Role of root morphological and architectural traits: Insights into root-inspired anchorage and foundation systems

Wengang Zhang , Ruijie Huang , Jiaying Xiang , Ningning Zhang , Matteo Oryem Ciantia , Leilei Liu , Jian Yin , Changbing Qin

Biogeotechnics ›› 2025, Vol. 3 ›› Issue (1) : 100107

PDF (2115KB)
Biogeotechnics ›› 2025, Vol. 3 ›› Issue (1) : 100107 DOI: 10.1016/j.bgtech.2024.100107
Editorial

Role of root morphological and architectural traits: Insights into root-inspired anchorage and foundation systems

Author information +
History +
PDF (2115KB)

Cite this article

Download citation ▾
Wengang Zhang, Ruijie Huang, Jiaying Xiang, Ningning Zhang, Matteo Oryem Ciantia, Leilei Liu, Jian Yin, Changbing Qin. Role of root morphological and architectural traits: Insights into root-inspired anchorage and foundation systems. Biogeotechnics, 2025, 3(1): 100107 DOI:10.1016/j.bgtech.2024.100107

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Wengang Zhang: Writing - review & editing, Supervision, Conceptualization. Ruijie Huang: Writing - original draft. Jiaying Xiang: Writing - original draft. Ningning Zhang: Writing - review & editing, Supervision. Matteo Oryem Ciantia: Writing - review & editing, Supervision. Leilei Liu: Writing - review & editing. Jian Yin: Writing - review & editing. Changbing Qin: Writing - review & editing.

Declaration of Competing Interest

The author declare the following financial interests/personal relationships which may be considered as potential competing interests: Ningning Zhang is employed by Ramboll, which may be considered as potential competing interests, and other authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The work described in this paper was supported by Natural Science Foundation of Chongqing (No. CSTB2022NSCQ-LZX0001), High-end Foreign Expert Introduction program (No. G2022165004L), High-end Foreign Expert Introduction program (No. DL2021165001L). The financial supports are gratefully acknowledged.

References

[1]

Ads, A., Iskander, M., & Pipin, G. (2023). Lessons in geomechanics of deep foundations from nature. Acta Geotechnica, 1-14. https://doi.org/10.1007/s11440-023-01960-y.

[2]

Burrall, M., DeJong, J. T., Martinez, A., & Wilson, D. W. (2020). Vertical pullout tests of orchard trees for bio-inspired engineering of anchorage and foundation systems. Bioinspiration & Biomimetics, 16(1), Article 016009. https://doi.org/10.1088/1748-3190/abb414.

[3]

Ding, Y., Peng, B., Xia, Z., Liu, Z., & Liu, C. (2024). An experimental study on the pullout mechanical property of tortuous roots manufactured from 3D printing. Hydrogeology & Engineering Geology, 51(1), 82-90. http://dx.doi.org/10.16030/j.cnki.issn.1000-3665.202212045.

[4]

Fakih, M., Delenne, J.-Y., Radjai, F., & Fourcaud, T. (2019). Root growth and force chains in a granular soil. Physical Review E, 99(4), Article 042903. https://doi.org/10.1103/PhysRevE.99.042903.

[5]

Fan, C.-C., & Chen, Y.-W. (2010). The effect of root architecture on the shearing resistance of root-permeated soils. Ecological Engineering, 36(6), 813-826. https://doi.org/10.1016/j.ecoleng.2010.03.003.

[6]

Galli, A., Sala, C., Castellanza, R., Marsiglia, A., & Ciantia, M. O. (2023). Lesson learnt from static pulling tests on trees: An experimental study on toppling behaviour of complex foundations. Acta Geotechnica, 1-18. https://doi.org/10.1007/s11440-023-02004-1.

[7]

Ghestem, M., Veylon, G., Bernard, A., Vanel, Q., & Stokes, A. (2014). Influence of plant root system morphology and architectural traits on soil shear resistance. Plant and Soil, 377, 43-61. https://doi.org/10.1007/s11440-023-02004-1.

[8]

Houette, T., Dibia, M., Mahabadi, N., & King, H. (2023). Pullout resistance of biomimetic root-inspired foundation systems. Acta Geotechnica, 1-20. https://doi.org/10.1007/s11440-023-02118-6.

[9]

Jiang, Y., Alam, M., Su, L., Umar, M., Sadiq, S., Jia, L. J., & Rahman, M. (2022). Effect of root orientation on the strength characteristics of loess in drained and undrained triaxial tests. Engineering Geology, 296, 106459. https://doi.org/10.1016/j.enggeo.2021.106459.

[10]

Karimzadeh, A. A., Leung, A. K., & Gao, Z. (2022). Shear strength anisotropy of rooted soils. Géotechnique, 1-14. https://doi.org/10.1680/jgeot.22.00103.

[11]

Kim, Y.-A., Burrall, M., Jeon, M.-K., DeJong, J. T., Martinez, A., & Kwon, T.-H. (2023). Pullout behavior of tree root-inspired anchors: Development of root architecture models and centrifuge tests. Acta Geotechnica, 19, 1. https://doi.org/10.1007/s11440-023-02077-y.

[12]

Li, S., Wang, Z., & Stutz, H. H. (2023). State-of-the-art review on plant-based solutions for soil improvement. Biogeotechnics, 1(3), 100035. https://doi.org/10.1016/j.bgtech.2023.100035.

[13]

Li, Y., & Duan, W. (2023). Decoding vegetation’s role in landslide susceptibility mapping: An integrated review of techniques and future directions. Biogeotechnics, 2(1), 100056. https://doi.org/10.1016/j.bgtech.2023.100056.

[14]

Li, Y., Wang, Y., Ma, C., Zhang, H., Wang, Y., Song, S., & Zhu, J. (2016). Influence of the spatial layout of plant roots on slope stability. Ecological Engineering, 91, 477-486. https://doi.org/10.1016/j.ecoleng.2016.02.026.

[15]

Li, Z., Ouyang, M., Xiao, H., Wang, J., Li, T., & Liu, S. (2021). Improvement of slope soil consolidation capacity of plant root system based on regulation of root architecture. Rock and Soil Mechanics, 42(12), 3271-3280.

[16]

Liang, T., Knappett, J., Bengough, A., & Ke, Y. (2017). Small-scale modelling of plant root systems using 3D printing, with applications to investigate the role of vegetation on earthquake-induced landslides. Landslides, 14, 1747-1765. https://doi.org/10.1007/s10346-017-0802-2.

[17]

Lu, J., Zhang, Q., Werner, A. D., Li, Y., Jiang, S., & Tan, Z. (2020). Root-induced changes of soil hydraulic properties-A review. Journal of Hydrology, 589, 125203. https://doi.org/10.1016/j.jhydrol.2020.125203.

[18]

Mallett, S. (2019). Georgia institute of technology. Mechanical behavior of fibrous root- inspired anchorage systems.

[19]

Martinez, A., DeJong, J., Akin, I., Aleali, A., Arson, C., Atkinson, J.,... Boulanger, R. (2022). Bio-inspired geotechnical engineering: Principles, current work, opportunities and challenges. Géotechnique, 72(8), 687-705. https://doi.org/10.1680/jgeot.20.P.170.

[20]

Mickovski, S., Bengough, A., Bransby, M., Davies, M., Hallett, P., & Sonnenberg, R. (2007). Material stiffness, branching pattern and soil matric potential affect the pullout resistance of model root systems. European journal of soil science, 58(6), 1471-1481. https://doi.org/10.1111/j.1365-2389.2007.00953.x.

[21]

Ng, C. W. W., Kamchoom, V., & Leung, A. K. (2016). Centrifuge modelling of the effects of root geometry on transpiration-induced suction and stability of vegetated slopes. Landslides, 13, 925-938. https://doi.org/10.1007/s10346-015-0645-7.

[22]

Ng, C. W. W., Liu, H. W., & Feng, S. (2015). Analytical solutions for calculating pore-water pressure in an infinite unsaturated slope with different root architectures. Canadian Geotechnical Journal, 52(12), 1981-1992. https://doi.org/10.1139/cgj-2015-0001.

[23]

Ng, C. W. W., Zhang, Q., Zhou, C., & Ni, J. (2022). Eco-geotechnics for human sustainability. Science China Technological Sciences, 65(12), 2809-2845. https://doi.org/10.1007/s11431-022-2174-9.

[24]

Nomleni, I. A., Hung, W.-Y., & Soegianto, D. P. (2023). Dynamic performance of root- reinforced slopes by centrifuge modeling tests. Landslides, 20(6), 1187-1210. https://doi.org/10.1007/s10346-023-02035-5.

[25]

O’Hara, K. B., & Martinez, A. (2020). Monotonic and cyclic frictional resistance directionality in snakeskin-inspired surfaces and piles. Journal of Geotechnical and Geoenvironmental Engineering, 146(11), Article 04020116. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002368.

[26]

Reubens, B., Poesen, J., Danjon, F., Geudens, G., & Muys, B. (2007). The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: A review. Trees, 21(4), 385-402. https://doi.org/10.1007/s00468-007-0132-4.

[27]

Schnepf, A., Leitner, D., Landl, M., Lobet, G., Mai, T. H., Morandage, S.,... Vereecken, H. (2018). CRootBox: A structural-functional modelling framework for root systems. Annals of botany, 121(5), 1033-1053. https://doi.org/10.1093/aob/mcx221.

[28]

Shrestha, S., & Ravichandran, N. (2020). An effort to develop a novel foundation through biomimicry using 3D finite element modeling. Geo-Congress 2020. Reston, VA: American Society of Civil Engineers209-218.

[29]

Song, X., & Tan, Y. (2024). Experimental study on the stability of vegetated earthen slopes under intense rainfall. Soil and Tillage Research, 238, 106028. https://doi.org/10.1016/j.still.2024.106028.

[30]

Stokes, A., Atger, C., Bengough, A. G., Fourcaud, T., & Sidle, R. C. (2009). Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant and Soil, 324, 1-30. https://doi.org/10.1007/s11104-009-0159-y.

[31]

Wang, X., Ma, C., Wang, Y., Wang, Y., Li, T., Dai, Z., & Li, M. (2020). Effect of root architecture on rainfall threshold for slope stability: Variabilities in saturated hydraulic conductivity and strength of root-soil composite. Landslides, 17, 1965-1977. https://doi.org/10.1007/s10346-020-01422-6.

[32]

Xu, H., Wang, X.-Y., Liu, C.-N., Chen, J.-N., & Zhang, C. (2021). A 3D root system morphological and mechanical model based on L-Systems and its application to estimate the shear strength of root-soil composites. Soil and Tillage Research, 212, 105074. https://doi.org/10.1016/j.still.2021.105074.

[33]

Yang, M., Défossez, P., Danjon, F., Dupont, S., & Fourcaud, T. (2017). Which root architectural elements contribute the best to anchorage of Pinus species? Insights from in silico experiments. Plant and Soil, 411, 275-291. https://doi.org/10.1007/s11104-016-2992-0.

[34]

Zhai, K., Zhang, J., Zhang, L., Luo, X., & Wang, K. (2024). Integrating root morphology based on whole-pullout test of model roots: A case study. Applied Sciences, 14(2), 764. https://doi.org/10.3390/app14020764.

[35]

Zhang, C.-B., Chen, L.-H., Liu, Y.-P., Ji, X.-D., & Liu, X.-P. (2010). Triaxial compression test of soil-root composites to evaluate influence of roots on soil shear strength. Ecological Engineering, 36(1), 19-26. https://doi.org/10.1016/j.ecoleng.2009.09.005.

[36]

Zhang, W., He, X., Liu, H., Sun, W., Han, F., Fuentes, R., & Paneiro, G. (2023). Research progress and prospect of bionic civil engineering. Journal of Civil and Environmental Engineering, 1-16.

[37]

Zhang, W., Huang, R., Xiang, J., & Zhang, N. (2024). Recent advances in bio-inspired geotechnics: From burrowing strategy to underground structures. Gondwana Research, 130, 1-17. https://doi.org/10.1016/j.gr.2023.12.018.

[38]

Zhang, X., Knappett, J., Leung, A., Ciantia, M., Liang, T., & Danjon, F. (2020). Small-scale modelling of root-soil interaction of trees under lateral loads. Plant and Soil, 456, 289-305. https://doi.org/10.1007/s11104-020-04636-8.

[39]

Zhang, X., Knappett, J. A., Leung, A. K., Ciantia, M. O., Liang, T., & Nicoll, B. C. (2022). Centrifuge modelling of root-soil interaction of laterally loaded trees under different loading conditions. Géotechnique, 73(9), 766-780. https://doi.org/10.1680/jgeot.21.00088.

[40]

Zhong, W., Liu, H., Wang, Q., Zhang, W., Li, Y., Ding, X., & Chen, L. (2021). Investigation of the penetration characteristics of snake skin-inspired pile using DEM. Acta Geotechnica, 16, 1849-1865. https://doi.org/10.1007/s11440-020-01132-2.

[41]

Zhu, H., Zhang, L. M., & Garg, A. (2018). Investigating plant transpiration-induced soil suction affected by root morphology and root depth. Computers and Geotechnics, 103, 26-31. https://doi.org/10.1016/j.compgeo.2018.06.019.

[42]

Zhu, J., Leung, A. K., & Wang, Y. (2023). Simulating the anchorage behaviour of plant roots of different morphological traits. Urban Forestry & Urban Greening, 88, 128068. https://doi.org/10.1016/j.ufug.2023.128068.

[43]

Schwarz, M., Cohen, D., & Or, D. (2011). Pullout tests of root analogs and natural root bundles in soil: Experiments and modeling. Journal of Geophysical Research: Earth Surface, 116(F2)https://doi.org/10.1029/2010JF001753.

[44]

Ni, J., Xiao, Y., Shi, J., & He, J. (2024). Soil bioengineering using vegetation under climate change. Biogeotechnics, 2(1), Article 100067. https://doi.org/10.1016/j.bgtech.2023.100067.

[45]

Mallett, S., Matsumura, S., & David Frost, J. (2018). Additive manufacturing and computed tomography of bio-inspired anchorage systems. Géotechnique Letters, 8(3), 219-225. https://doi.org/10.1680/jgele.18.00090.

AI Summary AI Mindmap
PDF (2115KB)

538

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/