

[36]

Hoffman, J. A., et al. (2022). Mars oxygen ISRU experiment (MOXIE)—Preparing for human Mars exploration. Science Advances, 8, Article eabp8636. https://doi.org/10.1126/sciadv.abp8636

[37]

Isachenkov, M., Chugunov, S., Akhatov, I., & Shishkovsky, I. (2021). Regolith-based additive manufacturing for sustainable development of lunar infrastructure - An overview. Acta Astronautica, 180, 650-678. https://doi.org/10.1016/j.actaastro.2021.01.005

[38]

Ivanov, V., Stabnikov, V., & Kawasaki, S. (2019). Ecofriendly calcium phosphate and calcium bicarbonate biogrouts. Journal of Cleaner Production, 218, 328-334. https://doi.org/10.1016/j.jclepro.2019.01.315

[39]

Jain, A., Soni, S., & Verma, K. K. (2021). Combined liquid phase microextraction and fiber-optics-based cuvetteless micro-spectrophotometry for sensitive determination of ammonia in water and food samples by the indophenol reaction. Food Chemistry, 340, 128156. https://doi.org/10.1016/j.foodchem.2020.128156

[40]

Jiang, N. J., Yoshioka, H., Yamamoto, K., & Soga, K. (2016). Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP). Ecological Engineering, 90, 96-104. https://doi.org/10.1016/j.ecoleng.2016.01.073

[41]

Jin, X., Zhuang, J., Zhang, Z., Guo, H., & Tan, J. (2015). Hydrothermal synthesis of hydroxyapatite nanorods in the presence of sodium citrate and its aqueous colloidal stability evaluation in neutral pH. Journal of Colloid and Interface Science, 443, 125-130. https://doi.org/10.1016/j.jcis.2014.12.010

[42]

Khan-Mayberry, N. (2008). The lunar environment: Determining the health effects of exposure to moon dusts. Acta Astronautica, 63, 1006-1014. https://doi.org/10.1016/j.actaastro.2008.03.015

[43]

Kim, S. M., et al. (2017). An experimental and theoretical approach to optimize a three- dimensional clinostat for life science experiments. Microgravity Science and Technology, 29, 97-106. https://doi.org/10.1007/s12217-016-9529-2

[44]

Kim, D., Nguyen, Q. T. T., Lee, S., Choi, K. M., Lee, E. J., & Park, J. Y. (2023). Customized small-sized clinostat using 3D printing and gas-permeable polydimethylsiloxane culture dish. Npj Microgravity, 9, 1-11. https://doi.org/10.1038/s41526-023-00311-1

[45]

King, P. L., & McLennan, S. M. (2010). Sulfur on Mars. Elements, 6, 107-112. https://doi.org/10.2113/gselements.6.2.107

[46]

Koroleva, T. V., et al. (2018). The environmental impact of space transport. Transportation Research Part D: Transport and Environment, 58, 54-69. https://doi.org/10.1016/j.trd.2017.10.013

[47]

Koutsopoulos, S. (2001). Kinetic study on the crystal growth of hydroxyapatite. Langmuir, 17, 8092-8097. https://doi.org/10.1021/la0107906

[48]

Krishnan, V., Khodadadi Tirkolaei, H., & Kavazanjian E., Jr. (2023). An improved method for determining urease activity from electrical conductivity measurements. ACS Omega, 8, 13791-13798. https://doi.org/10.1021/acsomega.2c08152

[49]

Kruyer, N. S., Realff, M. J., Sun, W., Genzale, C. L., & Peralta-Yahya, P. (2021). Designing the bioproduction of Martian rocket propellant via a biotechnology-enabled in situ resource utilization strategy. Nature Communications, 12, 6166. https://doi.org/10.1038/s41467-021-26393-7

[50]

Li, M., Wen, K., Li, Y., & Zhu, L. (2018). Impact of oxygen availability on microbially induced calcite precipitation (MICP) treatment. Geomicrobiology Journal, 35, 15-22. https://doi.org/10.1080/01490451.2017.1303553

[51]

Li, D., Xu, X., Li, Z., Wang, T., & Wang, C. (2020). Detection methods of ammonia nitrogen in water: A review. TrAC Trends in Analytical Chemistry, 127, Article 115890. https://doi.org/10.1016/j.trac.2020.115890

[52]

Liu, Y., Gao, Y., Zhou, Y., Meng, H., & Li, C. (2024). Evaluation of enzyme-induced carbonate precipitation using crude soybean urease during soil percolation. Acta Geotechnica, 19, 1571-1580. https://doi.org/10.1007/s11440-023-02040-x

[53]

Liu, J., Li, G., & Li, X. (2021). Geotechnical engineering properties of soils solidified by microbially induced CaCO3 precipitation (MICP). Advances in Civil Engineering, 2021, Article 6683930. https://doi.org/10.1155/2021/6683930

[54]

Lomax, B. A., et al. (2022). Predicting the efficiency of oxygen-evolving electrolysis on the Moon and Mars. Nature Communications, 13, 583. https://doi.org/10.1038/s41467-022-28147-5

[55]

Ma S., et al. (2022). 3D printing of damage-tolerant martian regolith simulant-based geopolymer composites. Additive Manufacturing, 58, Article 103025. https://doi.org/10.1016/j.addma.2022.103025

[56]

Ma, G., He, X., Jiang, X., Liu, H., Chu, J., & Xiao, Y. (2021). Strength and permeability of bentonite-assisted biocemented coarse sand. Canadian Geotechnical Journal, 58, 969-981. https://doi.org/10.1139/cgj-2020-0045

[57]

Maloney, C. M., Portmann, R. W., Ross, M. N., & Rosenlof, K. H. (2022). The climate and ozone impacts of black carbon emissions from global rocket launches. Journal of Geophysical Research: Atmospheres, 127, Article e2021JD036373. https://doi.org/10.1029/2021JD036373

[58]

Miao, L., Wu, L., & Sun, X. (2020a). Enzyme-catalysed mineralisation experiment study to solidify desert sands. Scientific Reports, 10, Article 10611. https://doi.org/10.1038/s41598-020-67566-6

[59]

Miao, L., Wu, L., Sun, X., Li, X., & Zhang, J. (2020b). Method for solidifying desert sands with enzyme-catalysed mineralization. Land Degradation & Development, 31, 1317-1324. https://doi.org/10.1002/ldr.3499

[60]

Molins-Legua, C., Meseguer-Lloret, S., Moliner-Martinez, Y., & Campíns-Falcó P. (2006). A guide for selecting the most appropriate method for ammonium determination in water analysis. TrAC Trends in Analytical Chemistry, 25, 282-290. https://doi.org/10.1016/j.trac.2005.12.002

[61]

Montes C., et al. (2015). Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications. Advances in Space Research, 56, 1212-1221. https://doi.org/10.1016/j.asr.2015.05.044

[62]

Odeh, R., & Guy, C. L. (2017). Gardening for therapeutic people-plant interactions during long-duration space missions. Open Agriculture, 2, 1-13. https://doi.org/10.1515/opag-2017-0001

[63]

Oluwafemi, F. A., & Neduncheran, A. (2022). Analog and simulated microgravity platforms for life sciences research: Their individual capacities, benefits and limitations. Advances in Space Research, 69, 2921-2929. https://doi.org/10.1016/j.asr.2022.01.007

[64]

Omarov, K., Alarifi, S. A., Mahmoud, M., Kamal, M. S., Murtaza, M., Humam, A., & AlAhmari, M. M. (2023). Sand consolidation using enzyme-induced carbonate precipitation: New insights on temperature and particle size effects. Scientific Reports, 13, 15528. https://doi.org/10.1038/s41598-023-42792-w

[65]

Palos, M. F., Serra, P., Fereres, S., Stephenson, K., & González-Cinca, R. (2020). Lunar ISRU energy storage and electricity generation. Acta Astronautica, 170, 412-420. https://doi.org/10.1016/j.actaastro.2020.02.005

[66]

Pan, H., & Darvell, B. W. (2010). Effect of carbonate on hydroxyapatite solubility. Crystal Growth & Design, 10, 845-850. https://doi.org/10.1021/cg901199h

[67]

Papike, J. J., Simon, S. B., & Laul, J. C. (1982). The lunar regolith: Chemistry, mineralogy, and petrology. Reviews of Geophysics, 20, 761-826. https://doi.org/10.1029/RG020i004p00761

[68]

Parkinson, R. C. (1991). Why space is expensive—Operational/economic aspects of space transport. In: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 205, 45-52. https://doi.org/10.1243/PIME_PROC_1991_205_236_02

[69]

Pohlen, M., Carroll, D., Prisk, G. K., & Sawyer, A. J. (2022). Overview of lunar dust toxicity risk. Npj Microgravity, 8, 1-9. https://doi.org/10.1038/s41526-022-00244-1

[70]

Remiszewska, E., Malecha, K., Malecha, J., Jankowska-Śliwińska, J., Torbicz, W., Samluk, A.,... Pijanowska, D. G. (2019). Enzymatic method of urea determination in LTCC microfluidic system based on absorption photometry. Sensors and Actuators B: Chemical, 285, 375-384. https://doi.org/10.1016/j.snb.2019.01.032

[71]

Righter, K., Pando, K., & Danielson, L. R. (2009). Experimental evidence for sulfur-rich martian magmas: Implications for volcanism and surficial sulfur sources. Earth and Planetary Science Letters, 288, 235-243. https://doi.org/10.1016/j.epsl.2009.09.027

[72]

Ross, B., Haussener, S., & Brinkert, K. (2023). Assessment of the technological viability of photoelectrochemical devices for oxygen and fuel production on Moon and Mars. Nature Communications, 14, 3141. https://doi.org/10.1038/s41467-023-38676-2

[73]

Ross, M. N., & Jones, K. L. (2022). Implications of a growing spaceflight industry: Climate change. Journal of Space Safety Engineering, 9, 469-477. https://doi.org/10.1016/j.jsse.2022.04.004

[74]

Ryan, R. G., Marais, E. A., Balhatchet, C. J., & Eastham, S. D. (2022). Impact of rocket launch and space debris air pollutant emissions on stratospheric ozone and global climate. Earths Future, 10, Article e2021EF002612. https://doi.org/10.1029/2021EF002612

[75]

Santomartino, R., Averesch, N. J. H., Bhuiyan, M., & Zea, L. (2023). Toward sustainable space exploration: A roadmap for harnessing the power of microorganisms. Nature Communications, 14, 1391. https://doi.org/10.1038/s41467-023-37070-2

[76]

Singh, A., Paramkusam, B. R., & Maiti, P. R. (2021). Cyclic degradation and pore pressure dynamics of EICP treated hydrocarbon contaminated sands. Soil Dynamics and Earthquake Engineering, 140, Article 106369. https://doi.org/10.1016/j.soildyn.2020.106369

[77]

Smith, L. (2024). Space station and spacecraft environmental conditions and human mental health: Specific recommendations and guidelines. Life Sciences in Space Research, 40, 126-134. https://doi.org/10.1016/j.lssr.2023.10.001

[78]

Snehal, K., Sinha, P., & Chaunsali, P. (2024). Development of waterless extra-terrestrial concrete using Martian regolith. Advances in Space Research, 73, 933-944. https://doi.org/10.1016/j.asr.2023.07.036

[79]

Soureshjani, O. K., Massumi, A., & Nouri, G. (2023). Sustainable colonization of Mars using shape optimized structures and in situ concrete. Scientific Reports, 13, Article 15747. https://doi.org/10.1038/s41598-023-42971-9

[80]

Starr, S. O., & Muscatello, A. C. (2020). Mars in situ resource utilization: A review. Planetary and Space Science, 182, Article 104824. https://doi.org/10.1016/j.pss.2019.104824

[81]

Štulajterová R., & Medvecký Ľ. (2008). Effect of calcium ions on transformation brushite to hydroxyapatite in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 316, 104-109. https://doi.org/10.1016/j.colsurfa.2007.08.036

[82]

Toklu, Y. C., & Akpinar, P. (2022). Lunar soils, simulants and lunar construction materials: An overview. Advances in Space Research, 70, 762-779. https://doi.org/10.1016/j.asr.2022.05.017

[83]

Wang, Y., Hao, L., Li, Y., Sun, Q., Sun, M., Huang, Y.,... Xiao, L. (2022). In-situ utilization of regolith resource and future exploration of additive manufacturing for lunar/ martian habitats: A review. Applied Clay Science, 229, Article 106673. https://doi.org/10.1016/j.clay.2022.106673

[84]

Wang, H., Miao, L., Sun, X., Wu, L., Fan, G., & Zhang, J. (2023a). The use of N-(N-butyl)- thiophosphoric triamide to improve the efficiency of enzyme induced carbonate precipitation at high temperature. Acta Geotechnica, 18, 5063-5081. https://doi.org/10.1007/s11440-023-01864-x

[85]

Wang, H., Sun, X., Miao, L., Cao, Z., & Guo, X. (2023b). Garlic extract addition for soil improvement at various temperatures using enzyme-induced carbonate precipitation (EICP) method. Journal of Rock Mechanics and Geotechnical Engineering, 15, 3230-3243. https://doi.org/10.1016/j.jrmge.2023.03.018

[86]

Wuest, S. L., et al. (2014). A novel microgravity simulator applicable for three-dimensional cell culturing. Microgravity Science and Technology, 26, 77-88. https://doi.org/10.1007/s12217-014-9364-2

[87]

Xiao Y., et al. (2019). Effect of particle shape on strength and stiffness of biocemented glass beads. Journal of Geotechnical and Geoenvironmental Engineering, 145, Article 06019016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002165

[88]

Xiao, Y., He, X., Zaman, M., Ma, G., & Zhao, C. (2022). Review of strength improvements of biocemented soils. International Journal of Geomechanics, 22, Article 03122001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002565

[89]

Xu, J., Li, X., Liu, Y., Li, Z., & Wang, S. (2024). Evaluation of wind erosion resistance of EICP solidified desert sand based on response surface methodology. Construction and Building Materials, 447, Article 138119. https://doi.org/10.1016/j.conbuildmat.2024.138119

[90]

Xue, Y., Arulrajah, A., Chu, J., & Horpibulsuk, S. (2024). Soybean urease-based EICP stabilization of washed recycled sands derived from demolition wastes cured at low temperatures. Construction and Building Materials, 434, Article 136735. https://doi.org/10.1016/j.conbuildmat.2024.136735

[91]

Yan, Z., Nakashima, K., Takano, C., & Kawasaki, S. (2024). Feasibility study of enhancing enzyme-induced carbonate precipitation with eggshell waste for sand solidification. Biogeotechnics, 2, Article 100108. https://doi.org/10.1016/j.bgtech.2024.100108

[92]

Zakharov, A. V., Zelenyi, L. M., & Popel, S. I. (2020). Lunar dust: Properties and potential hazards. Solar System Research, 54, 455-476. https://doi.org/10.1134/S0038094620060076

[93]

Zhang, J., Wang, L., & Putnis, C. V. (2019). Underlying role of brushite in pathological mineralization of hydroxyapatite. The Journal of Physical Chemistry B, 123, 2874-2881. https://doi.org/10.1021/acs.jpcb.9b00728

[94]

Zhao, T., Markevych, I., Buczyłowska, D., Romanos, M., & Heinrich, J. (2023). When green enters a room: A scoping review of epidemiological studies on indoor plants and mental health. Environmental Research, 216, Article 114715. https://doi.org/10.1016/j.envres.2022.114715

[95]

Zuo, H., Ni, S., & Xu, M. (2023). An assumption of in situ resource utilization for “bio- bricks” in space exploration. Frontiers in Materials, 10. https://doi.org/10.3389/fmats.2023.1155643

AI Summary AI Mindmap
PDF (5409KB)

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/