Development and optimization of biomimetic-chemically induced carbonate precipitation: A review of recent research

Yu Diao , Jitao Bai , Gang Zheng , Qingsong Hu , Pengjin Li , Xuanqi Liu , Wendi Hu , Jianyou Huang

Biogeotechnics ›› 2025, Vol. 3 ›› Issue (1) : 100110

PDF (9939KB)
Biogeotechnics ›› 2025, Vol. 3 ›› Issue (1) : 100110 DOI: 10.1016/j.bgtech.2024.100110
Review article

Development and optimization of biomimetic-chemically induced carbonate precipitation: A review of recent research

Author information +
History +
PDF (9939KB)

Abstract

With further investigation on biomineralization, biomimetic mineralization has been proposed in imitation of microorganism behavior, in which the mechanism of biomineralization is utilized for the control of the crystal growth to synthesize inorganic materials with special structures and superior physical-chemical properties. This review summarizes the recent advances in biomimetic-chemically induced carbonate precipitation (BCICP). BCICP is a biomimetic mineralization process induced by calcium carbonate crystal modifiers, which directly regulates the metathesis reaction of calcium salts with carbonates in soils to improve the soil properties. Several crystal modifiers for BCICP, including the aspartic acid (organic), the boric acid (inorganic), and the polyacrylic acid (polymer), are reviewed, and the biomimetic mineralization mechanism is introduced. In addition, current findings about BCICP in cementitious materials, soil reinforcement, dust suppression, as well as other fields are discussed, aiming to give deeper insights into the further development and application of BCICP.

Keywords

Biomimetic-chemically induced carbonate precipitation (BCICP) / Crystal modifiers / Mechanism / Material properties / Potential applications

Cite this article

Download citation ▾
Yu Diao, Jitao Bai, Gang Zheng, Qingsong Hu, Pengjin Li, Xuanqi Liu, Wendi Hu, Jianyou Huang. Development and optimization of biomimetic-chemically induced carbonate precipitation: A review of recent research. Biogeotechnics, 2025, 3(1): 100110 DOI:10.1016/j.bgtech.2024.100110

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yu Diao: Writing - review & editing, Writing - original draft, Supervision, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization. Jitao Bai: Writing - review & editing, Writing - original draft, Visualization, Methodology, Investigation, Formal analysis. Gang Zheng: Writing - review & editing, Supervision, Resources, Investigation, Conceptualization. Qingsong Hu: Writing - original draft, Methodology, Investigation, Formal analysis. Pengjin Li: Writing - original draft, Visualization, Methodology, Investigation, Formal analysis. Xuanqi Liu: Writing - original draft, Visualization, Methodology, Investigation, Formal analysis. Wendi Hu: Writing - original draft, Visualization, Methodology, Investigation, Formal analysis. Jianyou Huang: Writing - review & editing, Methodology, Investigation, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of China (No. 52178342), the Natural Science Foundation of Tianjin City (No. 21JCZDJC00590), and the Technology Project of Tianjin Municipal Transportation Commission (No. 2022-02).

References

[1]

Anastasopoulos, I., Gazetas, G., Bransby, M., Davies, M., & El Nahas, A. (2007). Fault rupture propagation through sand: finite-element analysis and validation through centrifuge experiments. Journal of Geotechnical and Geoenvironmental Engineering, 133(8), 943-958. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:8(943)

[2]

Bai, J., Diao, Y., Jia, C., Liu, C., Zhang, M., & Wang, C. (2022). A review of advances in triaxial tests: Instruments, test techniques and prospects. KSCE Journal of Civil Engineering, 26(8), 3325-3341. https://doi.org/10.1007/s12205-022-1345-1

[3]

Bai, J., Wang, C., Zhang, M., & Diao, Y. (2024). A review on drainage of dredged marine soils: Advances and prospects. Marine Georesources & Geotechnology, 1-11. https://doi.org/10.1080/1064119X.2024.2327079

[4]

Bai, J., Zhang, S., Liang, J., Zhao, Y., Li, W., Diao, Y., & Shang, D. (2022). A systematic design method for green buildings based on the combined system of flexible solar cells and reactors on buildings. Building and Environment, 209, Article 108657. https://doi.org/10.1016/j.buildenv.2021.108657

[5]

Berman, A., Ahn, D. J., Lio, A., Salmeron, M., Reichert, A., & Charych, D. (1995). Total alignment of calcite at acidic polydiacetylene films: cooperativity at the organic-inorganic interface. Science, 269(5223), 515-518. https://doi.org/10.1126/science.269.5223.515

[6]

Cheng, L., & Cord-Ruwisch, R. (2014). Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation. Geomicrobiology Journal, 31(5), 396-406. https://doi.org/10.1080/01490451.2013.836579

[7]

Chu, J., Stabnikov, V., & Ivanov, V. (2012). Microbially induced calcium carbonate precipitation on surface or in the bulk of soil. Geomicrobiology Journal, 29(6), 544-549. https://doi.org/10.1080/01490451.2011.592929

[8]

De Muynck, W., De Belie, N., & Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: A review. Ecological engineering, 36(2), 118-136. https://doi.org/10.1016/j.ecoleng.2009.02.006

[9]

Declet, A., Reyes, E., & Suárez, O. (2016). Calcium carbonate precipitation: a review of the carbonate crystallization process and applications in bioinspired composites. Reviews on Advanced Materials Science, 44(1).

[10]

DeJong, J. T., Fritzges, M. B., & Nüsslein, K. (2006). Microbially induced cementation to control sand response to undrained shear. Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1381-1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381)

[11]

DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological engineering, 36(2), 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029

[12]

Diao, Y., Bai, J., Huang, J., Li, P., & Yang, C. (2023a). Strength characteristics of biomimetic carbonate precipitation (BCP) treated mortar under cyclic loading. Journal of Building Engineering, 75, Article 107013. https://doi.org/10.1016/j.jobe.2023.107013

[13]

Diao, Y., Bai, J., Huang, J., & Yang, C. (2023b). A high-performance model for direct shear behavior of biomimetic carbonate precipitation treated mortar. Materials letters, 349, Article 134739. https://doi.org/10.1016/j.matlet.2023.134739

[14]

Diao, Y., Bai, J., Sun, C., Huang, J., Yang, C., & Hu, Q. (2023c). A simplified model for shear behavior of mortar using biomimetic carbonate precipitation. Materials, 16(16), 5613. https://doi.org/10.3390/ma16165613

[15]

Diao, Y., Hu, W., Huang, J., Liu, S., & Li, P. (2023d). Experimental study on the potential application of biomimetic mineralized composites based on BCICP. Composites Communications, 43, Article 101722. https://doi.org/10.1016/j.coco.2023.101722

[16]

Diao, Y., Li, P., Hu, Q., Huang, J., & Guo, X. (2023e). Investigation on coal dust prevention by biomimetic mineralized dust suppressant with polyacrylic acid modifier. Journal of Environmental Chemical Engineering, 11(6), Article 111223. https://doi.org/10.1016/j.jece.2023.111223

[17]

Diao, Y., Li, P., Huang, J., Liu, S., Guo, X., & Hu, Q. (2023f). Effects of environmental factors on mechanical properties of biomimetic mineralized mortar. Journal of Building Engineering, 66, Article 105850. https://doi.org/10.1016/j.jobe.2023.105850

[18]

Diao, Y., Li, P., Huang, J., Liu, S., Guo, X., & Jiao, C. (2023g). Investigation on mechanical properties of biomimetic mineralized mortar incorporated with boric acid modifier. Journal of Building Engineering, 73, Article 106755. https://doi.org/10.1016/j.jobe.2023.106755

[19]

Diao, Y., Liu, X., Huang, J., Guo, X., Li, P., & Hu, Q. (2023h). Experimental study of factors affecting mechanical properties for biomimetic mineralized mortar with polyacrylic acid modifier. Journal of Materials Research and Technology, 26, 2371-2383. https://doi.org/10.1016/j.jmrt.2023.08.032

[20]

Diao, Y., Yang, C., Huang, J., Liu, S., Guo, X., & Pan, W. (2023i). Preparation and solidification mechanism of biomimetic mineralized cement using L-Asp as crystal modifier. Journal of Materials Research and Technology, 24, 7756-7770. https://doi.org/10.1016/j.jmrt.2023.05.074

[21]

Fu, T., Saracho, A. C., & Haigh, S. K. (2023). Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review. <ext-link xlink:href="BiogeotechnicsArticle 100002. https://doi.org/10.1016/j.bgtech.2023.100002">BiogeotechnicsArticle 100002. https://doi.org/10.1016/j.bgtech.2023.100002

[22]

Gower, L., & Tirrell, D. (1998). Calcium carbonate films and helices grown in solutions of poly (aspartate). Journal of Crystal Growth, 191(1-2), 153-160. https://doi.org/10.1016/S0022-0248(98)00002-5

[23]

Gower, L. B., & Odom, D. J. (2000). Deposition of calcium carbonate films by a polymer- induced liquid-precursor (PILP) process. Journal of Crystal Growth, 210(4), 719-734. https://doi.org/10.1016/S0022-0248(99)00749-6

[24]

Hamdan, N., & Kavazanjian Jr, E. (2016). Enzyme-induced carbonate mineral precipitation for fugitive dust control. Géotechnique, 66(7), 546-555. https://doi.org/10.1680/jgeot.15.P.168

[25]

Huang, D., Cen, D., & Song, Y. (2020). Comparative investigation on the compression-shear and tension-shear behaviour of sandstone at different shearing rates. Rock Mechanics and Rock Engineering, 53(7), 3111-3131. https://doi.org/10.1007/s00603-020-02094-3

[26]

Ivanov, V., & Chu, J. (2008). Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Reviews in Environmental Science and Bio/Technology, 7, 139-153. https://doi.org/10.1007/s11157-007-9126-3

[27]

Jenewein, C., Ruiz-Agudo, C., Wasman, S., Gower, L., & Cölfen, H. (2019). Development of a novel CaCO 3 PILP based cementation method for quartz sand. CrystEngComm, 21(14), 2273-2280. https://doi.org/10.1039/C8CE02158A

[28]

Jiang, N.-J., & Soga, K. (2017). The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures. Géotechnique, 67(1), 42-55. https://doi.org/10.1680/jgeot.15.P.182

[29]

Jiang, N.-J., Yoshioka, H., Yamamoto, K., & Soga, K. (2016). Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP). Ecological engineering, 90, 96-104. https://doi.org/10.1016/j.ecoleng.2016.01.073

[30]

Kim, H.-K., Park, S.-J., Han, J.-I., & Lee, H.-K. (2013). Microbially mediated calcium carbonate precipitation on normal and lightweight concrete. Construction and Building Materials, 38, 1073-1082. https://doi.org/10.1016/j.conbuildmat.2012.07.040

[31]

Konstantinou, C., Biscontin, G., Jiang, N.-J., & Soga, K. (2021). Application of microbially induced carbonate precipitation to form bio-cemented artificial sandstone. Journal of Rock Mechanics and Geotechnical Engineering, 13(3), 579-592. https://doi.org/10.1016/j.jrmge.2021.01.010

[32]

Lee, M. L., Ng, W. S., & Tanaka, Y. (2013). Stress-deformation and compressibility responses of bio-mediated residual soils. Ecological engineering, 60, 142-149. https://doi.org/10.1016/j.ecoleng.2013.07.034

[33]

Li, W., Zhang, Y., & Achal, V. (2022). Mechanisms of cadmium retention on enzyme- induced carbonate precipitation (EICP) of Ca/Mg: Nucleation, chemisorption, and co- precipitation. Journal of Environmental Chemical Engineering, 10(3), Article 107507. https://doi.org/10.1016/j.jece.2022.107507

[34]

Lian, S., Li, J., Gan, F., Bi, J., Wang, C., & Zheng, K. (2021). Investigation of the Shear Mechanical Behavior of Sandstone with Unloading Normal Stress after Freezing-Thawing Cycles. Machines, 9(12), 339. https://doi.org/10.3390/machines9120339

[35]

Liu, H., Chu, J., & Kavazanjian, E. (2023). Biogeotechnics: a new frontier in geotechnical engineering for sustainability. Biogeotechnics, 1, Article 100001. https://doi.org/10.1016/j.bgtech.2023.100001

[36]

Lu, T., Wei, Z., El Naggar, M. H., Wang, W., Yang, Y., Tian, X., & Guo, H. (2023). Effect of chemical environment on copper tailings reinforced by microbially induced carbonate precipitation. Construction and Building Materials, 400, Article 132894. https://doi.org/10.1016/j.conbuildmat.2023.132894

[37]

Luo, J., Kong, F., & Ma, X. (2016). Role of aspartic acid in the synthesis of spherical vaterite by the Ca (OH) 2-CO2 reaction. Crystal Growth & Design, 16(2), 728-736. https://doi.org/10.1021/acs.cgd.5b01333

[38]

Ma, G., Xiao, Y., Fan, W., Chu, J., & Liu, H. (2022). Mechanical properties of biocement formed by microbially induced carbonate precipitation. Acta Geotechnica, 17(11), 4905-4919. https://doi.org/10.1007/s11440-022-01584-8

[39]

Mann, S. (2001). Biomineralization: principles and concepts in bioinorganic materials chemistry.

[40]

Mortensen, B., Haber, M., DeJong, J., Caslake, L., & Nelson, D. (2011). Effects of environmental factors on microbial induced calcium carbonate precipitation. Journal of Applied Microbiology, 111(2), 338-349. https://doi.org/10.1111/j.1365-2672.2011.05065.x

[41]

Naeimi, M., & Chu, J. (2017). Comparison of conventional and bio-treated methods as dust suppressants. Environmental Science and Pollution Research, 24, 23341-23350. https://doi.org/10.1007/s11356-017-9889-1

[42]

Nafisi, A., Montoya, B. M., & Evans, T. M. (2020). Shear strength envelopes of biocemented sands with varying particle size and cementation level. Journal of Geotechnical and Geoenvironmental Engineering, 146(3), Article 04020002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002201

[43]

Nudelman, F., & Sommerdijk, N. A. (2012). Biomineralization as an inspiration for materials chemistry. Angewandte Chemie International Edition, 51(27), 6582-6596. https://doi.org/10.1002/anie.201106715

[44]

Okyay, T. O., Nguyen, H. N., Castro, S. L., & Rodrigues, D. F. (2016). CO2 sequestration by ureolytic microbial consortia through microbially-induced calcite precipitation. Science of The Total Environment, 572, 671-680. https://doi.org/10.1016/j.scitotenv.2016.06.199

[45]

Ouhenia, S., Chateigner, D., Belkhir, M., Guilmeau, E., & Krauss, C. (2008). Synthesis of calcium carbonate polymorphs in the presence of polyacrylic acid. Journal of Crystal Growth, 310(11), 2832-2841. https://doi.org/10.1016/j.jcrysgro.2008.02.006

[46]

Pakbaz, M., Behzadipour, H., & Ghezelbash, G. (2018). Evaluation of shear strength parameters of sandy soils upon microbial treatment. Geomicrobiology Journal, 35(8), 721-726. https://doi.org/10.1080/01490451.2018.1455766

[47]

PARK, S.-S., CHOI, S.-G., & NAM, I.-H. (2014). Effect of plant-induced calcite precipitation on the strength of sand. Journal of Materials in Civil Engineering, 26(8), https://doi.org/10.1061/(ASCE)MT.1943-5533.0001029

[48]

Roscoe, K. H., Schofield, A., & Wroth, a P. (1958). On the yielding of soils. Géotechnique, 8(1), 22-53. https://doi.org/10.1680/geot.1958.8.1.22

[49]

Siddique, R., & Chahal, N. K. (2011). Effect of ureolytic bacteria on concrete properties. Construction and Building Materials, 25(10), 3791-3801. https://doi.org/10.1016/j.conbuildmat.2011.04.010

[50]

Sun, X., Miao, L., Wu, L., & Wang, H. (2021). Theoretical quantification for cracks repair based on microbially induced carbonate precipitation (MICP) method. Cement and Concrete Composites, 118, Article 103950. https://doi.org/10.1016/j.cemconcomp.2021.103950

[51]

Veis, A. (2003). Mineralization in organic matrix frameworks. Reviews in mineralogy and geochemistry, 54(1), 249-289. https://doi.org/10.2113/0540249

[52]

Wang, C., Xiao, P., Zhao, J., Zhao, X., Liu, Y., & Wang, Z. (2006). Biomimetic synthesis of hydrophobic calcium carbonate nanoparticles via a carbonation route. Powder Technology, 170(1), 31-35. https://doi.org/10.1016/j.powtec.2006.08.016

[53]

Wang, Y., Konstantinou, C., Soga, K., Biscontin, G., & Kabla, A. J. (2022). Use of microfluidic experiments to optimize MICP treatment protocols for effective strength enhancement of MICP-treated sandy soils. Acta Geotechnica, 17(9), 3817-3838. https://doi.org/10.1007/s11440-022-01478-9

[54]

Wang, Z., Zhang, N., Cai, G., Jin, Y., Ding, N., & Shen, D. (2017). Review of ground improvement using microbial induced carbonate precipitation (MICP). Marine Georesources & Geotechnology, 35(8), 1135-1146. https://doi.org/10.1080/1064119X.2017.1297877

[55]

Wei, J., Zhao, Y., Yu, S., Du, J., Hu, X., Bai, G., & Wang, Z. (2021). Environment-friendly dual-network hydrogel dust suppressant based on xanthan gum, polyvinyl alcohol and acrylic acid. Journal of Environmental Management, 295, Article 113139. https://doi.org/10.1016/j.jenvman.2021.113139

[56]

Weiner, S., & Addadi, L. (1997). Design strategies in mineralized biological materials. Journal of Materials Chemistry, 7(5), 689-702. https://doi.org/10.1039/A604512J

[57]

Weiner, S., & Dove, P. M. (2003). An overview of biomineralization processes and the problem of the vital effect. Reviews in mineralogy and geochemistry, 54(1), 1-29. https://doi.org/10.2113/0540001

[58]

Wray, J. L., & Daniels, F. (1957). Precipitation of calcite and aragonite. Journal of the American Chemical Society, 79(9), 2031-2034. https://doi.org/10.1021/ja01566a001

[59]

Xiao, Y., He, X., Stuedlein, A. W., Chu, J., Matthew Evans, T., & Van Paassen, L. A. (2022a). Crystal growth of MICP through microfluidic chip tests. Journal of Geotechnical and Geoenvironmental Engineering, 148(5), Article 06022002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002756

[60]

Xiao, Y., He, X., Zaman, M., Ma, G., & Zhao, C. (2022b). Review of strength improvements of biocemented soils. International Journal of Geomechanics, 22(11), Article 03122001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002565

[61]

Xiao, Y., Wang, Y., Wang, S., Evans, T. M., Stuedlein, A. W., Chu, J., & Liu, H. (2021). Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method. Acta Geotechnica, 16, 1417-1427. https://doi.org/10.1007/s11440-020-01122-4

[62]

Xiao, Y., Xiao, W., Wu, H., Liu, Y., & Liu, H. (2022c). Fracture of interparticle MICP bonds under compression. International Journal of Geomechanics, 23(3), Article 04022316. https://doi.org/10.1061/IJGNAI.GMENG-8282

[63]

Xu, G., Yao, N., Aksay, I. A., & Groves, J. T. (1998). Biomimetic synthesis of macroscopic- scale calcium carbonate thin films. Evidence for a multistep assembly process. Journal of the American Chemical Society, 120(46), 11977-11985. https://doi.org/10.1021/ja9819108

[64]

Xu, J., Chang, F., Bai, J., & Liu, C. (2023). Statistical analysis on the fracture behavior of rubberized steel fiber reinforced recycled aggregate concrete based on acoustic emission. Journal of Materials Research and Technology, 24, 8997-9014. https://doi.org/10.1016/j.jmrt.2023.05.124

[65]

Yan, Y., Tang, Y., Xu, G., Lian, J., & Fu, D. (2019). Study on the relationship between mechanical properties and mesostructure of microbial cemented sand bodies. Advances in Materials Science and Engineering, 2019. https://doi.org/10.1155/2019/3684645

[66]

Yu, J., Lei, M., Cheng, B., & Zhao, X. (2004). Effects of PAA additive and temperature on morphology of calcium carbonate particles. Journal of Solid State Chemistry, 177(3), 681-689. https://doi.org/10.1016/j.jssc.2003.08.017

[67]

Yu, X., Zhao, Y., Feng, Y., Hu, X., Liu, J., Wang, X., & Wang, W. (2022). Synthesis and performance characterization of a road coal dust suppressant with excellent consolidation, adhesion, and weather resistance. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 639, Article 128334. https://doi.org/10.1016/j.colsurfa.2022.128334

[68]

Zhang, Y., Hu, X., Wang, Y., & Jiang, N. (2023). A critical review of biomineralization in environmental geotechnics: Applications, trends, and perspectives. BiogeotechnicsArticle 100003. https://doi.org/10.1016/j.bgtech.2023.100003

[69]

Zhao, Q., Li, L., Li, C., Li, M., Amini, F., & Zhang, H. (2014). Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. Journal of Materials in Civil Engineering, 26(12), Article 04014094. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013

AI Summary AI Mindmap
PDF (9939KB)

674

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/