Feasibility study of enhancing enzyme-induced carbonate precipitation with eggshell waste for sand solidification

Zhen Yan , Kazunori Nakashima , Chikara Takano , Satoru Kawasaki

Biogeotechnics ›› 2024, Vol. 2 ›› Issue (4) : 100108

PDF (11820KB)
Biogeotechnics ›› 2024, Vol. 2 ›› Issue (4) :100108 DOI: 10.1016/j.bgtech.2024.100108
Research article
research-article

Feasibility study of enhancing enzyme-induced carbonate precipitation with eggshell waste for sand solidification

Author information +
History +
PDF (11820KB)

Abstract

Utilizing Enzyme-Induced Calcium Carbonate Precipitation (EICP) reinforcement technology has emerged as an innovative approach for soil improvement. In this study, kitchen waste eggshell powder was used as an additive material for EICP. The high external surface area and affinity for calcium ions of eggshell powder, which render it a suitable nucleation site for calcium carbonate precipitation. Experimental results demonstrate that the incorporation of eggshell powder, by increasing the number of nucleation sites and promoting calcium carbonate precipitation, reduces the inhibition of enzyme products, modulates the precipitation pattern of calcium carbonate, improves particle size distribution, and consequently significantly enhances the unconfined compressive strength of the samples. Furthermore, a neutral pH is achieved within the reaction system without the addition of any acid, thus preventing significant ammonia emissions. This underscores the potential of kitchen waste eggshells for recycling in biocement applications.

Keywords

Enzyme-Induced Calcium Carbonate Precipitation (EICP) / Waste recycling / Eggshell powder / Crude urease / Sand solidification

Cite this article

Download citation ▾
Zhen Yan, Kazunori Nakashima, Chikara Takano, Satoru Kawasaki. Feasibility study of enhancing enzyme-induced carbonate precipitation with eggshell waste for sand solidification. Biogeotechnics, 2024, 2(4): 100108 DOI:10.1016/j.bgtech.2024.100108

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zhen Yan: Writing - review & editing, Writing - original draft, Methodology, Investigation, Funding acquisition, Conceptualization. Kazunori Nakashima: Supervision. Chikara Takano: Resources. Satoru Kawasaki: Writing - review & editing, Supervision, Project administration, Funding acquisition.

Data availability statement

All the experimental data that support the findings of this study are available from the corresponding author upon reasonable request through email.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by JST SPRING, Grant Number JPMJSP2119, and was partly supported by JSPS KAKENHI, Grant Number JP22H01581.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.bgtech.2024.100108.

References

[1]

Ahenkorah, I., Rahman, M. M., Karim, M. R., & Beecham, S. (2021). Enzyme induced calcium carbonate precipitation and its engineering application: A systematic review and meta-analysis. Construction and Building Materials, 308, Article 125000. https://doi.org/10.1016/j.conbuildmat.2021.125000

[2]

Ahenkorah, I., Rahman, M. M., Karim, M. R., & Beecham, S. (2023). Unconfined compressive strength of MICP and EICP treated sands subjected to cycles of wetting- drying, freezing-thawing and elevated temperature: Experimental and EPR modelling. Journal of Rock Mechanics and Geotechnical Engineering, 15(5), 1226-1247. https://doi.org/10.1016/j.jrmge.2022.08.007

[3]

Akhmat, G., Zaman, K., Shukui, T., Sajjad, F., Khan, M. A., & Khan, M. Z. (2014). The challenges of reducing greenhouse gas emissions and air pollution through energy sources: Evidence from a panel of developed countries. Environmental Science and Pollution Research, 21(12), 7425-7435. https://doi.org/10.1007/s11356-014-2693-2

[4]

Almajed, A., Abbas, H., Arab, M., Alsabhan, A., Hamid, W., & Al-Salloum, Y. (2020). Enzyme-induced carbonate precipitation (EICP)-based methods for ecofriendly stabilization of different types of natural sands. Journal of Cleaner Production, 274, Article 122627. https://doi.org/10.1016/j.jclepro.2020.122627

[5]

Almajed, A., Tirkolaei, H. K., Kavazanjian, E., & Hamdan, N. (2019). Enzyme induced biocementated sand with high strength at low carbonate content. Article 1. Scientific Reports, 9(1), https://doi.org/10.1038/s41598-018-38361-1

[6]

Alotaibi, E., Arab, M. G., Abdallah, M., Nassif, N., & Omar, M. (2022). Life cycle assessment of biocemented sands using enzyme induced carbonate precipitation (EICP) for soil stabilization applications. Article 1. Scientific Reports, 12(1), https://doi.org/10.1038/s41598-022-09723-7

[7]

Annane, K., Lemlikchi, W., & Tingry, S. (2023). Efficiency of eggshell as a low-cost adsorbent for removal of cadmium: Kinetic and isotherm studies. Biomass Conversion and Biorefinery, 13(7), 6163-6174. https://doi.org/10.1007/s13399-021-01619-2

[8]

Castro-Alonso, M. J., Montañez-Hernandez, L. E., Sanchez-Muñoz, M. A., Macias Franco, M. R., Narayanasamy, R., & Balagurusamy, N. (2019). Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: microbiological and molecular concepts. Frontiers in Materials, 6 〈https://www.frontiersin.org/articles/10.3389/fmats.2019.00126〉.

[9]

Chen, Y. K., Sun, Y., Wang, K. Q., Kuang, W. Y., Yan, S. R., Wang, Z. H., & Lee, H. S. (2022). Utilization of bio-waste eggshell powder as a potential filler material for cement: Analyses of zeta potential, hydration and sustainability. Construction and Building Materials, 325, Article 126220. https://doi.org/10.1016/j.conbuildmat.2021.126220

[10]

Cheng, L., Shahin, M. A., & Chu, J. (2019). Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotechnica, 14(3), 615-626. https://doi.org/10.1007/s11440-018-0738-2

[11]

Chetty, K., Xie, S., Song, Y., McCarthy, T., Garbe, U., Li, X., & Jiang, G. (2021). Self- healing bioconcrete based on non-axenic granules: A potential solution for concrete wastewater infrastructure. Journal of Water Process Engineering, 42, Article 102139. https://doi.org/10.1016/j.jwpe.2021.102139

[12]

Choi, S.-G., Wu, S., & Chu, J. (2016). Biocementation for sand using an eggshell as calcium source. Journal of Geotechnical and Geoenvironmental Engineering, 142(10), Article 06016010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001534

[13]

Comadran-Casas, C., Schaschke, C. J., Akunna, J. C., & Jorat, M. E. (2022). Cow urine as a source of nutrients for Microbial-Induced Calcite Precipitation in sandy soil. Journal of Environmental Management, 304, Article 114307. https://doi.org/10.1016/j.jenvman.2021.114307

[14]

Crane, L., Ray, H., Hamdan, N., & Boyer, T. H. (2022). Enzyme-induced carbonate precipitation utilizing fresh urine and calcium-rich zeolites. Journal of Environmental Chemical Engineering, 10(2), Article 107238. https://doi.org/10.1016/j.jece.2022.107238

[15]

Cunningham, A. B., Gerlach, R., Spangler, L., & Mitchell, A. C. (2009). Microbially enhanced geologic containment of sequestered supercritical CO2. Energy Procedia, 1(1), 3245-3252. https://doi.org/10.1016/j.egypro.2009.02.109

[16]

de Lorena Diniz Chaves, G., Siman, R. R., Ribeiro, G. M., & Chang, N.-B. (2021). Synergizing environmental, social, and economic sustainability factors for refuse derived fuel use in cement industry: A case study in Espirito Santo, Brazil. Journal of Environmental Management, 288, Article 112401. https://doi.org/10.1016/j.jenvman.2021.112401

[17]

DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029

[18]

Driver, J. G., Hills, T., Hodgson, P., Sceats, M., & Fennell, P. S. (2022). Simulation of direct separation technology for carbon capture and storage in the cement industry. Chemical Engineering Journal, 449, Article 137721. https://doi.org/10.1016/j.cej.2022.137721

[19]

Elizabeth George, S., & Wan, Y. (2023). Microbial functionalities and immobilization of environmental lead: Biogeochemical and molecular mechanisms and implications for bioremediation. Journal of Hazardous Materials, 457, Article 131738. https://doi.org/10.1016/j.jhazmat.2023.131738

[20]

Fangueiro, D., Pereira, J. L. S., Macedo, S., Trindade, H., Vasconcelos, E., & Coutinho, J. (2017). Surface application of acidified cattle slurry compared to slurry injection: Impact on NH3, N2O, CO2 and CH4 emissions and crop uptake. Geoderma, 306, 160-166. https://doi.org/10.1016/j.geoderma.2017.07.023

[21]

Farajnia, A., Shafaat, A., Farajnia, S., Sartipipour, M., & Khodadadi Tirkolaei, H. (2022). The efficiency of ureolytic bacteria isolated from historical adobe structures in the production of bio-bricks. Construction and Building Materials, 317, Article 125868. https://doi.org/10.1016/j.conbuildmat.2021.125868

[22]

Feng, C., Zhao, S., Zong, Y., He, Q., Winarto, W., Zhang, W., Utada, A. S., & Zhao, K. (2022). Microdroplet-based in situ characterization of the dynamic evolution of amorphous calcium carbonate during microbially induced calcium carbonate precipitation. Environmental Science & Technology, 56(15), 11017-11026. https://doi.org/10.1021/acs.est.1c08858

[23]

Galusnyak, S. C., Petrescu, L., & Cormos, C.-C. (2022). Environmental impact assessment of post-combustion CO2 capture technologies applied to cement production plants. Journal of Environmental Management, 320, Article 115908. https://doi.org/10.1016/j.jenvman.2022.115908

[24]

Gao, Y., He, J., Tang, X., & Chu, J. (2019). Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil. Soils and Foundations, 59(5), 1631-1637. https://doi.org/10.1016/j.sandf.2019.03.014

[25]

Gautron, J., Stapane, L., Le Roy, N., Nys, Y., Rodriguez-Navarro, A. B., & Hincke, M. T. (2021). Avian eggshell biomineralization: An update on its structure, mineralogy and protein tool kit. BMC Molecular and Cell Biology, 22(1), 11. https://doi.org/10.1186/s12860-021-00350-0

[26]

Georgiopoulou, M., & Lyberatos, G. (2018). Life cycle assessment of the use of alternative fuels in cement kilns: A case study. Journal of Environmental Management, 216, 224-234. https://doi.org/10.1016/j.jenvman.2017.07.017

[27]

Guan, D., Zhou, Y., Shahin, M. A., Khodadadi Tirkolaei, H., & Cheng, L. (2023). Assessment of urease enzyme extraction for superior and economic bio-cementation of granular materials using enzyme-induced carbonate precipitation. Acta Geotechnica, 18(4), 2263-2279. https://doi.org/10.1007/s11440-022-01727-x

[28]

Hansen, J., & Sato, M. (2004). Greenhouse gas growth rates. Proceedings of the National Academy of Sciences, 101(46), 16109-16114. https://doi.org/10.1073/pnas.0406982101

[29]

He, J., Liu, Y., Liu, L., Yan, B., Li, L., Meng, H., Hang, L., Qi, Y., Wu, M., & Gao, Y. (2023). Recent development on optimization of bio-cementation for soil stabilization and wind erosion control. Biogeotechnics, 1(2), Article 100022. https://doi.org/10.1016/j.bgtech.2023.100022

[30]

Izumi, Y., Iizuka, A., & Ho, H.-J. (2021). Calculation of greenhouse gas emissions for a carbon recycling system using mineral carbon capture and utilization technology in the cement industry. Journal of Cleaner Production, 312, Article 127618. https://doi.org/10.1016/j.jclepro.2021.127618

[31]

Jiménez-López, C., Caballero, E., Huertas, F. J., & Romanek, C. S. (2001). Chemical, mineralogical and isotope behavior, and phase transformation during the precipitation of calcium carbonate minerals from intermediate ionic solution at 25°C. Geochimica et Cosmochimica Acta, 65(19), 3219-3231. https://doi.org/10.1016/S0016-7037(01)00672-X

[32]

Jroundi, F., Schiro, M., Ruiz-Agudo, E., Elert, K., Martín-Sánchez, I., González-Muñoz, M. T., & Rodriguez-Navarro, C. (2017). Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities. Article 1. Nature Communications, 8(1), https://doi.org/10.1038/s41467-017-00372-3

[33]

Krajewska, B. (2018). Urease-aided calcium carbonate mineralization for engineering applications: A review. Journal of Advanced Research, 13, 59-67. https://doi.org/10.1016/j.jare.2017.10.009

[34]

Krishnan, V., Khodadadi Tirkolaei, H., & Kavazanjian E., Jr. (2023). An improved method for determining urease activity from electrical conductivity measurements. ACS Omega, 8(15), 13791-13798. https://doi.org/10.1021/acsomega.2c08152

[35]

Kulanthaivel, P., Soundara, B., Selvakumar, S., & Das, A. (2022). Application of waste eggshell as a source of calcium in bacterial bio-cementation to enhance the engineering characteristics of sand. Environmental Science and Pollution Research, 29(44), 66450-66461. https://doi.org/10.1007/s11356-022-20484-8

[36]

Kutlu, L. (2020). Greenhouse gas emission efficiencies of world countries. Article 23. International Journal of Environmental Research and Public Health, 17( 23), https://doi.org/10.3390/ijerph17238771

[37]

Lai, H.-J., Cui, M.-J., Wu, S.-F., Yang, Y., & Chu, J. (2023). Extraction of crude soybean urease using ethanol and its effect on soil cementation. Soils and Foundations, 63(3), Article 101300. https://doi.org/10.1016/j.sandf.2023.101300

[38]

Lambert, S. E., & Randall, D. G. (2019). Manufacturing bio-bricks using microbial induced calcium carbonate precipitation and human urine. Water Research, 160, 158-166. https://doi.org/10.1016/j.watres.2019.05.069

[39]

Lee, M., Gomez, M. G., San Pablo, A. C. M., Kolbus, C. M., Graddy, C. M. R., DeJong, J. T., & Nelson, D. C. (2019). Investigating ammonium by-product removal for ureolytic bio-cementation using meter-scale experiments. Article 1. Scientific Reports, 9(1), https://doi.org/10.1038/s41598-019-54666-1

[40]

Li, Y., Schichtel, B. A., Walker, J. T., Schwede, D. B., Chen, X., Lehmann, C. M. B., Puchalski, M. A., Gay, D. A., & Collett, J. L. (2016). Increasing importance of deposition of reduced nitrogen in the United States. Proceedings of the National Academy of Sciences, 113(21), 5874-5879. https://doi.org/10.1073/pnas.1525736113

[41]

Li, D., Xu, X., Li, Z., Wang, T., & Wang, C. (2020). Detection methods of ammonia nitrogen in water: A review. TrAC Trends in Analytical Chemistry, 127, Article 115890. https://doi.org/10.1016/j.trac.2020.115890

[42]

Li, W., Zhang, Y., & Achal, V. (2022). Mechanisms of cadmium retention on enzyme- induced carbonate precipitation (EICP) of Ca/Mg: Nucleation, chemisorption, and co- precipitation. Journal of Environmental Chemical Engineering, 10(3), Article 107507. https://doi.org/10.1016/j.jece.2022.107507

[43]

Liang, S., Chen, J., Niu, J., Gong, X., & Feng, D. (2020). Using recycled calcium sources to solidify sandy soil through microbial induced carbonate precipitation. Marine Georesources & Geotechnology, 38(4), 393-399. https://doi.org/10.1080/1064119X.2019.1575939

[44]

Liang, X., Dang, W., Yang, G., & Zhang, Y. (2023). Environmental feasibility evaluation of cement co-production using classified domestic waste as alternative raw material and fuel: A life cycle perspective. Journal of Environmental Management, 326, Article 116726. https://doi.org/10.1016/j.jenvman.2022.116726

[45]

Liendo, F., Arduino, M., Deorsola, F. A., & Bensaid, S. (2022). Nucleation and growth kinetics of CaCO3 crystals in the presence of foreign monovalent ions. Journal of Crystal Growth, 578, Article 126406. https://doi.org/10.1016/j.jcrysgro.2021.126406

[46]

Lin, K., Li, P., Wu, Q., Feng, S., Ma, J., & Yuan, D. (2018). Automated determination of ammonium in natural waters with reverse flow injection analysis based on the indophenol blue method with o-phenylphenol. Microchemical Journal, 138, 519-525. https://doi.org/10.1016/j.microc.2018.02.004

[47]

Liu, L., Gao, Y., Geng, W., Song, J., Zhou, Y., & Li, C. (2023). Comparison of jack bean and soybean crude ureases on surface stabilization of desert sand via enzyme-induced carbonate precipitation. Geoderma, 435, Article 116504. https://doi.org/10.1016/j.geoderma.2023.116504

[48]

Liu, K.-W., Jiang, N.-J., Qin, J.-D., Wang, Y.-J., Tang, C.-S., & Han, X.-L. (2021). An experimental study of mitigating coastal sand dune erosion by microbial- and enzymatic-induced carbonate precipitation. Acta Geotechnica, 16(2), 467-480. https://doi.org/10.1007/s11440-020-01046-z

[49]

Lors, C., Ducasse-Lapeyrusse, J., Gagné R., & Damidot, D. (2017). Microbiologically induced calcium carbonate precipitation to repair microcracks remaining after autogenous healing of mortars. Construction and Building Materials, 141, 461-469. https://doi.org/10.1016/j.conbuildmat.2017.03.026

[50]

Ma, L., Pang, A.-P., Luo, Y., Lu, X., & Lin, F. (2020). Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii. Microbial Cell Factories, 19(1), 12. https://doi.org/10.1186/s12934-020-1281-z

[51]

Mahawish, A., Bouazza, A., & Gates, W. P. (2018). Effect of particle size distribution on the bio-cementation of coarse aggregates. Acta Geotechnica, 13(4), 1019-1025. https://doi.org/10.1007/s11440-017-0604-7

[52]

Md Zain, M. R., Oh, C. L., & Lee, S. W. (2021). Investigations on rheological and mechanical properties of self-compacting concrete (SCC) containing 0.6 μm eggshell as partial replacement of cement. Construction and Building Materials, 303, Article 124539. https://doi.org/10.1016/j.conbuildmat.2021.124539

[53]

Meng, H., Shu, S., Gao, Y., Yan, B., & He, J. (2021). Multiple-phase enzyme-induced carbonate precipitation (EICP) method for soil improvement. Engineering Geology, 294, Article 106374. https://doi.org/10.1016/j.enggeo.2021.106374

[54]

Mignardi, S., Archilletti, L., Medeghini, L., & De Vito, C. (2020). Valorization of eggshell biowaste for sustainable environmental remediation. Article 1. Scientific Reports, 10(1), https://doi.org/10.1038/s41598-020-59324-5

[55]

Nikseresht, F., Landi, A., Sayyad, G., Ghezelbash, G. R., & Schulin, R. (2020). Sugarecane molasse and vinasse added as microbial growth substrates increase calcium carbonate content, surface stability and resistance against wind erosion of desert soils. Journal of Environmental Management, 268, Article 110639. https://doi.org/10.1016/j.jenvman.2020.110639

[56]

Ofuyatan, O. M., Adeniyi, A. G., Ijie, D., Ighalo, J. O., & Oluwafemi, J. (2020). Development of high-performance self compacting concrete using eggshell powder and blast furnace slag as partial cement replacement. Construction and Building Materials, 256, Article 119403. https://doi.org/10.1016/j.conbuildmat.2020.119403

[57]

Overmeyer, V., Trimborn, M., Clemens, J., Hölscher, R., & Büscher, W. (2023). Acidification of slurry to reduce ammonia and methane emissions: Deployment of a retrofittable system in fattening pig barns. Journal of Environmental Management, 331, Article 117263. https://doi.org/10.1016/j.jenvman.2023.117263

[58]

Patil, M., Dalal, P. H., Shreedhar, S., Dave, T. N., & Iyer, K. K. R. (2021). Biostabilization techniques and applications in Civil Engineering: State-of-the-Art. Construction and Building Materials, 309, Article 125098. https://doi.org/10.1016/j.conbuildmat.2021.125098

[59]

Pedersen, J., Feilberg, A., & Nyord, T. (2022). Effect of storage and field acidification on emissions of NH3, NMVOC, and odour from field applied slurry in winter conditions. Journal of Environmental Management, 310, Article 114756. https://doi.org/10.1016/j.jenvman.2022.114756

[60]

Pedraza, J., Zimmermann, A., Tobon, J., Schomäcker, R., & Rojas, N. (2021). On the road to net zero-emission cement: Integrated assessment of mineral carbonation of cement kiln dust. Chemical Engineering Journal, 408, Article 127346. https://doi.org/10.1016/j.cej.2020.127346

[61]

Pettinato, M., Chakraborty, S., Arafat, H. A., & Calabro’, V. (2015). Eggshell: A green adsorbent for heavy metal removal in an MBR system. Ecotoxicology and Environmental Safety, 121, 57-62. https://doi.org/10.1016/j.ecoenv.2015.05.046

[62]

Pliya, P., & Cree, D. (2015). Limestone derived eggshell powder as a replacement in Portland cement mortar. Construction and Building Materials, 95, 1-9. https://doi.org/10.1016/j.conbuildmat.2015.07.103

[63]

Quina, M. J., Soares, M. A. R., & Quinta-Ferreira, R. (2017). Applications of industrial eggshell as a valuable anthropogenic resource. Resources, Conservation and Recycling, 123, 176-186. https://doi.org/10.1016/j.resconrec.2016.09.027

[64]

Shakoor, A., Ashraf, F., Shakoor, S., Mustafa, A., Rehman, A., & Altaf, M. M. (2020). Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing. Environmental Science and Pollution Research, 27(31), 38513-38536. https://doi.org/10.1007/s11356-020-10151-1

[65]

Shiferaw, N., Habte, L., Thenepalli, T., & Ahn, J. W. (2019). Effect of eggshell powder on the hydration of cement paste. Article 15. Materials, 12( 15), https://doi.org/10.3390/ma12152483

[66]

Smeets, P. J. M., Cho, K. R., Kempen, R. G. E., Sommerdijk, N. A. J. M., & De Yoreo, J. J. (2015). Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy. Article 4. Nature Materials, 14(4), https://doi.org/10.1038/nmat4193

[67]

Soeder, D. J. (2021). Greenhouse gas sources and mitigation strategies from a geosciences perspective. Advances in Geo-Energy Research, 5(3), https://doi.org/10.46690/ager.2021.03.04

[68]

Sousa, V., & Bogas, J. A. (2021). Comparison of energy consumption and carbon emissions from clinker and recycled cement production. Journal of Cleaner Production, 306, Article 127277. https://doi.org/10.1016/j.jclepro.2021.127277

[69]

Su, F., Yang, Y., Qi, Y., & Zhang, H. (2022). Combining microbially induced calcite precipitation (MICP) with zeolite: A new technique to reduce ammonia emission and enhance soil treatment ability of MICP technology. Journal of Environmental Chemical Engineering, 10(3), Article 107770. https://doi.org/10.1016/j.jece.2022.107770

[70]

Sun, X., Miao, L., Chen, R., Wang, H., & Xia, J. (2022). Surface rainfall erosion resistance and freeze-thaw durability of bio-cemented and polymer-modified loess slopes. Journal of Environmental Management, 301, Article 113883. https://doi.org/10.1016/j.jenvman.2021.113883

[71]

Sun, X., Miao, L., Wang, H., Yin, W., & Wu, L. (2021). Mineralization crust field experiment for desert sand solidification based on enzymatic calcification. Journal of Environmental Management, 287, Article 112315. https://doi.org/10.1016/j.jenvman.2021.112315

[72]

Supriya, Chaudhury, R., Sharma, U., Thapliyal, P. C., & Singh, L. P. (2023). Low-CO2 emission strategies to achieve net zero target in cement sector. Journal of Cleaner Production, 417, Article 137466. https://doi.org/10.1016/j.jclepro.2023.137466

[73]

Tiong, H. Y., Lim, S. K., Lee, Y. L., Ong, C. F., & Yew, M. K. (2020). Environmental impact and quality assessment of using eggshell powder incorporated in lightweight foamed concrete. Construction and Building Materials, 244, Article 118341. https://doi.org/10.1016/j.conbuildmat.2020.118341

[74]

Waheed, M., Butt, M. S., Shehzad, A., Adzahan, N. M., Shabbir, M. A., Rasul Suleria, H. A., & Aadil, R. M. (2019). Eggshell calcium: A cheap alternative to expensive supplements. Trends in Food Science & Technology, 91, 219-230. https://doi.org/10.1016/j.tifs.2019.07.021

[75]

Waheed, M., Yousaf, M., Shehzad, A., Inam-Ur-Raheem, M., Khan, M. K. I., Khan, M. R., Ahmad, N., Abdullah, & Aadil, R. M. (2020). Channelling eggshell waste to valuable and utilizable products: A comprehensive review. Trends in Food Science & Technology, 106, 78-90. https://doi.org/10.1016/j.tifs.2020.10.009

[76]

Wang, J., Xu, L., Li, M., Wang, Y., He, H., Xiang, D.,... Hao, T. (2023a). Investigations on factors influencing physical properties of recycled cement and the related carbon emissions and energy consumptions. Journal of Cleaner Production, 414, Article 137715. https://doi.org/10.1016/j.jclepro.2023.137715

[77]

Wang, L., Cheng, W.-C., Xue, Z.-F., Xie, Y.-X., & Lv, X.-J. (2023b). Feasibility study of applying electrokinetic technology coupled with enzyme-induced carbonate precipitation treatment to Cu- and Pb-contaminated loess remediation. Journal of Cleaner Production, 401, Article 136734. https://doi.org/10.1016/j.jclepro.2023.136734

[78]

Wang, L., Cheng, W.-C., Xue, Z.-F., Zhang, B., & Lv, X.-J. (2023c). Immobilizing of lead and copper using chitosan-assisted enzyme-induced carbonate precipitation. Environmental Pollution, 319, Article 120947. https://doi.org/10.1016/j.envpol.2022.120947

[79]

Wu, J., Wang, X.-B., Wang, H.-F., & Zeng R,J. (2017). Microbially induced calcium carbonate precipitation driven by ureolysis to enhance oil recovery. RSC Advances, 7(59), 37382-37391. https://doi.org/10.1039/C7RA05748B

[80]

Wu, H., Wu, W., Liang, W., Dai, F., Liu, H., & Xiao, Y. (2023). 3D DEM modeling of biocemented sand with fines as cementing agents. International Journal for Numerical and Analytical Methods in Geomechanics, 47(2), 212-240. https://doi.org/10.1002/nag.3466

[81]

Xiao, R., Liang, B., Wu, F., Huang, L., & Lai, Z. (2023). Biocementation of coral sand under seawater environment and an improved three-stage biogrouting approach. Construction and Building Materials, 362, Article 129758. https://doi.org/10.1016/j.conbuildmat.2022.129758

[82]

Xiao, P., Liu, H., Stuedlein, A. W., Evans, T. M., & Xiao, Y. (2019). Effect of relative density and biocementation on cyclic response of calcareous sand. Canadian Geotechnical Journal, 56(12), 1849-1862. https://doi.org/10.1139/cgj-2018-0573

[83]

Xiao, Y., Stuedlein, A. W., Ran, J., Evans, T. M., Cheng, L., Liu, H., van Paassen, L. A., & Chu, J. (2019). Effect of Particle Shape on Strength and Stiffness of Biocemented Glass Beads. Journal of Geotechnical and Geoenvironmental Engineering, 145(11), Article 06019016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002165

[84]

Xie, D., Zhang, R., & Wang, J. (2023). The influence of environmental factors and precipitation precursors on enzyme-induced carbonate precipitation (EICP) process and its application on modification of recycled concrete aggregates. Journal of Cleaner Production, 395, Article 136444. https://doi.org/10.1016/j.jclepro.2023.136444

[85]

Xu, K., Huang, M., Liu, Z., Cui, M., & Li, S. (2023). Mechanical properties and disintegration behavior of EICP-reinforced sea sand subjected to drying-wetting cycles. Biogeotechnics, 1(2), Article 100019. https://doi.org/10.1016/j.bgtech.2023.100019

[86]

Xu, K., Huang, M., Zhen, J., Xu, C., & Cui, M. (2023). Field implementation of enzyme- induced carbonate precipitation technology for reinforcing a bedding layer beneath an underground cable duct. Journal of Rock Mechanics and Geotechnical Engineering, 15(4), 1011-1022. https://doi.org/10.1016/j.jrmge.2022.06.012

[87]

Xuan, M.-Y., Lin, R.-S., Min, T.-B., & Wang, X.-Y. (2023). Carbonation treatment of eggshell powder concrete for performance enhancement. Construction and Building Materials, 377, Article 130814. https://doi.org/10.1016/j.conbuildmat.2023.130814

[88]

Yan, Z., Gowthaman, S., Nakashima, K., & Kawasaki, S. (2022). Polymer-assisted enzyme induced carbonate precipitation for non-ammonia emission soil stabilization. Article 1. Scientific Reports, 12(1), https://doi.org/10.1038/s41598-022-12773-6

[89]

Yang, Y., Li, M., Tao, X., Zhang, S., He, J., Zhu, L., & Wen, K. (2022). The Effect of Nucleating Agents on Enzyme-Induced Carbonate Precipitation and Corresponding Microscopic Mechanisms. Article 17. Materials, 15( 17), https://doi.org/10.3390/ma15175814

[90]

Yu, X., Chu, J., Yang, Y., & Qian, C. (2021). Reduction of ammonia production in the biocementation process for sand using a new biocement. Journal of Cleaner Production, 286, Article 124928. https://doi.org/10.1016/j.jclepro.2020.124928

[91]

Zhan, X., Adalibieke, W., Cui, X., Winiwarter, W., Reis, S., Zhang, L., Bai, Z., Wang, Q., Huang, W., & Zhou, F. (2021). Improved Estimates of Ammonia Emissions from Global Croplands. Environmental Science & Technology, 55(2), 1329-1338. https://doi.org/10.1021/acs.est.0c05149

[92]

Zhang, X., Gu, B., van Grinsven, H., Lam, S. K., Liang, X., Bai, M., & Chen, D. (2020). Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement costs. Article 1. Nature Communications, 11(1), https://doi.org/10.1038/s41467-020-18196-z

[93]

Zhang, W., Ju, Y., Zong, Y., Qi, H., & Zhao, K. (2018). In Situ Real-Time Study on Dynamics of Microbially Induced Calcium Carbonate Precipitation at a Single-Cell Level. Environmental Science & Technology, 52(16), 9266-9276. https://doi.org/10.1021/acs.est.8b02660

[94]

Zhang, S., Liu, Z., Li, Z., Shen, D., & Wu, C. (2023). Experimental study on the reinforcement mechanism and wave thumping resistance of EICP reinforced sand slopes. Biogeotechnics, 1(4), Article 100041. https://doi.org/10.1016/j.bgtech.2023.100041

[95]

Zhang, T., Tu, Z., Lu, G., Duan, X., Yi, X., Guo, C., & Dang, Z. (2017). Removal of heavy metals from acid mine drainage using chicken eggshells in column mode. Journal of Environmental Management, 188, 1-8. https://doi.org/10.1016/j.jenvman.2016.11.076

[96]

Zhang, J., Wang, X., Shi, L., & Yin, Y. (2022). Enzyme-induced carbonate precipitation (EICP) combined with lignin to solidify silt in the Yellow River flood area. Construction and Building Materials, 339, Article 127792. https://doi.org/10.1016/j.conbuildmat.2022.127792

[97]

Zhang, Q., Ye, W., Liu, Z., Wang, Q., & Chen, Y. (2023). Influence of injection methods on calcareous sand cementation by EICP technique. Construction and Building Materials, 363, Article 129724. https://doi.org/10.1016/j.conbuildmat.2022.129724

[98]

Zhang, J., Yin, Y., Shi, W., Bian, H., Shi, L., Wu, L., Han, Z., Zheng, J., & He, X. (2023a). Strength and uniformity of EICP-treated sand under multi-factor coupling effects. Biogeotechnics, 1(1), Article 100007. https://doi.org/10.1016/j.bgtech.2023.100007

[99]

Zhang, J., Yin, Y., Shi, W., Bian, H., Shi, L., Wu, L., Han, Z., Zheng, J., & He, X. (2023b). Strength and uniformity of EICP-treated sand under multi-factor coupling effects. Biogeotechnics, 1(1), Article 100007. https://doi.org/10.1016/j.bgtech.2023.100007

[100]

Zhang, J., Yin, Y., Shi, W., Song, D., Yu, L., Shi, L., & Han, Z. (2023c). Experimental study on the calcium carbonate production rates and crystal size of EICP under multi-factor coupling. Case Studies in Construction Materials, 18, Article e01802. https://doi.org/10.1016/j.cscm.2022.e01802

[101]

Zhu, Y., Chen, J., Yuan, D., Yang, Z., Shi, X., Li, H., Jin, H., & Ran, L. (2019). Development of analytical methods for ammonium determination in seawater over the last two decades. TrAC Trends in Analytical Chemistry, 119, Article 115627. https://doi.org/10.1016/j.trac.2019.115627

AI Summary AI Mindmap
PDF (11820KB)

46

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/