Polymer-assisted soybean crude urease carbonate precipitation technique for soil improvement

Zalfa Maulida Ihsani , Naoki Kinoshita , Hideaki Yasuhara , Heriansyah Putra

Biogeotechnics ›› 2025, Vol. 3 ›› Issue (4) : 100147

PDF (13467KB)
Biogeotechnics ›› 2025, Vol. 3 ›› Issue (4) :100147 DOI: 10.1016/j.bgtech.2024.100147
Research article
research-article

Polymer-assisted soybean crude urease carbonate precipitation technique for soil improvement

Author information +
History +
PDF (13467KB)

Abstract

This study presents a sustainable approach to soil improvement by integrating polyvinyl alcohol (PVA) into the Soybean Crude Urease Carbonate Precipitation (SCU-CP) technique. The research aims to enhance SCU-CP, which utilizes soybean-derived urease to precipitate calcium carbonate, bonding soil particles and increasing strength. Challenges such as low solution viscosity and inconsistent carbonate precipitation are addressed by incorporating PVA, a biodegradable polymer that improves viscosity and retention. Comprehensive evaluations reveal significant findings: increasing PVA concentration enhances solution viscosity and results in higher calcium carbonate precipitation. Water retention assessments show that the PCP-1% treatment increases saturation water content (ws) to 0.263 compared to 0.217 for untreated soil, while also reduces the air-entry value (α). Unconfined Compressive Strength (UCS) tests indicate substantial improvement for PCP-1%, achieving approximately 140 kPa, with values reaching 179 kPa after 28 days. Calcium carbonate content measurements reveal that SCU-CP exhibits a variable distribution (standard deviation of 1.13), while PCP-1% demonstrates a more uniform distribution (standard deviation of 0.60), indicating improved effectiveness. Durability assessments through wet-dry cycling show that SCU-CP experiences a mass loss of 36.5%, while PCP-1% retains only 5% mass loss and maintains a UCS values. SEM images indicate that SCU-CP forms spherical structures, whereas PCP-1% produces a more diverse and crystalline morphology, suggesting better nucleation and distribution. Overall, the polymer-assisted SCU-CP technique (PCP) demonstrates significant potential for effective soil improvement.

Keywords

Carbonates / Polymer / Soil improvement / Uniformity

Cite this article

Download citation ▾
Zalfa Maulida Ihsani, Naoki Kinoshita, Hideaki Yasuhara, Heriansyah Putra. Polymer-assisted soybean crude urease carbonate precipitation technique for soil improvement. Biogeotechnics, 2025, 3(4): 100147 DOI:10.1016/j.bgtech.2024.100147

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Heriansyah Putra: Writing - review & editing, Supervision. Hideaki Yasuhara: Writing - review & editing, Supervision. Naoki Kinoshita: Writing - review & editing, Supervision, Project administration, Funding acquisition. Zalfa Maulida Ihsani: Writing - review & editing, Writing - original draft, Methodology, Investigation, Funding acquisition, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

This work was supported by JST SPRING, Grant Number JPMJSP2162, and was partly supported by Shin Nihon Grout Industry Co., Ltd. The authors sincerely appreciate their support.

References

[1]

Achal, V., & Pan, X. (2014). Influence of Calcium Sources on Microbially Induced Calcium Carbonate Precipitation by Bacillus sp. CR2. Applied Biochemistry and Biotechnology, 173(1), 307-317. https://doi.org/10.1007/s12010-014-0842-1

[2]

Almajed, A., Lateef, M. A., Moghal, A. A. B., & Lemboye, K. (2021). State-of-the-Art Review of the Applicability and Challenges of Microbial-Induced Calcite Precipitation (MICP) and Enzyme-Induced Calcite Precipitation (EICP) Techniques for Geotechnical and Geoenvironmental Applications (Article) Crystals, 11(4), 4. https://doi.org/10.3390/cryst11040370

[3]

Almajed, A., Lemboye, K., Arab, M. G., & Alnuaim, A. (2020). Mitigating wind erosion of sand using biopolymer-assisted EICP technique. Soils and Foundations, 60(2), 356-371. https://doi.org/10.1016/j.sandf.2020.02.011

[4]

Al-Mukhtar, M., Lasledj, A., & Alcover, J.-F. (2010). Behaviour and mineralogy changes in lime-treated expansive soil at 20 °C. Applied Clay Science, 50(2), 191-198. https://doi.org/10.1016/j.clay.2010.07.023

[5]

Arab, M., Omar, M., Aljassmi, R., Nasef, R., Nassar, L., Miro, S., Rodrigues, H., Morcous, G., & Shehata, M. (2020). EICP Cemented Sand Modified with Biopolymer. Springer International Publishing74-85. https://doi.org/10.1007/978-3-030-34216-6_6

[6]

ASTM. (2016). Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper. 〈https://www.astm.org/d5298-16.html〉.

[7]

ASTM. (2018). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). 〈https://www.astm.org/d2487-11.html〉.

[8]

ASTM. (2021). Standard Test Method for Rapid Determination of Carbonate Content of Soils. 〈https://www.astm.org/d4373-21.html〉.

[9]

ASTM. (2023). Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures. 〈https://www.astm.org/d0559_d0559m-15.html〉.

[10]

Baiq, H. S., Yasuhara, H., Kinoshita, N., Putra, H., & Johan, E. (2020). Examination of Calcite Precipitation Using Plant-Derived Urease Enzyme for Soil Improvement. International Journal of GEOMATE, 19(72), https://doi.org/10.21660/2020.72.9481

[11]

Benhelal, E., Zahedi, G., Shamsaei, E., & Bahadori, A. (2013). Global strategies and potentials to curb CO2 emissions in cement industry. Journal of Cleaner Production, 51, 142-161. https://doi.org/10.1016/j.jclepro.2012.10.049

[12]

Carrasco-Venegas, L. A., González-Fernández, J. V., Castañeda-Pérez, L. G., Palomino- Hernández, G., Dueñas-Dávila, F. A., & Trujillo-Pérez, S. A. (2023). Viscosity Factor (VF) Complementary to the Statistical Indicators Associated with the Rheological Behavior of Aqueous Solutions of Polyvinyl Alcohol (Article) Polymers, 15(7), 7. https://doi.org/10.3390/polym15071743

[13]

Chang, I., Im, J., Prasidhi, A. K., & Cho, G. C. (2015). Effects of Xanthan gum biopolymer on soil strengthening. Construction and Building Materials, 74(x), 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026

[14]

Chang, I., Lee, M., Tran, A. T. P., Lee, S., Kwon, Y.-M., Im, J., & Cho, G.-C. (2020). Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transportation Geotechnics, 24, Article 100385. https://doi.org/10.1016/j.trgeo.2020.100385

[15]

Cuccurullo, A., Gallipoli, D., Bruno, A. W., Augarde, C., Hughes, P., & Borderie, C. L. (2020). Soil Stabilization Against Water Erosion via Calcite Precipitation by Plant- Derived Urease. Lecture Notes in Civil Engineering, 40(September), 753-762. https://doi.org/10.1007/978-3-030-21359-6_80

[16]

Cuccurullo, A., Gallipoli, D., Bruno, A. W., Augarde, C., Hughes, P., & La Borderie, C. (2020). Earth Stabilisation Via Carbonate Precipitation by Plant-Derived Urease for Building Applications. Geomechanics for Energy and the EnvironmentArticle 100230. https://doi.org/10.1016/j.gete.2020.100230

[17]

Cui, M.-J., Lai, H.-J., Hoang, T., & Chu, J. (2021). One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement. Acta Geotechnica, 16(2), 481-489. https://doi.org/10.1007/s11440-020-01043-2

[18]

Danjo, T., & Kawasaki, S. (2016). Microbially Induced Sand Cementation Method Using Pararhodobacter sp. Strain SO1, Inspired by Beachrock Formation Mechanism. Materials Transactions, 57(3), 428-437. https://doi.org/10.2320/matertrans.M-M2015842

[19]

De Yoreo, J. J., & Vekilov, P. G. (2003). Principles of Crystal Nucleation and Growth. Reviews in Mineralogy and Geochemistry, 54(1), 57-93. https://doi.org/10.2113/0540057

[20]

DeMerlis, C. C., & Schoneker, D. R. (2003). Review of the oral toxicity of polyvinyl alcohol (PVA). Food and Chemical Toxicology, 41(3), 319-326. https://doi.org/10.1016/S0278-6915(02)00258-2

[21]

Ding, F., Dai, C., Sun, Y., Zhao, G., You, Q., & Liu, Y. (2022). Gelling Behavior of PAM/ Phenolic Crosslinked Gel and Its Profile Control in a Low-Temperature and High- Salinity Reservoir. Gels, 8(7), 433. https://doi.org/10.3390/gels8070433

[22]

Dong, Y., Zhang, Y., & Tu, B. (2017). Immobilization of ammonia-oxidizing bacteria by polyvinyl alcohol and sodium alginate. Brazilian Journal of Microbiology, 48. https://doi.org/10.1016/j.bjm.2017.02.001

[23]

Dubey, A. A., Hooper-Lewis, J., Ravi, K., Dhami, N. K., & Mukherjee, A. (2022). Biopolymer-biocement composite treatment for stabilisation of soil against both current and wave erosion. Acta Geotechnica, 17(12), 5391-5410. https://doi.org/10.1007/s11440-022-01536-2

[24]

Gaaz, T. S., Sulong, A. B., Akhtar, M. N., Kadhum, A. A. H., Mohamad, A. B., & Al-Amiery, A. A. (2015). Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites (Article) Molecules, 20( 12), 12. https://doi.org/10.3390/molecules201219884

[25]

Gao, Y., He, J., Tang, X., & Chu, J. (2019). Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil. Soils and Foundations, 59(5), 1631-1637. https://doi.org/10.1016/j.sandf.2019.03.014

[26]

Gowthaman, S., Nakashima, K., & Kawasaki, S. (2020). Freeze-thaw durability and shear responses of cemented slope soil treated by microbial induced carbonate precipitation. Soils and Foundations, 60(4), 840-855. https://doi.org/10.1016/j.sandf.2020.05.012

[27]

Gowthaman, S., Yamamoto, M., Nakashima, K., Ivanov, V., & Kawasaki, S. (2021). Calcium phosphate biocement using bone meal and acid urease: An eco-friendly approach for soil improvement. Journal of Cleaner Production, 319, Article 128782. https://doi.org/10.1016/j.jclepro.2021.128782

[28]

Hamdan, N., Zhao, Z., Mujica, M., Kavazanjian, E., & He, X. (2016). Hydrogel-Assisted Enzyme-Induced Carbonate Mineral Precipitation. Journal of Materials in Civil Engineering, 28(10), Article 04016089. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001604

[29]

He, Z., Zhu, X., Wang, J., Mu, M., & Wang, Y. (2019). Comparison of CO 2 emissions from OPC and recycled cement production. Construction and Building Materials, 211, 965-973. https://doi.org/10.1016/j.conbuildmat.2019.03.289

[30]

Huang, M., Xu, K., Liu, Z., Xu, C., & Cui, M. (2024). Effect of drying-wetting cycles on pore characteristics and mechanical properties of enzyme-induced carbonate precipitation-reinforced sea sand. Journal of Rock Mechanics and Geotechnical Engineering, 16(1), 291-302. https://doi.org/10.1016/j.jrmge.2022.12.032

[31]

Huang, T., Hou, L., Dai, G., Yang, Z., & Xiao, C. (2024). Investigation on Strength and Flexural Behavior of PVA Fiber-Reinforced and Cemented Clayey Soil (Article) Buildings, 14(8), 8. https://doi.org/10.3390/buildings14082433

[32]

Hussain, A., Rafeeq, H., Afsheen, N., Jabeen, Z., Bilal, M., & Iqbal, H. (2022). Urease- Based Biocatalytic Platforms―A Modern View of a Classic Enzyme with Applied Perspectives. Catalysis Letters, 152. https://doi.org/10.1007/s10562-021-03647-z

[33]

Indiramma, P., Sudharani Ch, & Needhidasan, S. (2020). Utilization of fly ash and lime to stabilize the expansive soil and to sustain pollution free environment - An experimental study. Materials Today: Proceedings, 22, 694-700. https://doi.org/10.1016/j.matpr.2019.09.147

[34]

Jiang, N.-J., Tang, C.-S., Yin, L.-Y., Xie, Y.-H., & Shi, B. (2019). Applicability of Microbial Calcification Method for Sandy-Slope Surface Erosion Control. Journal of Materials in Civil Engineering, 31(11), Article 04019250. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002897

[35]

Khodadadi Tirkolaei, H., Javadi, N., Krishnan, V., Hamdan, N., & Kavazanjian, E. (2020). Crude Urease Extract for Biocementation. Journal of Materials in Civil Engineering, 32(12), Article 04020374. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003466

[36]

Konopacka-Łyskawa, D. (2019). Synthesis Methods and Favorable Conditions for Spherical Vaterite Precipitation: A Review. Article 4. Crystals, 9(4), https://doi.org/10.3390/cryst9040223

[37]

Lai, H.-J., Cui, M.-J., Wu, S.-F., Yang, Y., & Chu, J. (2023). Extraction of crude soybean urease using ethanol and its effect on soil cementation. Soils and Foundations, 63(3), Article 101300. https://doi.org/10.1016/j.sandf.2023.101300

[38]

Lee, M., Kwon, Y.-M., Park, D.-Y., Chang, I., & Cho, G.-C. (2022). Durability and strength degradation of xanthan gum based biopolymer treated soil subjected to severe weathering cycles (Article) Scientific Reports, 12(1), 1. https://doi.org/10.1038/s41598-022-23823-4

[39]

Lee, S., & Kim, J. (2020). An Experimental Study on Enzymatic-Induced Carbonate Precipitation Using Yellow Soybeans for Soil Stabilization. KSCE Journal of Civil Engineering, 24(7), 2026-2037. https://doi.org/10.1007/s12205-020-1659-9

[40]

Liu, B., Tang, C.-S., Pan, X.-H., Zhu, C., Cheng, Y.-J., Xu, J.-J., & Shi, B. (2021). Potential Drought Mitigation Through Microbial Induced Calcite Precipitation-MICP. Water Resources Research, 57(9), Article e2020WR029434. https://doi.org/10.1029/2020WR029434

[41]

Lofianda, L., Putra, H., Erizal, E., Sutoyo, S., & Yasuhara, H. (2021). Potentially of Soybean as Bio-Catalyst in Calcite Precipitation Methods for Improving the Strength of Sandy Soil. Civil Engineering and Architecture, 9, 2317-2325. https://doi.org/10.13189/cea.2021.090719

[42]

Meng, H., Shu, S., Gao, Y., Yan, B., & He, J. (2021). Multiple-phase enzyme-induced carbonate precipitation (EICP) method for soil improvement. Engineering Geology, 294, Article 106374. https://doi.org/10.1016/j.enggeo.2021.106374

[43]

Neupane, D., Yasuhara, H., Kinoshita, N., & Ando, Y. (2015a). Distribution of mineralized carbonate and its quantification method in enzyme mediated calcite precipitation technique. Soils and Foundations, 55(2), 447-457. https://doi.org/10.1016/j.sandf.2015.02.018

[44]

Neupane, D., Yasuhara, H., Kinoshita, N., & Putra, H. (2015b). Distribution of grout material within 1-m sand column in insitu calcite precipitation technique. Soils and Foundations, 55(6), 1512-1518. https://doi.org/10.1016/j.sandf.2015.10.015

[45]

Neupane, D., Yasuhara, H., Kinoshita, N., & Unno, T. (2013). Applicability of Enzymatic Calcium Carbonate Precipitation as a Soil-Strengthening Technique. Journal of Geotechnical and Geoenvironmental Engineering, 139(12), 2201-2211. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000959

[46]

Noaman, M., Khan, M. A., Ali, K., & Hassan, A. (2022). A review on the effect of fly ash on the geotechnical properties and stability of soil. Cleaner Materials, 6, Article 100151. https://doi.org/10.1016/j.clema.2022.100151

[47]

Oktafiani, P. G., Putra, H., Erizal, & Yanto, D. H. Y. (2022). Application of technical grade reagent in soybean-crude urease calcite precipitation (SCU-CP) method for soil improvement technique. Physics and Chemistry of the Earth, Parts A/B/C, 128, Article 103292. https://doi.org/10.1016/j.pce.2022.103292

[48]

Panda, S., Mohanty, G. C., Samal, R. N., & Roy, G. S. (2010). Viscosity studies of polyvinyl alcohol (PVA, Mw = 1,25,000) in solvent distilled water and aqueous solution of urea. Material Science Research India, 7(2), 443-448. https://doi.org/10.13005/msri/070214

[49]

Phani Kumar, B. R., & Sharma, R. S. (2004). Effect of Fly Ash on Engineering Properties of Expansive Soils. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 764-767. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(764)

[50]

Portland Cement Association, P. (1992). Soil-Cement Laboratory Handbook. 〈https://www.abebooks.com/9780893121167/Soil-Cement-Laboratory-Handbook-0893121169/plp〉.

[51]

Prabhakar, & R, A. (2024). Synergistic effect of Polyvinyl Acetate (PVA) and Enzyme- Induced Carbonate Precipitation (EICP) on the mechanical properties of natural sands. Case Studies in Construction Materials, 20, Article e03323. https://doi.org/10.1016/j.cscm.2024.e03323

[52]

Pratama, G. B. S., Yasuhara, H., Kinoshita, N., Putra, H., Almajed, A., Fukugaichi, S., & Ihsani, Z. M. (2024). Efficacy of soybean-derived crude extract in enzyme-induced carbonate precipitation as soil-improvement technique. International Journal of Geo- Engineering, 15(1), 14. https://doi.org/10.1186/s40703-024-00204-6

[53]

Pratama, G. S., Yasuhara, H., Kinoshita, N., & Putra, H. (2021). Application of Soybean Powder as Urease Enzyme Replacement on EICP Method for Soil Improvement Technique, 622. https://doi.org/10.1088/1755-1315/622/1/012035

[54]

Putra, H., Erizal, Sutoyo, Simatupang, M., & Yanto, D. H. Y. (2021). Improvement of Organic Soil Shear Strength Through Calcite Precipitation Method Using Soybeans as Bio-Catalyst. Crystals, 11(9), https://doi.org/10.3390/cryst11091044

[55]

Putra, H., Yasuhara, H., Erizal, Sutoyo, & Fauzan, M. (2020). Review of Enzyme-Induced Calcite Precipitation as a Ground-Improvement Technique (Article) Infrastructures, 5(8), 8. https://doi.org/10.3390/infrastructures5080066

[56]

Putra, H., Yasuhara, H., Kinoshita, N., & Hirata, A. (2017a). Application of magnesium to improve uniform distribution of precipitated minerals in 1-m column specimens. Geomechanics and Engineering, 12(5), 803-813. https://doi.org/10.12989/gae.2017.12.5.803

[57]

Putra, H., Yasuhara, H., Kinoshita, N., & Hirata, A. (2017b). Optimization of enzyme- mediated calcite precipitation as a soil-improvement technique: The effect of aragonite and gypsum on the mechanical properties of treated sand. Crystals, 7(2), https://doi.org/10.3390/cryst7020059

[58]

Refaei, M., Arab, M. G., & Omar, M. (2020). Sandy Soil Improvement through Biopolymer Assisted EICP. Geo-Congress, 2020, 612-619. https://doi.org/10.1061/9780784482780.060

[59]

Saffari, R., Nikooee, E., Habibagahi, G., & Van Genuchten M.Th (2019). Effects of Biological Stabilization on the Water Retention Properties of Unsaturated Soils. Journal of Geotechnical and Geoenvironmental Engineering, 145(7), Article 04019028. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002053

[60]

Shu, S., Yan, B., Meng, H., & Bian, X. (2022). Comparative study of EICP treatment methods on the mechanical properties of sandy soil. Soils and Foundations, 62(6), Article 101246. https://doi.org/10.1016/j.sandf.2022.101246

[61]

van Genuchten M.Th (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

[62]

van Genuchten M. Th, Leij, F. J., & Yates, S. R. (1991). The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils (EPA/600/2-91/065).R.S. Kerr Environmental Research Laboratory and USEPA.

[63]

Wang, S., Zhao, X., Zhang, J., Jiang, T., Wang, S., Zhao, J., & Meng, Z. (2023). Water retention characteristics and vegetation growth of biopolymer-treated silt soils. Soil and Tillage Research, 225, Article 105544. https://doi.org/10.1016/j.still.2022.105544

[64]

Wang, X., Tao, J., Bao, R., Tran, T., & Tucker-Kulesza, S. (2018). Surficial Soil Stabilization against Water-Induced Erosion Using Polymer-Modified Microbially Induced Carbonate Precipitation. Journal of Materials in Civil Engineering, 30(10), Article 04018267. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002490

[65]

Wu, J., Liu, Q., Deng, Y., Yu, X., Feng, Q., & Yan, C. (2019). Expansive soil modified by waste steel slag and its application in subbase layer of highways. Soils and Foundations, 59(4), 955-965. https://doi.org/10.1016/j.sandf.2019.03.009

[66]

Yan, Z., Gowthaman, S., Nakashima, K., & Kawasaki, S. (2022). Polymer-assisted enzyme induced carbonate precipitation for non-ammonia emission soil stabilization. Scientific Reports, 12(1), 8821. https://doi.org/10.1038/s41598-022-12773-6

[67]

Yan, Z., Nakashima, K., Takano, C., & Kawasaki, S. (2024). Feasibility study of enhancing enzyme-induced carbonate precipitation with eggshell waste for sand solidification. BiogeotechnicsArticle 100108. https://doi.org/10.1016/j.bgtech.2024.100108

[68]

Yasuhara, H., Neupane, D., Hayashi, K., & Okamura, M. (2012). Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. Soils and Foundations, 52(3), 539-549. https://doi.org/10.1016/j.sandf.2012.05.011

[69]

Yuan, H., Ren, G., Liu, K., & Zhao, Z. (2021). Effect of Incorporating Polyvinyl Alcohol Fiber on the Mechanical Properties of EICP-Treated Sand (Article) Materials, 14(11), 11. https://doi.org/10.3390/ma14112765

[70]

Zeng, Q., Liu, X., Zhang, Z., Wei, C., & Xu C.(Charles) (2023). Synergistic utilization of blast furnace slag with other industrial solid wastes in cement and concrete industry: Synergistic mechanisms, applications, and challenges. Green Energy and Resources, 1(2), Article 100012. https://doi.org/10.1016/j.gerr.2023.100012

[71]

Zhang, Q., Chen, W., & Wang, S. (2024). Effects of clay mineral and chloride salt on the strength of PVA-treated soil. Acta Geotechnica, 19(4), 1981-1998. https://doi.org/10.1007/s11440-023-01997-z

[72]

Zhao, Z., Hamdan, N., Shen, L., Nan, H., Almajed, A., Kavazanjian, E., & He, X. (2016). Biomimetic Hydrogel Composites for Soil Stabilization and Contaminant Mitigation. Environmental Science Technology, 50(22), 12401-12410. https://doi.org/10.1021/acs.est.6b01285

AI Summary AI Mindmap
PDF (13467KB)

60

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/