Proposing a new sustainable approach for sand improvement using biologically-derived calcium phosphate cement

Sivakumar Gowthaman , Yuta Kumamoto , Kazunori Nakashima , Chikara Takano , Satoru Kawasaki

Biogeotechnics ›› 2025, Vol. 3 ›› Issue (4) : 100135

PDF (6841KB)
Biogeotechnics ›› 2025, Vol. 3 ›› Issue (4) :100135 DOI: 10.1016/j.bgtech.2024.100135
Research article
research-article

Proposing a new sustainable approach for sand improvement using biologically-derived calcium phosphate cement

Author information +
History +
PDF (6841KB)

Abstract

Bio-mediated soil improvement methods keep on gaining the attention of geotechnical engineers and researchers globally due to their nature-based elegance and eco-friendliness. Most prevalent bio-mediated soil improvement methods include microbially induced carbonate precipitation (MICP) and enzyme-induced carbonate precipitation (EICP). During their processes, the bacteria/free urease hydrolyzes the urea into ammonium and carbonic acid, which is accompanied by a considerable increase of alkalinity (about pH 9.0). The major problem associated with the above techniques is the release of gaseous ammonia that is extremely detrimental. Therefore, this study aims to propose a new sustainable approach involving lactic acid bacteria to facilitate the calcium phosphate mineralization for the strengthening of sand matrix. The major objectives of this investigation are: (i) to evaluate the urease activity of the lactic acid bacteria under different temperatures, pH conditions and additions of metal ions, (ii) to assess the treated sand matrix, (iii) to perform cost analysis. The outcomes indicated that Limosilactobacillus sp. could effectively facilitate the urea hydrolysis, hence increasing the pH from acidic to neutral and providing a desirable environment for the calcium phosphate to mineralize within the voids of the sand. The addition of 0.01 % Ni2+ in culture media was found to enhance the urease activity by 38.8 % and compressive strength over 40 %. A combined formation of amorphous- and whisker-like precipitates could bridge a larger area at particle-particle contact points, thereby faciliating a strong force-network in sand matrix. The mineralized calcium phosphate compound was found to be brushite. The cost herein for producing 1 L treatment solution was estimated to be about 2.5-folds and 11.8-folds lower compared to that of MICP and EICP treatment solutions, respectively. Moreover, since the treatment pH could potentially be regulated between acidic-neural range, it would greatly control the release of gaseous ammonia. With several environmental and economical benefits, the study has disclosed a new sustainable direction for sand improvement via the use of lactic acid bacteria.

Keywords

Bio-cementation / Calcium phosphate / Lactic acid bacteria / Urea hydrolysis / Nickel ions / Bone meal

Cite this article

Download citation ▾
Sivakumar Gowthaman, Yuta Kumamoto, Kazunori Nakashima, Chikara Takano, Satoru Kawasaki. Proposing a new sustainable approach for sand improvement using biologically-derived calcium phosphate cement. Biogeotechnics, 2025, 3(4): 100135 DOI:10.1016/j.bgtech.2024.100135

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Satoru Kawasaki: Writing - review & editing, Supervision, Project administration, Funding acquisition. Chikara Takano: Supervision. Kazunori Nakashima: Writing - review & editing, Supervision. Yuta Kumamoto: Methodology, Conceptualization. Sivakumar Gowthaman: Writing - original draft, Formal analysis, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP22H01581, and the authors sincerely acknowledge the support.

References

[1]

Achal, V., & Mukherjee, A. (2015). A review of microbial precipitation for sustainable construction. Construction and Building Materials, 93, 1224-1235. https://doi.org/10.1016/j.conbuildmat.2015.04.051

[2]

Achal, V., Mukherjee, A., Basu, P. C., & Reddy, M. S. (2009). Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. Journal of Industrial Microbiology & Biotechnology, 36(3), 433-438. https://doi.org/10.1007/s10295-008-0514-7

[3]

Akiyama, M., & Kawasaki, S. (2012). Novel grout material comprised of calcium phosphate compounds: In vitro evaluation of crystal precipitation and strength reinforcement. Engineering Geology, 125, 119-128. https://doi.org/10.1016/j.enggeo.2011.11.011

[4]

Almajed, A., Tirkolaei, H. K., Kavazanjian, E., & Hamdan, N. (2019). Enzyme Induced Biocementated Sand with High Strength at Low Carbonate Content. Scientific Reports, 9(1), 1135. https://doi.org/10.1038/s41598-018-38361-1

[5]

Amarakoon, G. G. N. N., & Kawasaki, S. (2018). Factors Affecting Sand Solidification Using MICP with Pararhodobacter sp. Materials Transactions, 59(1), 72-81. https://doi.org/10.2320/matertrans.M-M2017849

[6]

ASTM (2017). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). West Conshohocken, PA: American Society for Testing and Materials.

[7]

Avramenko, M., Nakashima, K., & Kawasaki, S. (2022). State-of-the-Art Review on Engineering Uses of Calcium Phosphate Compounds: An Eco-Friendly Approach for Soil Improvement. Materials, 15(19), 6878. https://doi.org/10.3390/ma15196878

[8]

Avramenko, M., Nakashima, K., Takano, C., & Kawasaki, S. (2023). Eco-friendly soil stabilization method using fish bone as cement material. Science of The Total Environment, 900, Article 165823. https://doi.org/10.1016/j.scitotenv.2023.165823

[9]

Bolleter, W. T., Bushman, C. J., & Tidwell, P. W. (1961). Spectrophotometric Determination of Ammonia as Indophenol. Analytical Chemistry, 33(4), 592-594. https://doi.org/10.1021/ac60172a034

[10]

Carboni, A. D., Martins, G. N., Gómez-Zavaglia, A., & Castilho, P. C. (2023). Lactic Acid Bacteria in the Production of Traditional Fermented Foods and Beverages of Latin America. Fermentation, 9(4), 315. https://doi.org/10.3390/fermentation9040315

[11]

Chen, Y. Y. M., Anne Clancy, K., & Burne, R. A. (1996). Streptococcus salivarius urease: Genetic and biochemical characterization and expression in a dental plaque streptococcus. Infection and Immunity, 64(2), 585-592.

[12]

Cheng, L., & Cord-Ruwisch, R. (2014). Upscaling Effects of Soil Improvement by Microbially Induced Calcite Precipitation by Surface Percolation. Geomicrobiology Journal, 31(5), 396-406. https://doi.org/10.1080/01490451.2013.836579

[13]

Cheng, L., Shahin, M. A., & Mujah, D. (2016). Influence of Key Environmental Conditions on Microbially Induced Cementation for Soil Stabilization. Journal of Geotechnical and Geoenvironmental Engineering, 143(1), Article 04016083. https://doi.org/10.1061/(asce)gt.1943-5606.0001586

[14]

Choi, S. G., Chang, I., Lee, M., Lee, J. H., Han, J. T., & Kwon, T. H. (2020). Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers. Construction and Building Materials, 246, Article 118415. https://doi.org/10.1016/j.conbuildmat.2020.118415

[15]

Dagliya, M., Satyam, N., Sharma, M., & Garg, A. (2022). Experimental study on mitigating wind erosion of calcareous desert sand using spray method for microbially induced calcium carbonate precipitation. Journal of Rock Mechanics and Geotechnical Engineering, 14(5), 1556-1567. https://doi.org/10.1016/j.jrmge.2021.12.008

[16]

DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029

[17]

Feng, K., & Montoya, B. M. (2016). Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. Journal of Geotechnical and Geoenvironmental Engineering, 142(1), Article 04015057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379

[18]

Fujita, M., Nakashima, K., Achal, V., & Kawasaki, S. (2017). Whole-cell evaluation of urease activity of Pararhodobacter sp. isolated from peripheral beachrock. Biochemical Engineering Journal, 124, 1-5. https://doi.org/10.1016/j.bej.2017.04.004

[19]

Ginebra, M. P., Fernández, E., De Maeyer, E. A. P., Verbeeck, R. M. H., Boltong, M. G., Ginebra, J., Driessens, F. C. M., & Planell, J. A. (1997). Setting reaction and hardening of an apatitic calcium phosphate cement. Journal of Dental Research, 76(4), 905-912. https://doi.org/10.1177/00220345970760041201

[20]

Gomez, M. G., Graddy, C. M. R., DeJong, J. T., Nelson, D. C., & Tsesarsky, M. (2018). Stimulation of native microorganisms for biocementation in samples recovered from field scale treatment depths. Journal of Geotechnical and Geoenvironmental Engineering, 144(1), 1-13. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001804

[21]

Gomez, M. G., Martinez, B. C., DeJong, J. T., Hunt, C. E., deVlaming, L. A., Major, D. W., & Dworatzek, S. M. (2014). Field-scale bio-cementation tests to improve sands. Proceedings of the Institution of Civil Engineers - Ground Improvement, 168(3), 206-216. https://doi.org/10.1680/grim.13.00052

[22]

Gowthaman, S., Iki, T., Nakashima, K., Ebina, K., & Kawasaki, S. (2019a). Feasibility study for slope soil stabilization by microbial induced carbonate precipitation (MICP) using indigenous bacteria isolated from cold subarctic region. SN Applied Sciences, 1(11), 1480. https://doi.org/10.1007/s42452-019-1508-y

[23]

Gowthaman, S., Koizumi, H., Nakashima, K., & Kawasaki, S. (2023a). Field experimentation of bio-cementation using low-cost cementation media for preservation of slope surface. Case Studies in Construction Materials, 18, Article e02086. https://doi.org/10.1016/j.cscm.2023.e02086

[24]

Gowthaman, S., Mitsuyama, S., Nakashima, K., Komatsu, M., & Kawasaki, S. (2019b). Biogeotechnical approach for slope soil stabilization using locally isolated bacteria and inexpensive low-grade chemicals: A feasibility study on Hokkaido expressway soil, Japan. Soils and Foundations, 59(2), 484-499. https://doi.org/10.1016/j.sandf.2018.12.010

[25]

Gowthaman, S., Yamamoto, M., Chen, M., Nakashima, K., & Kawasaki, S. (2023b). Baseline investigation on enzyme induced calcium phosphate precipitation for solidification of sand. Frontiers in Built Environment, 9, 1-15. https://doi.org/10.3389/fbuil.2023.1307650

[26]

Gowthaman, S., Yamamoto, M., Nakashima, K., Ivanov, V., & Kawasaki, S. (2021). Calcium phosphate biocement using bone meal and acid urease: An eco-friendly approach for soil improvement. Journal of Cleaner Production, 319, Article 128782. https://doi.org/10.1016/j.jclepro.2021.128782

[27]

Gu, J., Suleiman, M.T., Bastola, H., Brown, D.G., & Zouari, N. (2018). Treatment of Sand Using Microbial-Induced Carbonate Precipitation (MICP) for Wind Erosion Application. In IFCEE 2018, 155-164. https://doi.org/10.1061/9780784481592.016.

[28]

Ivanov, V., Stabnikov, V., & Kawasaki, S. (2019a). Ecofriendly calcium phosphate and calcium bicarbonate biogrouts. Journal of Cleaner Production, 218, 328-334. https://doi.org/10.1016/j.jclepro.2019.01.315

[29]

Ivanov, V., Stabnikov, V., Stabnikova, O., & Kawasaki, S. (2019b). Environmental safety and biosafety in construction biotechnology. World Journal of Microbiology and Biotechnology, 35(2), 26. https://doi.org/10.1007/s11274-019-2598-9

[30]

Jahns, T. (1992). Urea uptake by the marine bacterium Deleya venusta HG1. Journal of General Microbiology, 138(9), 1815-1820. https://doi.org/10.1099/00221287-138-9-1815

[31]

JGS (2012). Japanese Standards and Explanations of Geotechnical and Geoenvironmental Investigation Methods (3431-2012). Tokyo: Japanese Geotechnical Society,426-432.

[32]

Jiang, N. J., Yoshioka, H., Yamamoto, K., & Soga, K. (2016). Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP). Ecological Engineering, 90, 96-104. https://doi.org/10.1016/j.ecoleng.2016.01.073

[33]

Kappaun, K., Piovesan, A. R., Carlini, C. R., & Ligabue-Braun, R. (2018). Ureases: Historical aspects, catalytic, and non-catalytic properties - A review. Journal of Advanced Research, 13, 3-17. https://doi.org/10.1016/j.jare.2018.05.010

[34]

Kawasaki, S., & Akiyama, M. (2013). Enhancement of unconfined compressive strength of sand test pieces cemented with calcium phosphate compound by addition of various powders. Soils and Foundations, 53(6), 966-976. https://doi.org/10.1016/j.sandf.2013.10.013

[35]

Keykha, H. A., Mohamadzadeh, H., Asadi, A., & Kawasaki, S. (2019). Ammonium-Free Carbonate-Producing Bacteria as an Ecofriendly Soil Biostabilizer. Geotechnical Testing Journal, 42(1), 20170353. https://doi.org/10.1520/GTJ20170353

[36]

Kristiansen, B. (2006). Process economics. In C. Ratledge, & B. Kristiansen (Eds.), Vol. Basic Biotechnology: Third Edition: Vol. 9780521840, (pp. 271-286). Cambridge University Press. https://doi.org/10.1017/CBO9780511802409.013

[37]

Kulanthaivel, P., Soundara, B., Selvakumar, S., & Das, A. (2022). Application of waste eggshell as a source of calcium in bacterial bio-cementation to enhance the engineering characteristics of sand. Environmental Science and Pollution Research, 0123456789. https://doi.org/10.1007/s11356-022-20484-8

[38]

Lee, M., Gomez, M. G., San Pablo, A. C. M., Kolbus, C. M., Graddy, C. M. R., DeJong, J. T., & Nelson, D. C. (2019). Investigating Ammonium By-product Removal for Ureolytic Bio-cementation Using Meter-scale Experiments. Scientific Reports, 9(1), https://doi.org/10.1038/s41598-019-54666-1

[39]

Lin, H., Suleiman, M. T., Brown, D. G., & Kavazanjian, E. (2016). Mechanical Behavior of Sands Treated by Microbially Induced Carbonate Precipitation. 04015066-1-13 Journal of Geotechnical and Geoenvironmental Engineering, 142(2), https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383

[40]

Maroney, M. J., & Ciurli, S. (2014). Nonredox Nickel Enzymes. Chemical Reviews, 114(8), 4206-4228. https://doi.org/10.1021/cr4004488

[41]

Martinez, B. C., DeJong, J. T., Ginn, T. R., Montoya, B. M., Barkouki, T. H., Hunt, C., Tanyu, B., & Major, D. (2013). Experimental Optimization of Microbial-Induced Carbonate Precipitation for Soil Improvement. Journal of Geotechnical and Geoenvironmental Engineering, 139(4), 587-598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787

[42]

Mazzei, L., Musiani, F., & Ciurli, S. (2020). The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate. JBIC Journal of Biological Inorganic Chemistry, 25(6), 829-845. https://doi.org/10.1007/s00775-020-01808-w

[43]

Miśkowiec, P., & Olech, Z. (2020). Searching for the Correlation Between the Activity of Urease and the Content of Nickel in the Soil Samples: The Role of Metal Speciation. Journal of Soil Science and Plant Nutrition, 20(4), 1904-1911. https://doi.org/10.1007/s42729-020-00261-7

[44]

Miyagawa, K., Sumida, M., Nakao, M., Harada, M., Yamamoto, H., Kusumi, T., Yoshizawa, K., Amachi, T., & Nakayama, T. (1999). Purification, characterization, and application of an acid urease from Arthrobacter mobilis. Journal of Biotechnology, 68(2-3), 227-236. https://doi.org/10.1016/S0168-1656(98)00210-7

[45]

Mobley, H. L., Island, M. D., & Hausinger, R. P. (1995). Molecular biology of microbial ureases. Microbiological Reviews, 59(3), 451-480. https://doi.org/10.1128/mr.59.3.451-480.1995

[46]

Mohsenzadeh, A., Aflaki, E., Gowthaman, S., Nakashima, K., Kawasaki, S., & Ebadi, T. (2021). A two-stage treatment process for the management of produced ammonium by-products in ureolytic bio-cementation process. International Journal of Environmental Science and Technology, 0123456789. https://doi.org/10.1007/s13762-021-03138-z

[47]

Mora, D., & Arioli, S. (2014). Microbial urease in health and disease. PLoS Pathogens, 10(12), Article e1004472. https://doi.org/10.1371/journal.ppat.1004472

[48]

Nayanthara, P. G. N., Dassanayake, A. B. N., Nakashima, K., & Kawasaki, S. (2019). Microbial induced carbonate precipitation using a native inland bacterium for beach sand stabilization in nearshore areas. Applied Sciences, 9(15), 3201. https://doi.org/10.3390/app9153201

[49]

Omoregie, A. I., Khoshdelnezamiha, G., Senian, N., Ong, D. E. L., & Nissom, P. M. (2017). Experimental optimisation of various cultural conditions on urease activity for isolated Sporosarcina pasteurii strains and evaluation of their biocement potentials. Ecological Engineering, 109, 65-75. https://doi.org/10.1016/j.ecoleng.2017.09.012

[50]

Omoregie, A. I., Ngu, L. H., Ong, D. E. L., & Nissom, P. M. (2019a). Low-cost cultivation of Sporosarcina pasteurii strain in food-grade yeast extract medium for microbially induced carbonate precipitation (MICP) application. Biocatalysis and Agricultural Biotechnology, 17, 247-255. https://doi.org/10.1016/j.bcab.2018.11.030

[51]

Omoregie, A. I., Palombo, E. A., & Nissom, P. M. (2021). Bioprecipitation of calcium carbonate mediated by ureolysis: A review. Environmental Engineering Research, 26(6), https://doi.org/10.4491/eer.2020.379

[52]

Omoregie, A. I., Palombo, E. A., Ong, D. E. L., & Nissom, P. M. (2019b). Biocementation of sand by Sporosarcina pasteurii strain and technical-grade cementation reagents through surface percolation treatment method. Construction and Building Materials, 228, Article 116828. https://doi.org/10.1016/j.conbuildmat.2019.116828

[53]

Park, I. S., & Hausinger, R. P. (1993). Site‐directed mutagenesis of Klebsiella aerogenes urease: Identification of histidine residues that appear to function in nickel ligation, substrate binding, and catalysis. Protein Science, 2(6), 1034-1041. https://doi.org/10.1002/pro.5560020616

[54]

Park, I. S., & Hausinger, R. P. (1996). Metal Ion Interactions with Urease and UreD-Urease Apoproteins. Biochemistry, 35(16), 5345-5352. https://doi.org/10.1021/bi952894j

[55]

Plotnikov, E., Pukhnyarskaya, D., & Chernova, A. (2023). Lithium and Microorganisms: Biological Effects and Mechanisms. Current Pharmaceutical Biotechnology, 24(13), 1623-1629. https://doi.org/10.2174/1389201024666230302153849

[56]

Pratama, G. B. S., Yasuhara, H., Kinoshita, N., Putra, H., Almajed, A., Fukugaichi, S., & Ihsani, Z. M. (2024). Efficacy of soybean-derived crude extract in enzyme-induced carbonate precipitation as soil-improvement technique. International Journal of Geo- Engineering, 15(1), 14. https://doi.org/10.1186/s40703-024-00204-6

[57]

Putra, H., Yasuhara, H., Erizal, Sutoyo, & Fauzan, M. (2020). Review of Enzyme-Induced Calcite Precipitation as a Ground-Improvement Technique. Infrastructures, 5(8), 66. https://doi.org/10.3390/infrastructures5080066

[58]

Rathivarman, N., Yutharshan, S., Kabishangar, A., Janani, V., Gowthaman, S., Nawarathna, T. H. K., Chen, M., & Kawasaki, S. (2024). Evaluating the Performance and Durability of Concrete Paving Blocks Enhanced By Bio-Cement Posttreatment. BiogeotechnicsArticle 100103. https://doi.org/10.1016/j.bgtech.2024.100103

[59]

Sakai, E., Nikaido, Y., Itoh, T., & Daimon, M. (2004). Ettringite formation and microstructure of rapid hardening cement. Cement and Concrete Research, 34(9), 1669-1673. https://doi.org/10.1016/j.cemconres.2004.04.021

[60]

Salehi, S., Arashpour, M., Kodikara, J., & Guppy, R. (2021). Sustainable pavement construction: A systematic literature review of environmental and economic analysis of recycled materials. Journal of Cleaner Production, 313, Article 127936. https://doi.org/10.1016/j.jclepro.2021.127936

[61]

Shahzad, B., Mughal, M. N., Tanveer, M., Gupta, D., & Abbas, G. (2017). Is lithium biologically an important or toxic element to living organisms? An overview. Environmental Science and Pollution Research, 24(1), 103-115. https://doi.org/10.1007/s11356-016-7898-0

[62]

Skevi, L., Reeksting, B. J., Hoffmann, T. D., Gebhard, S., & Paine, K. (2021). Incorporation of bacteria in concrete: The case against MICP as a means for strength improvement. Cement and Concrete Composites, 120, Article 104056. https://doi.org/10.1016/j.cemconcomp.2021.104056

[63]

Stabnikov, V., Ivanov, V., & Chu, J. (2015). Construction Biotechnology: a new area of biotechnological research and applications. World Journal of Microbiology and Biotechnology, 31(9), 1303-1314. https://doi.org/10.1007/s11274-015-1881-7

[64]

Sun, X., Miao, L., Wang, H., Yin, W., & Wu, L. (2021). Mineralization crust field experiment for desert sand solidification based on enzymatic calcification. Journal of Environmental Management, 287, Article 112315. https://doi.org/10.1016/j.jenvman.2021.112315

[65]

Svane, S., Sigurdarson, J. J., Finkenwirth, F., Eitinger, T., & Karring, H. (2020). Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Scientific Reports, 10(1), 8503. https://doi.org/10.1038/s41598-020-65107-9

[66]

Tang, C. S., Yin, L. Y., Jiang, N. J., Zhu, C., Zeng, H., Li, H., & Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environmental Earth Sciences, 79(5), 94. https://doi.org/10.1007/s12665-020-8840-9

[67]

Toshima, T., Hamai, R., Tafu, M., Takemura, Y., Fujita, S., Chohji, T., Tanda, S., Li, S., & Qin, G. W. (2014). Morphology control of brushite prepared by aqueous solution synthesis. Journal of Asian Ceramic Societies, 2(1), 52-56. https://doi.org/10.1016/j.jascer.2014.01.004

[68]

Tung, M. S. (1998). Calcium Phosphates: Structure, Composition, Solubility, and Stability. Calcium Phosphates in Biological and Industrial Systems. Boston, MA: Springer US,1-19. https://doi.org/10.1007/978-1-4615-5517-9_1

[69]

Ulusay, R. (2014). The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007- 2014. Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-07713-0.

[70]

van Paassen, L. A., Ghose, R., & van Loosdrecht, M. C. M. (van der Linden, T. J. M., van der Star, W. R. L., 2010). Quantifying Biomediated Ground Improvement by Ureolysis: Large-Scale Biogrout Experiment. Journal of Geotechnical and Geoenvironmental Engineering, 136(12), 1721-1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382

[71]

Whiffin, V. S. (2004). Microbial CaCO3 precipitation for the production of biocement. Australia: Murdoch University Doctoral dissertation.

[72]

Wilson, C. M., Loach, D., Lawley, B., Bell, T., Sims, I. M., O’Toole, P. W., Zomer, A., & Tannock, G. W. (2014). Lactobacillus reuteri 100-23 Modulates Urea Hydrolysis in the Murine Stomach. Applied and Environmental Microbiology, 80(19), 6104-6113. https://doi.org/10.1128/AEM.01876-14

[73]

Xue, Y., Arulrajah, A., Chu, J., & Horpibulsuk, S. (2024). Soybean urease-based EICP stabilization of washed recycled sands derived from demolition wastes cured at low temperatures. Construction and Building Materials, 434, Article 136735. https://doi.org/10.1016/j.conbuildmat.2024.136735

[74]

Yu, X., Chu, J., Yang, Y., & Qian, C. (2020). Reduction of ammonia production in the biocementation process for sand using a new biocement. Journal of Cleaner Production, 286, Article 124928. https://doi.org/10.1016/j.jclepro.2020.124928

[75]

Yu, X., & Jiang, J. (2018). Mineralization and cementing properties of bio-carbonate cement, bio-phosphate cement, and bio-carbonate/phosphate cement: a review. Environmental Science and Pollution Research, 25(22), 21483-21497. https://doi.org/10.1007/s11356-018-2143-7

[76]

Zhang, J., Kumari, D., Fang, C., & Achal, V. (2019). Combining the microbial calcite precipitation process with biochar in order to improve nickel remediation. Applied Geochemistry, 103, 68-71. https://doi.org/10.1016/j.apgeochem.2019.02.011

[77]

Zhang, J., Yin, Y., Shi, W., Bian, H., Shi, L., Wu, L., Han, Z., Zheng, J., & He, X. (2023). Strength and uniformity of EICP-treated sand under multi-factor coupling effects. Biogeotechnics, 1(1), Article 100007. https://doi.org/10.1016/j.bgtech.2023.100007

AI Summary AI Mindmap
PDF (6841KB)

58

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/